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In this short J:Bper we introduce the principal features of 
IC-PROLOG mainly through examples. IC-PROLOG differs from 
PROLOG in not providing extra logical primitives such as the 
slash ("/") and "isvar", nor does it allow the addition and 
deletion of clauses during a query evaluation. On the plus 
side, negation and set expressions are primitives of the 
language, and there is a rich set of control facilities. For 
example, a programmer can: 
(1) make the evaluation order of the calls of a procedure 
dependent upon its mode of use, 
(2) initiate the (pseudo) parallel evaluation of a set of 
calls in which shared variables are one way communication 
channels. 
The control is specified by annotations which have no effect 
on the declarative semantics of the program. The evaluation 
of an IC-PROLOG program is genuinely a controlled deduction. 

1. PROCEDURES AND QUERIES 

An IC-PROLOG procedure is an implication of the form: 

where B is an atomic formula and each Li is a literal, i.e. 
an atomic formula or its negation. Atoms are of the form 
R(t 1,.,,tn) where Risa relation name and each ti is a term. 

As in DEC-10 PROLOG (Pereira et al. 1978) the syntax can be 
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modified by declaring operators. This enables one to use 
infix form for binary relations, using r Rt' instead of 
R(t,t'). 

The declarative reading of the procedure is as an implication 
universally quantified with respect to all the variables of 
the procedure1. The procedures describe a set of relations 
over terms which are the data structures of the program. 

A ~is of one of the three forms: 

(i) L1& •• &Lk 
(ii) t: L1& •• &Lk 

(iii) { t: L 1 '& •• &Lk} 

in which tis a term and each Li is a literal. Let x,, ... ,xn 
be all the variables of the conjunction L1& •• &Lk and let 
y 1, •• ,yk be the subset of these that do not appear int. The 
queries are read: 

(i) 
(ii) 

(iii) 

For some x 1, •• ,xn, L1& •• &Lk 
At such that for some y1, •• ,yk, L1& •.• &Lk 
All the t's such that for some Y1,••,Yk, L1& •• &Lk 

Query Evaluation. Both queries and procedures can be 
annotated in ways that will shortly be exemplified in order 
to control the query evaluation process. The default evalua
tion of a completely unannotated program and query is that of 
standard PROLOG. Literals (calls) of the query are selected 
one at a time in left to right order. Failure to prove the 
literal Li with the variable bindings generated by the 
preceding calls L1& •• &Li_1 causes backtracking. Set queries 
of the form (iii) are answered by backtracking after each 
successful evaluation until there are no untried proof paths. 
The before/after order of the program procedures is the order 
in which they will be tried during backtracking. 

Negated Atoms. Negated atoms are evaluated using the negation 
as failure proof rule. That is, -A is assumed true if all 
attempts to prove A fail. The call -A fails (i.e. is assumed 
false) only if there is a proof of A that does not bind any 
variable of the atom. If A can only be proved with some 
variable bound, the evaluation terminates with an error 
message. As explained in (Clark, 1978), this proof rule is 

1There is an exception to this rule if the procedure contains 
set equalities. See section 2. 
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sound on the assumption that the relation R of atom A, and 
any auxiliary relations used to describe R, are relations 
that are completely defined by the procedures of the program. 
The programmer implicitly declares that this is the case by 
using a negation involving R. 

Example Use of Negation. Suppose that we want to find 
unmarried children of Bill. We need to pose the query: 

All the x such that Bill is the father of x and it is not the 
case that, for some y, xis married toy. 

The only way we can express this in IC-PROLOG is to introduce 
the auxiliary relation, married(x), whose definition is the 
condition 

"for some y, xis married toy" 

that we wish to negate. We therefore add the procedure: 

married(x) <- x married-toy. 

We can now pose the query as: 

{x: Bill father-of x & -married(x)} 

2. PRIMITIVE RELATIONS 

IC-PROLOG has primitive relations for natural number 
arithmetic, for reading and writing files, and for construc
ting a list qf all the solutions of a query. The reading and 
writing of files we shall describe in section 4. Here we 
illustrate the use of the arithmetic relations and the set 
expression. 

Arithmetic Relations TIMES, PLUS, LESS. The arithmetic 
relations are unusual in that there are no input/output 
restrictions on their use. For example, the primitive TIMES 
relation can be used to multiply, to divide, to find all the 
pairs of divisors of a number, even to generate all the 
tuples of natural numbers which lie in the relation. This 
generality of use allows one to write elegant arithmetic 
programs that are just the obvious definitions of the 
relations they compute. 

Abstractly, the arithmetic primitives can be viewed as though 
defined by a data base of assertions that gives all the 
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instances of each relation. The natural number arguments can 
be denoted by successor terms or the usual decimal numerals. 
Thus "s(s(O))" and "2" are synonymous, and the term "s(s(x))" 
denotes any number greater than 1. The query: 

{<s(s(x)), y>:TIMES(s(s(x)),y,36) & LESS(s(x),y)} 

returns the set: {<2,18>,<3,12>,<4,9>,<6,6>}. 

even(y) <- TIMES(x,2,y) 

defines the property of being even. It can be used for 
testing or generating. 

x divides z <- TIMES(x, y, z) 

defines the divides relation. It can be used for testing, for 
finding divisors, or for finding multipliers. 

has-divisor(z) <- s(s(x)) divides z & -s(s(x))=z 

defines the property of having a proper divisor. Used for 
generating, as in the query: 

{z: has-divisor(z)} 

it will generate the infinite set of properly divisible 
natural numbers: { 4, 6, 8, 9, 10, •••• } • (More exactly, it 
generates the set until the query evaluation is interrupted 
or the numbers exceed the range handled by the host 
comµiter.) 

Finally, 

prime(z) <- LESS(1, z) & - has-divisor(z) 

defines the property of being a pri~e and 

x prime-divisor-of z <- x divides z & prime(x) 

defines the prime divisor relation. The query: 

{ u: prime(u)} 

gives all the primes, and the query: 

{ 1-l: u prime-di visor-of 100} 
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gives all its prime factors of 100. The definitions of 
"prime" and "prime-divisor-of" are really specifications of 
these relations. IC-PROLOG enables these specifications to be 
used, somewhat inefficiently, for comp.1tii1g instances of the 
relations. 

Set Constructor. 
form: 

The set constructor is an equality of the 

X = {t: A}, ta term, A an atom ( 1 ) 

Used in a query or procedure it is logically equivalent to 
the non-atomic condition: 

~u(u in x <-> Ey1, •• ,yk(u:t&A)). (2) 

where Y1,··,Yk are 'local' variables that only appear in t:A. 
As an example, the procedure: 

p mother-of-children 1 <- female(p) & 1 = q:q child-of p 

is equivalent to: 

p mother-of-children 1 <- female(p) & ~u(u in 1 <-> 
Eq(u:q & q child-of p)) 

The p is not existentially quantified since it appears in 
another condition of the query. It is not 'local' to the set 
expression. Universally quantified equivalences such as that 
above can be expressed directly in the logic language of 
Hansson et al. (1982). 

The set constructor (1) is used to generate a binding for x. 
This is i .ts only use. It cannot be used to generate a binding 
for any other free variable of the equivalence (2), or to 
test that some list satisfies the condition. 

Every member of the list generated for xis an instance ts of 
the term t. Here, sis a set of bindings for the local 
variables y 1,,.,Yk such that As is true. The list construc
ted by finding all the solutions to the query t:A • Each 
solution instance ts becomes an element on the list x. As 
with negation as failure, the evaluation method is sound on 
the assumption that the relation of A is completely described 
by the program. However the evaluation method does not 
necessarily generate the smallest list x that satisfies 
condition (2). This is because different evaluation µi.ths of 
the query t:A may give rise to the same answer instance t' of 
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t. In this case more than one copy oft' appears on the list 
binding for x. 

Example use 

(a) {<s, l>: student(s) & 1 = {u: stakes u } } 

This finds all the pairs <student, list of courses the 
student takes>. Using the expansion rule given above, it is 
equivalent to: 

{<s, l >: student(s) & Vu(u in 1 <- > stakes u)} 

(b) 1 is-list-of-prime-factors-of 
1 = 

X <-
u:{u prime-divisor-of x} 

This defines the relation that holds between a number x and 
the list 1 of its prime divisors. It is equivalent to: 

1 is-a-list-of-prime-factors-of x 
<- Vu(u in 1 <-> u prime-divisor-of x) 

Because of the restrictions on the use of the set constructor 
the procedure can only be used for finding the list of prime 
factors of a given number x. 

3. LINKING CONTROL WITH USE 

As we have already mentioned, the default control of IC
PROLOG is left to right evaluation of the conjunction of 
conditions of a query. This rule also applies to the 
preconditions/calls of a procedure. Unfortunately it is not 
always possible to find an ordering of the preconditions that 
is appropriate for every use. 

As an example, consider the following definition of the "has
descendant" relation: 

x has-descendant y <- x parent-of y 
x has-descendant y <- x parent-of z & z parent-of y 
x has-descendant y <- x parent-of z & z has-descendant w 

& w parent-of y 

Used to find descendants, in a query such as 

{y: Tom has-descendant y}, 
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the ordering of the three procedures and their preconditions 
results in a backtracking search which starts with the given 
"Tom". The first procedure finds all the children of "Tom". 
The second procedure generates the grandchildren of "Tom" by 
finding the children of his children. Finally, the last 
procedure will find all other descendants by finding each 
child of a descendant of one of his children. 

Used to find ancestors, in a query such as: 

{ x: x has-descendant Bill}, 

the ordering of the preconditions · results in a very 
inefficient search. Thus, the second procedure will generate 
the grandparents of Bill not by finding the parents of his 
parents, but by searching through all the parent-child pairs 
until a parent of Bill is found. The more efficient search 
would require the preconditions of the procedure to be in the 
reverse order. The last procedure also requires a reverse 
order of its preconditions if its use to find ancestors is to 
be an efficient search. 

In standard PROLOG, one way round the problem is to define 
the complement relation, has-ancestor, with the ordering of 
preconditions appropriate to the finding of ancestors. Then 
this relation is used instead of the has-descendant relation 
for calls intended to generate ancestors. But this involves 
introducing a logically redundant relation, and it detracts 
from the invertibility property that is unique to logic 
programming. Another solution, again in standard PROLOG, is 
to use the meta-level primitive isvar which tests whether a 
variable is bound. The second procedure for the has
descendant relation is then expanded to the two procedures: 

x has-descendant y <-
isvar(y) & x parent-of z & z parent-of y 

x has-descendant y <-
-isvar(y) & z parent-of y & x parent-of z. 

The major drawback of this solution, as with the use of the 
other meta-level primitives of PROLOG, is that it affects the 
declarative reading of the procedures. The procedures are no 
lon ger implications that can be read as simple definitions of 
relations. 

In IC-PROLOG, no such pollution of th e declarative semantics 
is allowed. Meta-level conditions, such as isvar(y), and all 
other issues of control are expressed in a separate language 
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of program annotations. The above pair· of trocedures become 
the annotated control alternatives: 

[x has-descendant y A 

<- X parent-of z & parent-of z Y, 
x has-descendant y? <- z parent-of y & X parent-of z] 

The "A" on the y of the first procedure expresses the control 
condition that y must be unbound on entry to the procedure. 
The "?" annotation of the second procedure is the control 
condition that it should be bound to a non-variable. These 
are the exact equivalents of isvar(y) and -isvar(y) 
conditions. Finally, the bracketing together of the 
procedures tells the evaluator that they are control 
alternatives, not logical alternatives. A similar pair of 
control alternatives can be given for the last has-descendant 
procedure. The program will then result in reasonably 
efficient search for all modes of use. 

For further discussion of control alternatives, and for a 
description of the semantics of the head annotations, we 
refer the reader to (Clark and McCabe, 1979b). Head annota
tions are similar to the mode declarations of Dec-10 PROLOG 
(Pereira et al. 1978). However the annotations allow the 
expression of more complex ini:ut/output modes, and unlike 
Dec-10 PROLOG, the mode declaration for a procedure is 
translated into a runtime test. In the logic programming 
language proposed by (Hansson et al, 1982), different orders 
of evaluation of the preconditions of a procedure are 
generated automatically for different modes, the ordering 
being based on a topological sort in which calls which 
contain ini:ut arguments have priority. This removes the 
responsibility from the programmer, but does not necessarily 
result in the most efficient order of evaluation, It also 
does not cover the case when the control for different modes 
is not just a different order of sequential evaluation, but 
is a different mix of sequential/non-sequential evaluation. 

4. NON-SEQUENTIAL EVALUATION 

Various forms of non-sequential evaluation can be specified 
in IC-PROLOG, We shall exemplify them by considering the 
classic illustration of the benefit of non-sequential 
evaluation, the problem of checking that two binary trees 
have the same leaf profile. 

The following procedures are a logic program that is 
essentially a specification of the "sameleaves" relation on 
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trees. The different trees: 

A~ 

B C 

/"c 
A B 

have the same leaf profile, We use "t(x,y)" to denote a 
with subtrees x and y and "l(u)" for a tree with just 
label u. The term "u.x" denotes the list with head u and 
x, "Nil" is the empty list. 

sameleaves(x,y) <- w irofile-of x & w profile-of y 

u.Nil profile-of l(u) 
u.z profile-of t(l(u),y) <- z profile-of y 
w profile-of t(t(x,y),z) <- w profile-of t(x,t(y,z)) 
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tree 
the 

tail 

Let us now consider the test use of the program. A sequential 
execution of the "sameleaves" procedure means that the 
profile of the tree xis generated first and this is then 
tested against the profile of y. (So we have both a generate 
and test use of the procedures defining "profile-of".) If the 
trees have the same profile, both trees need to be traversed, 
and a sequential execution is as good as any. But if not, it 
is wasteful to generate the leaf profile of x beyond the 
point at which they differ, We need to specify a control that 
will ensure this early cut-off. 

First, let us notice that the evaluation of the call 
w profile-of x will generate the output binding for w as a 
series of partial approximations. Thus, suppose that xis the 
tree t(l(A), t(l(B) ,l(C))). The second procedure for "profile
of" is the only one that applies to the call "w profile-of 
t(l(A),t(l(B),l(C)))" and its use will bind w to A.z. Here z 
is the profile of t(l(B),l(C)) yet to be generated. The next 
step in the evaluation will actually bind z to B,z', which 
implicitly binds w to the next approximation A.B.z'. Thus, 
the generation of the profile of the tree is such that each 
leaf label is 'made available', through the binding of w, as 
soon as the leaf is visited, There are three evaluation 
strategies for the sameleaves procedure that can exploit this 
label by label generation of the output binding for w. 

Unsynchronised Parallel Evaluation. The simplest strategy is 
to execute the two "profile-of" calls in i:arallel. This is 
specified in IC-PROLOG by replacing the"&" by 11

//
11

• 
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sameleaves(x,y) <- w profile-of x II w profile-of y 

The effect of the "II", which has the declarative reading 
"and", is to fork the evaluation of any procedure in which it 
appears into separate processes. These are placed on a 
process queue and the evaluator time shares between the 
processes by rotating the queue. In each time slice the 
process at the head of the queue, if not suspended for some 
reason (see below), is given a time slice sufficient for at 
least one resolution step. Notice that this means that only 
one process can bind a variable. It is never the case that 
two processes try to bind the same variable at the same time. 
After a process has bound a variable, all other processes 
must read and agree with that binding. 

In our example, this means that the first "profile-of" , 
process to bind w is the one which has the tree with the 
shortest path to the leftmost label. Thereafter, the other 
process must 'read' this binding. The evaluations proceed 
with labels added to and read from win an order determined 
by the shapes of the trees. As soon as both processes reach a 
mismatched label, the parallel evaluation fails. 

Parallelism with Directed Communication. We can restrict the 
parallel evaluation so that only one process is allowed to 
generate the binding for the shared variable w. We do this by 
either annotating the occurrence of win the producer process 
with a "A", or by annotating it in the consumer process with 
a"?". Thus, 

sameleaves(x,y) <- w profile-of x II wA profile-of y 

makes the second call the producer of the leaf profile. In 
the parallel evaluation, the first consumer call becomes 
suspended if it tries to add a label tow. It becomes a read
only process on the binding of w. Each time the second 
process finds a new leaf, the first process is reactivated in 
order to check the label. 

Data Triggered Coroutining. The above direction of communi
cation constraint on w prevents the consumer process from 
doing unnecessary work visiting labels that occur after the 
mismatch. It does not prevent the producer generating extra 
labels. To prevent ' this, we need to specify a control in 
which the producer process is suspended wherever it finds a 
new label, and is only reactivated when the consumer process 
is resuspended because it needs the next label. This is 
specified by retaining the producer annotation on the 
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variable, but by reverting back to the"&" connective. 

sameleaves(x,y) <- w profile-of x & wA profile-of y 

Because we have "&" rather than "II", there is no forking. 
Only one process is active at any one time, but there is an 
alternation between the evaluations of the two calls. The "A" 
annotation makes the second call a lazy producer of the 
binding for the shared variable w. 

The above example has served to illustrate three kinds of 
non-sequential control that one can specify using the 
annotations of IC-PROLOG. The unconstrained parallel control 
is the simplest. It simulates a parallel evaluation of 
conjunctive conditions in which the only constraint is that 
only one process is allowed to bind a variable. This is the 
form of parallelism discussed by Hogger (1982). Parallelism 
with designated producer processes for shared variables 
enables one to simulate networks of parallel processes with 
one way communication channels. This is the parallelism of 
the Kahn and McQueen model (1977). It is also treated in the 
logic programming context by van Emden and de Lucena (1982) 
and by Hansson et al. (1982). Finally, coroutining with a 
designated producer corresponds to lazy evaluation in a 
functional language (Friedman and Wise 1976). 

Non-Sequential Control with Backtracking. Because the 
different forms of non-sequential control are specified 
explicitly •with annotations they can be mixed. Coupled with 
backtracking search, this allows a rich variety of control 
strategies to be specified. 

As an example we give the top level procedures of a solution 
to the eight queens problem. This is a slight modification of 
a purely coroutining solution to the problem given in (Clark 
and McCabe, 1979b). The procedures that complete the program 
are given in that paper. The candidate solutions to the 
problem are permutations of the list of the numbers 1 to 8, 
the i'th number in the permutation being the column position 
of the queen in the i'th row. 

Queens-sol(x)<- Safe(x) & xA perm-of 1.2 •••• 8.Nil 
Safe(u.x)<- u cannot-take-any-of x II Safe(x) 

The "A" annotation in the "perm-of" call makes this a lazy 
producer of the permutation. The relation can be defined so 
that the permutation is generated as a stream of partial 
approximations, as with the leaf profile of a tree. Each new 
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number placed on xis a new queen that is immediately checked 
by the Safe(x) condition. The evaluation of this is a forking 
parallel computation. For each queen placed on the board 
there is a new process generated to check that it cannot ta ke 
any of the queens yet to be placed. Failure of any of these 
checks on the new queen results in backtracking to find a 
different placing. Thus, each candidate partial solution 
becomes a phalanx of parallel processes which grows and 
shrinks with the backtracking evaluation of the "perm-of" 
call. This sophisticated algorithmic behaviour results from 
simple control annotations attached to a program that is 
close to a specification of the problem that it solves. 

Other Control Annotations. There are two other ways of 
controlling a parallel evaluation. There is a delay primitive 
which is a"!" immediately following a variable in a call of 
a procedure. If a process invokes the procedure, and its 
evaluation reaches the"!" annotated call, the process will 
be suspended until the variable is bound by some other 
process. The annotation is ignored if every other process is 
suspended. The following example is an annotated version of a 
program given in (Kowalski, 1979a). It defines an admissible 
list of pairs of numbers as one in which the second number of 
each pair is double the first, and in which the first number 
of the next pair is three times the second number of the 
preceding pair. 

Admissible(l) <- Double(l)//Triple(l) 
Double (Nil) 
Double(<x,y>.1) <- TIMES(x! ,2,y) & Double(l) 
Triple(<x,y>.Nil) 
Triple(<x,y>.<z,w>.l) <- TIMES(y! ,3,z) & Triple(<z,w>.1) 

The program will test or generate a list of admissible pairs 
by a parallel evaluation of the two conditions that it must 
satisfy. One generate use is particularly efficient. This is 
for calls of the form "Admissible(<N,x>.1)" in which the N is 
given. The delays on the "TIMES" calls of the "Double", 
"Triple" procedures mean that the remaining numbers on the 
list will be generated by a deterministic sequence of 
multiplications of the seed N. 

The last control annotation is":". This can be used to make 
the evaluation of the first call of a procedure act as a 
guard (cf. Dijkstra, 1976) on its use. The effect of the":" 
in a procedure 

B <- G: A1 & ... & Am 
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is to make the unification with head Band the evaluation of 
the guard atom G an indivisible unit during a parallel or 
coroutined evaluation. It is most commonly used to delay the 
communication of variable bindings that result from the 
unification with B until after the successful evaluation of 
the guard. If the guard fails, the binding is not transmitted 
to the other processes. Guards are similar to the constraints 
of Bellia et al. (1982). The difference is that in IC-PROLOG 
a successful guard evaluation does not mean that the 
procedure is the only one that can be used for the call. It 
does not exclude the possibility that other procedures will 
unify with the call and have true guards. 

5. STREAM I/O 

Another unique feature of IC-PROLOG is stream I/O. The 
primitive READ(x) binds its argument variable not to a single 
character or term, but to the entire stream of characters 
that will be typed at the terminal. The programmer processes 
this stream as though it were a list of characters. The list 
is lazily produced by the evaluation of the READ(x) call. 
Thus, in a query of the form 

y: READ(x) & P(x,y) 

"P" must be a relation from a list of characters to the 
output y. Characters are read from the terminal as 
unifications in the evaluation of "P(x,y)" demand more of the 
list x. Because xis the list of all the characters typed 
there is no problem with backtracking. As characters are read 
in they are explicitly stored in the list binding for x that 
READ(x) is lazily producing. After backtracking, evaluation 
steps of the "P(x,y)" call get characters from this partially 
recorded list. Only when this is exhausted will new 
characters be read from the terminal. This processing of 
streams generated at the terminal is handled by a modified 
unification algorithm that 'knows' about special values that 
are pointers to the terminal buffer. 

The primitive WRITE(y) will display the list binding 
the terminal. As with the lists produced by READ(x), 
constants are used to denote invisible characters. 
constant "LINE" will be 'displayed' by generating a 
return. 

for y at 
special 

Thus the 
carriage 

WRITE(y) can also be used with its argument generated as a 
stream. Consider a query of the form 
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READ(x) & WRITE(y) & R(x,y~), 

in which "R" is a relation over lists of characters that 
generates the output binding for y as a stream as it consumes 
x. The evaluation of the query will interleave lines of 
output with lines of inPJt. Each carriage return that is 
typed is a signal that allows the display of the next segment 
of y that ends with the "LINE" constant. 

6. CONCLUDING REMARKS 

IC-PROLOG is a pure logic based language that enables one to 
illustrate a wide variety of programming concepts. Using the 
set constructor and control alternatives one can develop 
general purpose deductive data bases. Using stream I/O and 
data triggered coroutining one can illustrate the idea of 
lazy evaluation. Finally, the parallel evaluation and the 
various ways of controlling it correspond to current ideas in 
the area of communicating processes. IC-PROLOG is therefore 
an ideal language for teaching these programming concepts. It 
has been used in this way at Imperial College and at Syracuse 
University with some success. 
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ABSTRACT 

We have developed a logic programming system based on natural 
deduction. It consists of a class of statements which is a 
superclass of Horn clauses. We can run as programs logical 
statements that formerly have been considered specifications. 
For example, the language contains the logical constants 
negation, equivalence, universal quantifier and identity. We 
can define functions, as well as relations, infinite data 
structures and virtual classes. Computation rules provide 
control information. A demand driven computation rule results 
in computations on infinite data structures that terminate. 

1 • INTRODUCTION 

Logic programming as in the Prolog systems (see Colmerauer et 
al. 1972; Pereira et al. 1978) is based on Horn clauses and a 
procedural reading of relations (see Kowalski, 1974). The 
logical system is resolution (Robinson, 1965). In contrast, 
our language is based on a natural deduction system (see 
Prawitz, 1965) • Our procedures are special cases of co
opera ting agents. The language is first order and has the 
following features in common with Prolog: ( 1) general tree
like data structures, (2) non-determinate programs treated by 
automatic backtracking, (3) no distinction between input and 
output, (4) logical variables that enable programs to 
manipulate partially specified data structures, (5) tail 
recursion optimization. 

Its additional features are: ( 1) truth functional semantics 


