
ABSTRACT

IC-PROLOG LANGUAGE FEATURES

K.L. Clark F.G. McCabe S. Gregory

Imperial College of Science and Technology,
Dej'.Brtment of Computing,

180 Queen's Gate, London, SW7 2BZ

In this short J:Bper we introduce the principal features of
IC-PROLOG mainly through examples. IC-PROLOG differs from
PROLOG in not providing extra logical primitives such as the
slash ("/") and "isvar", nor does it allow the addition and
deletion of clauses during a query evaluation. On the plus
side, negation and set expressions are primitives of the
language, and there is a rich set of control facilities. For
example, a programmer can:
(1) make the evaluation order of the calls of a procedure
dependent upon its mode of use,
(2) initiate the (pseudo) parallel evaluation of a set of
calls in which shared variables are one way communication
channels.
The control is specified by annotations which have no effect
on the declarative semantics of the program. The evaluation
of an IC-PROLOG program is genuinely a controlled deduction.

1. PROCEDURES AND QUERIES

An IC-PROLOG procedure is an implication of the form:

where B is an atomic formula and each Li is a literal, i.e.
an atomic formula or its negation. Atoms are of the form
R(t 1,.,,tn) where Risa relation name and each ti is a term.

As in DEC-10 PROLOG (Pereira et al. 1978) the syntax can be

254 K.L. CLARK ET AL.

modified by declaring operators. This enables one to use
infix form for binary relations, using r Rt' instead of
R(t,t').

The declarative reading of the procedure is as an implication
universally quantified with respect to all the variables of
the procedure1. The procedures describe a set of relations
over terms which are the data structures of the program.

A ~is of one of the three forms:

(i) L1& •• &Lk
(ii) t: L1& •• &Lk

(iii) { t: L 1 '& •• &Lk}

in which tis a term and each Li is a literal. Let x,, ... ,xn
be all the variables of the conjunction L1& •• &Lk and let
y 1, •• ,yk be the subset of these that do not appear int. The
queries are read:

(i)
(ii)

(iii)

For some x 1, •• ,xn, L1& •• &Lk
At such that for some y1, •• ,yk, L1& •.• &Lk
All the t's such that for some Y1,••,Yk, L1& •• &Lk

Query Evaluation. Both queries and procedures can be
annotated in ways that will shortly be exemplified in order
to control the query evaluation process. The default evalua
tion of a completely unannotated program and query is that of
standard PROLOG. Literals (calls) of the query are selected
one at a time in left to right order. Failure to prove the
literal Li with the variable bindings generated by the
preceding calls L1& •• &Li_1 causes backtracking. Set queries
of the form (iii) are answered by backtracking after each
successful evaluation until there are no untried proof paths.
The before/after order of the program procedures is the order
in which they will be tried during backtracking.

Negated Atoms. Negated atoms are evaluated using the negation
as failure proof rule. That is, -A is assumed true if all
attempts to prove A fail. The call -A fails (i.e. is assumed
false) only if there is a proof of A that does not bind any
variable of the atom. If A can only be proved with some
variable bound, the evaluation terminates with an error
message. As explained in (Clark, 1978), this proof rule is

1There is an exception to this rule if the procedure contains
set equalities. See section 2.

IC-PROLOG LANGUAGE FEATURES 255

sound on the assumption that the relation R of atom A, and
any auxiliary relations used to describe R, are relations
that are completely defined by the procedures of the program.
The programmer implicitly declares that this is the case by
using a negation involving R.

Example Use of Negation. Suppose that we want to find
unmarried children of Bill. We need to pose the query:

All the x such that Bill is the father of x and it is not the
case that, for some y, xis married toy.

The only way we can express this in IC-PROLOG is to introduce
the auxiliary relation, married(x), whose definition is the
condition

"for some y, xis married toy"

that we wish to negate. We therefore add the procedure:

married(x) <- x married-toy.

We can now pose the query as:

{x: Bill father-of x & -married(x)}

2. PRIMITIVE RELATIONS

IC-PROLOG has primitive relations for natural number
arithmetic, for reading and writing files, and for construc
ting a list qf all the solutions of a query. The reading and
writing of files we shall describe in section 4. Here we
illustrate the use of the arithmetic relations and the set
expression.

Arithmetic Relations TIMES, PLUS, LESS. The arithmetic
relations are unusual in that there are no input/output
restrictions on their use. For example, the primitive TIMES
relation can be used to multiply, to divide, to find all the
pairs of divisors of a number, even to generate all the
tuples of natural numbers which lie in the relation. This
generality of use allows one to write elegant arithmetic
programs that are just the obvious definitions of the
relations they compute.

Abstractly, the arithmetic primitives can be viewed as though
defined by a data base of assertions that gives all the

256 K.L. CLARK ET AL.

instances of each relation. The natural number arguments can
be denoted by successor terms or the usual decimal numerals.
Thus "s(s(O))" and "2" are synonymous, and the term "s(s(x))"
denotes any number greater than 1. The query:

{<s(s(x)), y>:TIMES(s(s(x)),y,36) & LESS(s(x),y)}

returns the set: {<2,18>,<3,12>,<4,9>,<6,6>}.

even(y) <- TIMES(x,2,y)

defines the property of being even. It can be used for
testing or generating.

x divides z <- TIMES(x, y, z)

defines the divides relation. It can be used for testing, for
finding divisors, or for finding multipliers.

has-divisor(z) <- s(s(x)) divides z & -s(s(x))=z

defines the property of having a proper divisor. Used for
generating, as in the query:

{z: has-divisor(z)}

it will generate the infinite set of properly divisible
natural numbers: { 4, 6, 8, 9, 10, •••• } • (More exactly, it
generates the set until the query evaluation is interrupted
or the numbers exceed the range handled by the host
comµiter.)

Finally,

prime(z) <- LESS(1, z) & - has-divisor(z)

defines the property of being a pri~e and

x prime-divisor-of z <- x divides z & prime(x)

defines the prime divisor relation. The query:

{ u: prime(u)}

gives all the primes, and the query:

{ 1-l: u prime-di visor-of 100}

IC-PROLOG LANGUAGE FEATURES 257

gives all its prime factors of 100. The definitions of
"prime" and "prime-divisor-of" are really specifications of
these relations. IC-PROLOG enables these specifications to be
used, somewhat inefficiently, for comp.1tii1g instances of the
relations.

Set Constructor.
form:

The set constructor is an equality of the

X = {t: A}, ta term, A an atom (1)

Used in a query or procedure it is logically equivalent to
the non-atomic condition:

~u(u in x <-> Ey1, •• ,yk(u:t&A)). (2)

where Y1,··,Yk are 'local' variables that only appear in t:A.
As an example, the procedure:

p mother-of-children 1 <- female(p) & 1 = q:q child-of p

is equivalent to:

p mother-of-children 1 <- female(p) & ~u(u in 1 <->
Eq(u:q & q child-of p))

The p is not existentially quantified since it appears in
another condition of the query. It is not 'local' to the set
expression. Universally quantified equivalences such as that
above can be expressed directly in the logic language of
Hansson et al. (1982).

The set constructor (1) is used to generate a binding for x.
This is i .ts only use. It cannot be used to generate a binding
for any other free variable of the equivalence (2), or to
test that some list satisfies the condition.

Every member of the list generated for xis an instance ts of
the term t. Here, sis a set of bindings for the local
variables y 1,,.,Yk such that As is true. The list construc
ted by finding all the solutions to the query t:A • Each
solution instance ts becomes an element on the list x. As
with negation as failure, the evaluation method is sound on
the assumption that the relation of A is completely described
by the program. However the evaluation method does not
necessarily generate the smallest list x that satisfies
condition (2). This is because different evaluation µi.ths of
the query t:A may give rise to the same answer instance t' of

258 K.L. CLARK ET AL.

t. In this case more than one copy oft' appears on the list
binding for x.

Example use

(a) {<s, l>: student(s) & 1 = {u: stakes u } }

This finds all the pairs <student, list of courses the
student takes>. Using the expansion rule given above, it is
equivalent to:

{<s, l >: student(s) & Vu(u in 1 <- > stakes u)}

(b) 1 is-list-of-prime-factors-of
1 =

X <-
u:{u prime-divisor-of x}

This defines the relation that holds between a number x and
the list 1 of its prime divisors. It is equivalent to:

1 is-a-list-of-prime-factors-of x
<- Vu(u in 1 <-> u prime-divisor-of x)

Because of the restrictions on the use of the set constructor
the procedure can only be used for finding the list of prime
factors of a given number x.

3. LINKING CONTROL WITH USE

As we have already mentioned, the default control of IC
PROLOG is left to right evaluation of the conjunction of
conditions of a query. This rule also applies to the
preconditions/calls of a procedure. Unfortunately it is not
always possible to find an ordering of the preconditions that
is appropriate for every use.

As an example, consider the following definition of the "has
descendant" relation:

x has-descendant y <- x parent-of y
x has-descendant y <- x parent-of z & z parent-of y
x has-descendant y <- x parent-of z & z has-descendant w

& w parent-of y

Used to find descendants, in a query such as

{y: Tom has-descendant y},

IC-PROLOG LANGUAGE FEATURES 259

the ordering of the three procedures and their preconditions
results in a backtracking search which starts with the given
"Tom". The first procedure finds all the children of "Tom".
The second procedure generates the grandchildren of "Tom" by
finding the children of his children. Finally, the last
procedure will find all other descendants by finding each
child of a descendant of one of his children.

Used to find ancestors, in a query such as:

{ x: x has-descendant Bill},

the ordering of the preconditions · results in a very
inefficient search. Thus, the second procedure will generate
the grandparents of Bill not by finding the parents of his
parents, but by searching through all the parent-child pairs
until a parent of Bill is found. The more efficient search
would require the preconditions of the procedure to be in the
reverse order. The last procedure also requires a reverse
order of its preconditions if its use to find ancestors is to
be an efficient search.

In standard PROLOG, one way round the problem is to define
the complement relation, has-ancestor, with the ordering of
preconditions appropriate to the finding of ancestors. Then
this relation is used instead of the has-descendant relation
for calls intended to generate ancestors. But this involves
introducing a logically redundant relation, and it detracts
from the invertibility property that is unique to logic
programming. Another solution, again in standard PROLOG, is
to use the meta-level primitive isvar which tests whether a
variable is bound. The second procedure for the has
descendant relation is then expanded to the two procedures:

x has-descendant y <-
isvar(y) & x parent-of z & z parent-of y

x has-descendant y <-
-isvar(y) & z parent-of y & x parent-of z.

The major drawback of this solution, as with the use of the
other meta-level primitives of PROLOG, is that it affects the
declarative reading of the procedures. The procedures are no
lon ger implications that can be read as simple definitions of
relations.

In IC-PROLOG, no such pollution of th e declarative semantics
is allowed. Meta-level conditions, such as isvar(y), and all
other issues of control are expressed in a separate language

260 K.L. CLARK ET AL.

of program annotations. The above pair· of trocedures become
the annotated control alternatives:

[x has-descendant y A

<- X parent-of z & parent-of z Y,
x has-descendant y? <- z parent-of y & X parent-of z]

The "A" on the y of the first procedure expresses the control
condition that y must be unbound on entry to the procedure.
The "?" annotation of the second procedure is the control
condition that it should be bound to a non-variable. These
are the exact equivalents of isvar(y) and -isvar(y)
conditions. Finally, the bracketing together of the
procedures tells the evaluator that they are control
alternatives, not logical alternatives. A similar pair of
control alternatives can be given for the last has-descendant
procedure. The program will then result in reasonably
efficient search for all modes of use.

For further discussion of control alternatives, and for a
description of the semantics of the head annotations, we
refer the reader to (Clark and McCabe, 1979b). Head annota
tions are similar to the mode declarations of Dec-10 PROLOG
(Pereira et al. 1978). However the annotations allow the
expression of more complex ini:ut/output modes, and unlike
Dec-10 PROLOG, the mode declaration for a procedure is
translated into a runtime test. In the logic programming
language proposed by (Hansson et al, 1982), different orders
of evaluation of the preconditions of a procedure are
generated automatically for different modes, the ordering
being based on a topological sort in which calls which
contain ini:ut arguments have priority. This removes the
responsibility from the programmer, but does not necessarily
result in the most efficient order of evaluation, It also
does not cover the case when the control for different modes
is not just a different order of sequential evaluation, but
is a different mix of sequential/non-sequential evaluation.

4. NON-SEQUENTIAL EVALUATION

Various forms of non-sequential evaluation can be specified
in IC-PROLOG, We shall exemplify them by considering the
classic illustration of the benefit of non-sequential
evaluation, the problem of checking that two binary trees
have the same leaf profile.

The following procedures are a logic program that is
essentially a specification of the "sameleaves" relation on

IC-PROLOG LANGUAGE FEATURES

trees. The different trees:

A~

B C

/"c
A B

have the same leaf profile, We use "t(x,y)" to denote a
with subtrees x and y and "l(u)" for a tree with just
label u. The term "u.x" denotes the list with head u and
x, "Nil" is the empty list.

sameleaves(x,y) <- w irofile-of x & w profile-of y

u.Nil profile-of l(u)
u.z profile-of t(l(u),y) <- z profile-of y
w profile-of t(t(x,y),z) <- w profile-of t(x,t(y,z))

261

tree
the

tail

Let us now consider the test use of the program. A sequential
execution of the "sameleaves" procedure means that the
profile of the tree xis generated first and this is then
tested against the profile of y. (So we have both a generate
and test use of the procedures defining "profile-of".) If the
trees have the same profile, both trees need to be traversed,
and a sequential execution is as good as any. But if not, it
is wasteful to generate the leaf profile of x beyond the
point at which they differ, We need to specify a control that
will ensure this early cut-off.

First, let us notice that the evaluation of the call
w profile-of x will generate the output binding for w as a
series of partial approximations. Thus, suppose that xis the
tree t(l(A), t(l(B) ,l(C))). The second procedure for "profile
of" is the only one that applies to the call "w profile-of
t(l(A),t(l(B),l(C)))" and its use will bind w to A.z. Here z
is the profile of t(l(B),l(C)) yet to be generated. The next
step in the evaluation will actually bind z to B,z', which
implicitly binds w to the next approximation A.B.z'. Thus,
the generation of the profile of the tree is such that each
leaf label is 'made available', through the binding of w, as
soon as the leaf is visited, There are three evaluation
strategies for the sameleaves procedure that can exploit this
label by label generation of the output binding for w.

Unsynchronised Parallel Evaluation. The simplest strategy is
to execute the two "profile-of" calls in i:arallel. This is
specified in IC-PROLOG by replacing the"&" by 11

//
11

•

262 K.L. CLARK'ET AL.

sameleaves(x,y) <- w profile-of x II w profile-of y

The effect of the "II", which has the declarative reading
"and", is to fork the evaluation of any procedure in which it
appears into separate processes. These are placed on a
process queue and the evaluator time shares between the
processes by rotating the queue. In each time slice the
process at the head of the queue, if not suspended for some
reason (see below), is given a time slice sufficient for at
least one resolution step. Notice that this means that only
one process can bind a variable. It is never the case that
two processes try to bind the same variable at the same time.
After a process has bound a variable, all other processes
must read and agree with that binding.

In our example, this means that the first "profile-of" ,
process to bind w is the one which has the tree with the
shortest path to the leftmost label. Thereafter, the other
process must 'read' this binding. The evaluations proceed
with labels added to and read from win an order determined
by the shapes of the trees. As soon as both processes reach a
mismatched label, the parallel evaluation fails.

Parallelism with Directed Communication. We can restrict the
parallel evaluation so that only one process is allowed to
generate the binding for the shared variable w. We do this by
either annotating the occurrence of win the producer process
with a "A", or by annotating it in the consumer process with
a"?". Thus,

sameleaves(x,y) <- w profile-of x II wA profile-of y

makes the second call the producer of the leaf profile. In
the parallel evaluation, the first consumer call becomes
suspended if it tries to add a label tow. It becomes a read
only process on the binding of w. Each time the second
process finds a new leaf, the first process is reactivated in
order to check the label.

Data Triggered Coroutining. The above direction of communi
cation constraint on w prevents the consumer process from
doing unnecessary work visiting labels that occur after the
mismatch. It does not prevent the producer generating extra
labels. To prevent ' this, we need to specify a control in
which the producer process is suspended wherever it finds a
new label, and is only reactivated when the consumer process
is resuspended because it needs the next label. This is
specified by retaining the producer annotation on the

IC-PROLOG LANGUAGE FEATURES 263

variable, but by reverting back to the"&" connective.

sameleaves(x,y) <- w profile-of x & wA profile-of y

Because we have "&" rather than "II", there is no forking.
Only one process is active at any one time, but there is an
alternation between the evaluations of the two calls. The "A"
annotation makes the second call a lazy producer of the
binding for the shared variable w.

The above example has served to illustrate three kinds of
non-sequential control that one can specify using the
annotations of IC-PROLOG. The unconstrained parallel control
is the simplest. It simulates a parallel evaluation of
conjunctive conditions in which the only constraint is that
only one process is allowed to bind a variable. This is the
form of parallelism discussed by Hogger (1982). Parallelism
with designated producer processes for shared variables
enables one to simulate networks of parallel processes with
one way communication channels. This is the parallelism of
the Kahn and McQueen model (1977). It is also treated in the
logic programming context by van Emden and de Lucena (1982)
and by Hansson et al. (1982). Finally, coroutining with a
designated producer corresponds to lazy evaluation in a
functional language (Friedman and Wise 1976).

Non-Sequential Control with Backtracking. Because the
different forms of non-sequential control are specified
explicitly •with annotations they can be mixed. Coupled with
backtracking search, this allows a rich variety of control
strategies to be specified.

As an example we give the top level procedures of a solution
to the eight queens problem. This is a slight modification of
a purely coroutining solution to the problem given in (Clark
and McCabe, 1979b). The procedures that complete the program
are given in that paper. The candidate solutions to the
problem are permutations of the list of the numbers 1 to 8,
the i'th number in the permutation being the column position
of the queen in the i'th row.

Queens-sol(x)<- Safe(x) & xA perm-of 1.2 •••• 8.Nil
Safe(u.x)<- u cannot-take-any-of x II Safe(x)

The "A" annotation in the "perm-of" call makes this a lazy
producer of the permutation. The relation can be defined so
that the permutation is generated as a stream of partial
approximations, as with the leaf profile of a tree. Each new

264 K.L. CLARK ET AL.

number placed on xis a new queen that is immediately checked
by the Safe(x) condition. The evaluation of this is a forking
parallel computation. For each queen placed on the board
there is a new process generated to check that it cannot ta ke
any of the queens yet to be placed. Failure of any of these
checks on the new queen results in backtracking to find a
different placing. Thus, each candidate partial solution
becomes a phalanx of parallel processes which grows and
shrinks with the backtracking evaluation of the "perm-of"
call. This sophisticated algorithmic behaviour results from
simple control annotations attached to a program that is
close to a specification of the problem that it solves.

Other Control Annotations. There are two other ways of
controlling a parallel evaluation. There is a delay primitive
which is a"!" immediately following a variable in a call of
a procedure. If a process invokes the procedure, and its
evaluation reaches the"!" annotated call, the process will
be suspended until the variable is bound by some other
process. The annotation is ignored if every other process is
suspended. The following example is an annotated version of a
program given in (Kowalski, 1979a). It defines an admissible
list of pairs of numbers as one in which the second number of
each pair is double the first, and in which the first number
of the next pair is three times the second number of the
preceding pair.

Admissible(l) <- Double(l)//Triple(l)
Double (Nil)
Double(<x,y>.1) <- TIMES(x! ,2,y) & Double(l)
Triple(<x,y>.Nil)
Triple(<x,y>.<z,w>.l) <- TIMES(y! ,3,z) & Triple(<z,w>.1)

The program will test or generate a list of admissible pairs
by a parallel evaluation of the two conditions that it must
satisfy. One generate use is particularly efficient. This is
for calls of the form "Admissible(<N,x>.1)" in which the N is
given. The delays on the "TIMES" calls of the "Double",
"Triple" procedures mean that the remaining numbers on the
list will be generated by a deterministic sequence of
multiplications of the seed N.

The last control annotation is":". This can be used to make
the evaluation of the first call of a procedure act as a
guard (cf. Dijkstra, 1976) on its use. The effect of the":"
in a procedure

B <- G: A1 & ... & Am

IC-PROLOG LANGUAGE FEATURES 265

is to make the unification with head Band the evaluation of
the guard atom G an indivisible unit during a parallel or
coroutined evaluation. It is most commonly used to delay the
communication of variable bindings that result from the
unification with B until after the successful evaluation of
the guard. If the guard fails, the binding is not transmitted
to the other processes. Guards are similar to the constraints
of Bellia et al. (1982). The difference is that in IC-PROLOG
a successful guard evaluation does not mean that the
procedure is the only one that can be used for the call. It
does not exclude the possibility that other procedures will
unify with the call and have true guards.

5. STREAM I/O

Another unique feature of IC-PROLOG is stream I/O. The
primitive READ(x) binds its argument variable not to a single
character or term, but to the entire stream of characters
that will be typed at the terminal. The programmer processes
this stream as though it were a list of characters. The list
is lazily produced by the evaluation of the READ(x) call.
Thus, in a query of the form

y: READ(x) & P(x,y)

"P" must be a relation from a list of characters to the
output y. Characters are read from the terminal as
unifications in the evaluation of "P(x,y)" demand more of the
list x. Because xis the list of all the characters typed
there is no problem with backtracking. As characters are read
in they are explicitly stored in the list binding for x that
READ(x) is lazily producing. After backtracking, evaluation
steps of the "P(x,y)" call get characters from this partially
recorded list. Only when this is exhausted will new
characters be read from the terminal. This processing of
streams generated at the terminal is handled by a modified
unification algorithm that 'knows' about special values that
are pointers to the terminal buffer.

The primitive WRITE(y) will display the list binding
the terminal. As with the lists produced by READ(x),
constants are used to denote invisible characters.
constant "LINE" will be 'displayed' by generating a
return.

for y at
special

Thus the
carriage

WRITE(y) can also be used with its argument generated as a
stream. Consider a query of the form

266 K.L. CLARK ET AL.

READ(x) & WRITE(y) & R(x,y~),

in which "R" is a relation over lists of characters that
generates the output binding for y as a stream as it consumes
x. The evaluation of the query will interleave lines of
output with lines of inPJt. Each carriage return that is
typed is a signal that allows the display of the next segment
of y that ends with the "LINE" constant.

6. CONCLUDING REMARKS

IC-PROLOG is a pure logic based language that enables one to
illustrate a wide variety of programming concepts. Using the
set constructor and control alternatives one can develop
general purpose deductive data bases. Using stream I/O and
data triggered coroutining one can illustrate the idea of
lazy evaluation. Finally, the parallel evaluation and the
various ways of controlling it correspond to current ideas in
the area of communicating processes. IC-PROLOG is therefore
an ideal language for teaching these programming concepts. It
has been used in this way at Imperial College and at Syracuse
University with some success.

ACKNOWLEDGEMENTS

The research on IC-PROLOG was supported by the British
Science & Engineering Research Council.

PROPERTIES OF A LOGIC PROGRAMMING LANGUAGE

A. Hansson s. Haridi* S-A. Tarnlund

UPMAIL
Computing Science Deiartment,

Uppsala University, Uppsala, Sweden

*Department of Computer Systems,
The Royal Institute of Technology, Stockholm, Sweden

ABSTRACT

We have developed a logic programming system based on natural
deduction. It consists of a class of statements which is a
superclass of Horn clauses. We can run as programs logical
statements that formerly have been considered specifications.
For example, the language contains the logical constants
negation, equivalence, universal quantifier and identity. We
can define functions, as well as relations, infinite data
structures and virtual classes. Computation rules provide
control information. A demand driven computation rule results
in computations on infinite data structures that terminate.

1 • INTRODUCTION

Logic programming as in the Prolog systems (see Colmerauer et
al. 1972; Pereira et al. 1978) is based on Horn clauses and a
procedural reading of relations (see Kowalski, 1974). The
logical system is resolution (Robinson, 1965). In contrast,
our language is based on a natural deduction system (see
Prawitz, 1965) • Our procedures are special cases of co
opera ting agents. The language is first order and has the
following features in common with Prolog: (1) general tree
like data structures, (2) non-determinate programs treated by
automatic backtracking, (3) no distinction between input and
output, (4) logical variables that enable programs to
manipulate partially specified data structures, (5) tail
recursion optimization.

Its additional features are: (1) truth functional semantics

