IC Prolog ||

Version 0.96, for Sun Workstations
28 September 1993

Department of Computing, Imperial College, London

by Yannis Cosmadopoulos and Damian Chu

Chapter 1: Overview 1

1 Overview

1.1 Introduction

ICP is an Edinburgh style prolog based on the WAM. In addition it includes the following special
features.

threads ICP allows multiple threads in a single process. This allows the solving of multiple
goals in pseudo parallel, achieved through the use of pre-emptive time-slicing.

parlog ICP includes a parlog engine. A parlog thread can be started and facilities are provided
for parlog to call prolog and vice versa.

Logic & Objects
Logic & Objects is a object-oriented layer on top of Prolog.

TCP A TCP interface allows for the communication between processes over a communication
network.

Mailboxes
Mailbox is a high-level communication model that is simple and yet has many more
features than TCP.

user-defined error handling
Users may define their own procedures for handling and recovering from errors.

user—defined file types
Users may define their own file types and then supply hooks for reading and transform-
ing terms in those files. This is a generalisation of term expansion.

Source files are assumed to have the suffix “.pl” while compiled files have the extension “.icp”.
Built in predicates dealing with these files will automatically append these extensions to files if they
are not present.

1.2 Command line Options

‘-s Stack’ The initial size of the stack can be specified. The unit is K-cells, with the default being
16 (K-cells); e.g. to double the size of the stack, specify ‘-s 32’.

2 ICP][0.96

‘~h Heap’ The initial size of the heap can be specified. The unit is K-cells, with the default being
48 (K-cells); e.g. to double the size of the heap, specify ‘-h 96’.

‘~f File’ Uses file File (instead of default ~/icp.pl) as the startup file for Prolog component of

ICP.

‘~ff File’ Uses file File (instead of default ~/icp.par) as the initialisation file for Parlog compo-
nent of ICP.

‘-n’ Skips Prolog startup file processing; i.e. does not read ~/.icp.pl.

‘-nn’ Skips Parlog startup file processing; i.e. does not read ~/.icp.par.

‘-z String’

String is executed by Prolog at startup time.

‘-zz String’
String is executed by Parlog at startup time.

‘~F Charset’
Charset may be one of ‘latinl’ (default), ‘greek’ or ‘mac’. This defines the character
encoding which categorizes characters into upper case, lower case or graphic characters.
This is used to determine variable names (beginning with upper case) and unquoted
atoms (all lower case).

‘~b File’ Allows the selection of an alternative boot file. The boot file determines which system
files are loaded at start up time and initialises the system. This option is rarely used.

1.3 Startup

When ICP is started it looks for the file ‘$HOME/.icp.pl’ which if found is consulted. This
is commonly used to declare operators, load specific foreign code or prolog libraries. Lines of
commands to be executed at startup time should be preceded by ‘-’ or ‘7-’. ‘-’ and ‘?-’ commands
may be scattered throughout the file, but the behaviour is as if all the ‘-’ commands (in the same
order) are at the start of the file and all the ‘7~ commands (in the same order) are at the end of
the file. The clauses in the body of the file are asserted into the dynamic database. Commands
that write output should specify the stream explicitly and not to rely on the default current output

stream.

After the startup file has been processed, the commands passed from the command line through
-z options are executed.

Chapter 1: Overview 3

When the parlog sub-system is started up, it goes through a similar process using the startup
file ‘$HOME/ .icp.par’ and the -zz options. Parlog may be started up in many ways - in the
‘$HOME/ .icp.pl’, as a -z command line option, or as a Prolog query.

1.4 Syntax

The syntax of ICP is compatible with Quintus Prolog! Quintus Prolog Development Environ-
ment, Quintus Computer Systems, Inc., Mountain View, California, USA.

1.4.1 Integers

(0

An integer consists of a sequence of digits optionally preceded by a minus sign ‘=’. These are
normally interpreted as base 10 integers. It is possible to enter integers in other bases (2 through
36). To enter an integer in a base other than 10, first enter the base in decimal, followed by an
apostrophe (‘>’) and then the string of digits. If a base greater than 10 is used, the characters

[.

a’-‘z’ or ‘A’-‘Z’ are used to stand for digits 10 through 35. For example:

8’21 = 17 decimal
16°FF = 255 decimal
36°’Z = 35 decimal

As a special case, base 0 allows characters to represent their ASCII codes. Examples:

0’A = 65
0’ [

=91

1.4.2 Floating Point Numbers

A floating point number consists of a sequence of digits with an embedded decimal point (‘.”),
optionally preceded by a minus sign (‘-’) and optionally followed by an exponent consisting of an
upper or lower case ‘e’ and a signed base 10 integer. Note that there must be at least one digit
before, and one digit after, the decimal point.

1 Quintus is a trademark of Quintus Computer Systems Inc., USA

4 ICP][0.96

1.4.3 Atoms

An atom may take any of the following forms:

1. A sequence of alphanumeric characters (including underscore), starting with a lower case letter
2. A sequence of one or more characters from the set: # $ & *x+- ./ :<=>7 \~ "~

3. A sequence of characters delimited by single quotes (‘’’). If the single quote character is

included it must be written twice.

4. the special atoms ! ; or {}

1.4.4 Variables

A variable is a sequence of alphanumeric characters (including underscore) starting with a capital
letter or an underscore (‘_’). Variables which only occur once in the clause are called anonymous

variables and may be written as an underscore on its own.

1.4.5 Tuples

A tuple is written as functor (which may be any term), followed by a left bracket ‘(’, followed
by 0 or more comma separated terms, and ending with a right bracket *)’. Note that the functor
is not limited to being an atom as in the case of Quintus Prolog. There must be no whitespace
characters between the functor and the left bracket. The following are valid ICP tuples:

foo(X)

bar ()

3(a,b,c)

Var (foo,bar)
person(john,33) (X,Y,Z)

Note that a tuple with 0 arity is not the same as the functor by itself i.e. X() = X fails.

Atomic functors may be declared as operators which would allow the tuple to be written without
the brackets. Operators may be declared to be prefix, postfix or infix. Infix operators can be further

defined as none, left or right associative.

Chapter 1: Overview 5

1.4.6 Lists

A list is just a shorthand notation for ‘./2’ tuples. A list is written as a left square-bracket
‘[’ followed by 0 or more comma separated terms and ending with a right-square bracket ‘]’. The
list may also be written in ‘./2’ notation. e.g. [1,2,3] unifies with .(1,.(2,.(3,[1))). For
convenience, a list of ASCII codes may be written as a string delimited by double-quotes (‘"’). e.g.
"ABC" = [65,66,67]. To include the double-quote character in the string, it must be written twice.

1.4.7 Character Escaping

In quoted atoms, double-quote delimited lists or base 0 notation, escape sequences can be used
to denote characters. This is used to avoid ambiguity and to enter unusual characters. ICP has
the following escape sequences:

\a alarm /bell (ASCII 7)

\b backspace (ASCII 8)

\t tab (ASCII 9)

\n newline (ASCII 10)

\v vertical tab (ASCII 11)

\f formfeed (ASCII 12)

\r carriage return (ASCII 13)
\e escape (ASCII 27)

\s space (ASCII 32)

\d delete (ASCII 127)

\<octal string>
the character with ASCII code <octal string> base 8. e.g. \007 is the bell character
and \040 is the space character (ASCII 32).

\"<control char>
the character whose ASCII code is the <control char> mod 32. e.g. \"P is CTL-P.

\<layout char>
no character, where <layout char> is a character with ASCII code =< 32 or >= 127.
This is most useful when splitting atoms over two lines where the ignored newline
character is preceded by a backslash.

6 ICP][0.96

\c no character, also all characters up to, but not including, the next non-layout character
are ignored.

\<other> the character <other>, where <other> is any character not defined above.

1.5 Notation

Built-in predicates are introduced with a template such as bag_of(?X, +Goal, -Set) where X,
Goal and Set are the arguments. The significance of the leading characters is as follows.

+ The argument is a (non variable) input.
- The argument is an output. The output value is unified with the original value.

? The argument is neither of the above. This might be because the argument can be
used both as an input and as an output argument, or because while the argument is
an input, it can be an uninstantiated variable.

Often, a tuple or predicate is represented by the term Name/Arity, where Name is the function
symbol and Arity is the number of arguments of the term.

Term Representation
foo(X,Y) foo/2
bar bar/0
not Goal not/1

1+2 +/2

Chapter 2: Builtin Predicates 7

2 Builtin Predicates

2.1 Control

+C1, +C2

+C1 ; +C2

This is the conjunction operator. C1 is evaluated and then C2 is evaluated. The
conjunction succeeds if and only if both calls succeed.

This is the disjunction operator. The call succeeds if either C1 or C2 succeeds. C1 is
evaluated first. Only when all possible evaluation paths for C1 have been explored will
backtracking lead to an evaluation of C2.

A 1/0 evaluated in the disjunction not only prevents backtracking within the disjunc-
tion, it also prevents backtracking to find alternative solutions to calls that precede the
disjunction in the clause or query in which the disjunction appears.

A 1/0 evaluated within the C1 branch also prevents the use of C2.

This is the backtracking control primitive. After it has been evaluated in a clause a
backtrack to the !'/0 call will be interpreted as failure of the call C that invoked the
clause. That is, it prevents the search for alternative solutions to any calls that precede
the !/0 in the body of the clause, and it will also prevent the use of other clauses to
try to solve C.

Placed at the top level in a query conjunction it will prevent backtracking to find
alternative solutions to calls that precede it in the query. See the description of the
logical operators ;/2 and ->/2 for the effect of !/0 inside these operators.

call (+Goal)

not +Call

\+ +Call

The call is equivalent to the call Goal, except where Goal is '/0 or includes '/0. A
1/0 evaluated inside Goal only has a local effect. It only affects backtracking to find
alternative solutions to calls that precede the ! /0 within Goal.

This is the negation as failure operator. The call succeeds if and only if Call fails.

Same as not/1.

+Test —> +Call

This is the conditional evaluation operator. The =>/2 call succeeds if and only if Test
succeeds and Call succeeds. An if ... then ... else construction may be created by
combining the conditional evaluation operator with the disjunction operator ‘; /2’ i.e.
Test -> Call ; Else.

As with disjunctions and conjunctions, a !/0 evaluated in Test or Call not only has a
local effect, but also the same effects as a !/0 evaluated just before the ->/2 call.

8 ICP][0.96

true This call always succeeds.

otherwise
Same as true/O0.

fail This call does not match anything and always fails.
false Same as fail/O0.
repeat This call always succeeds and repeatedly succeeds each time the evaluation backtracks
to the call. It is defined as:
repeat.
repeat :- repeat.
succeed (+Call)

Call is evaluated and succeed/1 succeeds, regardless of whether Call succeeded or
failed. Its definition is:

succeed(Call) :-

Call,
I

succeed(Call).

one (+Goal)

Goal must be a call term: one/1 is used to find just one solution to Goal.

2.2 Loading, Consulting and Compiling

2.2.1 Introduction

In ICP there is a distinction between dynamic (consulted) and static (compiled) code. When a
file is loaded into the runtime system, it is stored either in the system or user partition. Predicates
in the system partition can not be modified as they are necessary for running the prolog system.
Dynamic code is allways in the user partition.

2.2.1.1 The Search Path

)

Source files are assumed to have the suffix ‘.pl’ while compiled files have the extension ‘.icp’.
Many predicates dealing with files will automatically append these extensions to files if they are
not present. Thus for example the goal

Chapter 2: Builtin Predicates 9

?- consult(foo).
will result in the file ‘foo.pl’ being consulted.

The locations in the Unix file system which will be searched to locate the specified file are
determined by the Unix environment variable ‘ICP_PATH’. This must be a colon separated list, for

example

ICP_PATH=. : $HOME/icp/binary: $HOME/icp/source

ICP appends to the user defined path directories in the installation directory of ICP. If the
variable ‘ICP_PATH’ is not set, the search path is set as if the variable were set to the following

value

ICP_PATH=. : $HOME/icp/binary: $HOME/icp/source: $ICP_INSTALLDIR/prolog/$ARCH

where ‘$ICP_INSTALLDIR’ is the ICP instalation directory and ‘$ARCH’ is the machine architec-
ture as reported by the unix command ‘/bin/arch’ (eg ‘sun3’ or ‘sun4’).

2.2.1.2 Dynamic Code

Dynamic code is code which can be modified dynamically by the user by assert/1 and,
retract/1 (see Section 2.9 [ModifyingDatabase], page 36). In addition dynamic code is ‘visible’
in that it can be accessed by clause/2 and listed by listing/0 and listing/1 (see Section 2.7
[ProgramState], page 29). Dynamic code can also be traced.

Dynamic code can be created either by consulting a file using consult/1, reconsult/1 (see
Section 2.2.3 [LoadingDynamic], page 10), or by the dynamically asserting clauses.

2.2.1.3 Static Code

Static code is generated by the compiler. In contrast to dynamic code it is ‘hidden’ from the
user; the definition of a static clause can not be accessed directly and it is forbiden to dynamically
modify it. Static code is optimized and thus executes much faster than dynamic code.

10 ICP][0.96

Compiled code is generated by the compile/2 and compile/3 calls (see Section 2.2.4 [Load-

ingStatic], page 11). The compiler saves the ICP object code in a file with the extension ‘.icp’.
Once a file has been compiled it must be loaded into the ICP process.

2.2.2 Style Warnings

ICP has a style checker which can help in detecting errors if a particular style is used. Thus is
as follows.

1. All clauses for a predicate should be contiguous — clauses for one procedure should not be
interspaced with clauses for another.

2. Variables which appear only once in a clause should be written as ‘_’ or a name beginning with

[

an

If this style is not adhered to ICP can write warnings to user_error.

WARNING: Clauses for a/l1 are not together in the source file
WARNING: Singleton variables, clause 2 of b/1: [X]

The style checking can be controled by the predicates style_check/1 and no_style_check/1.

style_check(Type)

all turns on/off all style checking

discontiguous
turns on/off checking for discontiguous clauses

single_var
turns on/off checking for single occurence of variables. Variables whose
name begins with an underscore (_) are not flagged.

no_style_check(Type)

2.2.3 Loading Dynamic Code

Chapter 2: Builtin Predicates 11

consult (+File)
File is either the atom user, or the name of some source file. In the case of File
not being the atom user, the file is read and all clauses defined in it are asserted
into the internal database at the end. Thus if a predicate defined in the file already
has a definition in the internal database, the effect is to expand the definition of this
predicate. Consultation terminates when the end of the file is reached.

If a syntax error is found during consultation then the string ‘** SYNTAX ERROR **’ is
written out followed by all the text up to the offending token, followed by the string
‘*HERE*’, followed by all those tokens which proceed the next period or the end of the
file being consulted. A syntax-error message is also displayed. Consultation continues
after this period.

On encountering a clause for a system predicate or for a currently defined static pred-
icate, consult/1 ends the current session, displays an error message, and then fails.

In the special case where File is the atom user consult/1 reads from the terminal
(standard input) rather than a file. Consultation terminates when a end_of_file
token is read (caused by typing CTL-D). If a syntax error is found during consultation
then the string ‘** SYNTAX ERROR **’ is written out, together with the line of text in
which the error occurred. A syntax-error message is also displayed.

The top-level goal
?7- [Filel, ..., FileN].

is syntactic sugar for the goals
?- consult(Filel), ..., consult(FileN).

reconsult (+File)
Like consult/1 except that all predicates previously (re)consulted for this file are
abolished before asserting the new definitions.

2.2.4 Loading Static Code

compile (+File)
compile/1 is used to generate static object code for the relations in File. File is either
the atom user, or the name of some source file. The predicates defined in file File are
compiled and written out to the corresponding object file. Completion of suffixes is

)

performed, with the object file having the extension ‘.icp’.

compiling user
If File is user then the relations the user wishes to generate code for are to
be entered directly at the terminal. Each relation is compiled to a separate
segment which is automatically loaded. If a syntax error is found during

12

ICP][0.96

compilation then the string ‘** SYNTAX ERROR **’ is written out, together
with the line of text in which the error occurred. A syntax-error message
is also displayed. Compilation ends when the user types a CTL-D.

compiling a ¢.pl’ file

If File is the name of a ‘.pl’ file then compile/1 obtains the relations the
user wishes to generate code for by reading the file in question. All the
relations are compiled into a single segment which, on successful completion
of compilation is written out to the file ‘File‘.icp”. If a syntax error is
found during compilation then the string ‘** SYNTAX ERROR **’ is written
out, followed by all the text up to the offending token, followed by the string
‘*HERE*’, followed by all those tokens which precede the next period or the
end of the file being compiled. A syntax-error message is also displayed.
compile/1 then continues reading from the first character following the
period. Compilation ends when an end of file is reached. On encountering
an invalid clause, compile/1 displays an error message and continues as if
the offending clause had not been read.

compile (+File,+Public)

Same as compile/1 except that on loading the code resulting from compilation, only
the successfully compiled relations of File whose predicates appear in the Public list,
become accessible other than to predicates in the same segment. Predicates of arity
zero may appear in Public as simple atoms.

compile (+File,+Public,+Mode)

load (+File)

Same as compile/2 except that the third argument allows for non-standard compilation
modes to be adopted. If Mode is the atom single then the relations of File are compiled
into a single segment, otherwise Mode must be the atom multiple and each relation
of File is compiled into a separate segment.

Single mode generates faster and more compact code, but multiple mode is more flexible
because individual predicates may be redefined. An analogy is that predicates compiled
in multiple mode are like black boxes while those compiled in multiple mode have
replaceable parts. The default is single mode for compiling files and multiple mode for
compiling user.

If File is an atom, loads the object code contained in file ‘File‘.icp”’. load/1 notifies the
user of the file being loaded and returns after typing the word ‘done’. Files containing
built-in predicates are not loaded (a warning is given). If the file to be loaded contains
any predicate which is already defined, then the predicate is abolished before loading
takes place. The ‘.icp’ files are first looked for in the current directory, and then in
the subdirectory “binary’. If the source file is newer than the compiled file, the source
file is compiled before the load.

Chapter 2: Builtin Predicates 13

If File is a list, is equivalent to repeatedly calling 1oad/1 with the members of Files.

load (+File, +Type)
As 1load/1 but of type Type, where Type is one of the atoms system or user deter-
mining whether the predicates should be placed in a system or user partition.

ensure_loaded (+File)
If the filename File is an atom, and the file has not been loaded yet, this behaves in the
same way as load/1. If the file was previously loaded, then ensure_loaded/1 succeeds
trivially.
If File is a list, this is equivalent to repeatedly calling ensure_loaded/1 with the
members of Files.

loadicp(+File)
Loads a compiled file. This is a form of loading which disables automatic compilation
and which does not handle lists of files. If File does not have the suffix ‘.icp’ then
File.icp is loaded.

loadicp(+File, +Type)
As loadicp/1 but of type Type, where Type is one of the atoms system or user
determining whether the predicates should be placed in a system or user partition.

rebuild (+File)
Is used to recompile all system files that need it.

make (+File)
Is used to recompile a file if the source file is newer than the object file. All predicates
defined in the file File are made public.

make (+File, +Public)
Is used to recompile a file if the source file is newer than the object file. All predicates
in the list Public are made public, unless Public is the empty list ([]) in which case
all predicates in the file are made public.

system(+OnOff)
Normally system predicates can not be re-loaded, an attempt to do so results in a
message of the form

| ?- compile(user).
write(A):-foo(A).
cannot redefine system predicate(s): write/1.

The call 7- system(on) . causes subsequent calls to compile/2 to allow redefinition of
system predicates. To restore the normal operation, the call 7- system(off) . should
be used.

14 ICP][0.96

2.3 Input and Output Primitives

Input and output can be performed either on Prolog terms or on individual characters. Fur-
thermore output is relative to streams which refer either to files or to the terminal. The system
always has a current input and current output stream, which are by default the keyboard and
screen respectively.

2.3.1 Input and Output of Terms

Most of these predicates use the current input or output streams but have a version where
the stream may be specified. In this case the extra argument for the stream, Stream, is the first
argument of the predicate. The stream versions of the predicates are implemented in terms of
the current input/output versions and the predicates of section Section 2.3.3 [StreamHandling],
page 21. Hence if multiple reads or writes are to be performed on a stream, it is more efficient to
set the current input or output to the stream than to use the stream I/O primitives.

read(-T)

read (+Stream,-T)
T is unified with the next term that can be read (wrt the current operator declarations)
from the current input stream. The term must be followed by a period followed by a
layout character. read/1 does nothing until these characters, which are consumed but
are not a part of the term, have been read. Any variable names in the read-in term are
converted into variables.

If a syntax error is found, an error message is written out to user_error. If the current
input stream is user_input then only the line of text in which the error occurred is
displayed. If instead the current input stream is associated with a file, then all the text
up to the offending token is displayed, followed by the string ‘*HERE#*’, followed by all
those tokens which precede the next period or the end of file. read/1 then tries again
as if it had started reading from the first character following the period. Eventually,
either some term is successfully read, or an end of file is reached, whence T is unified
with the end_of_file atom. If the input stream is a terminal, read/1 will suspend if
there are no characters to be read.

write(?X)

write (+Stream, 7X)
Term X is written to the current output stream (wrt the current operator declarations).
Terms of the form ’>$VAR’ (N) are treated in a special way: On N being 0, 1, ..., 27,
28, ... write outputs ‘A’, ‘B’, ..., ‘A1’, ‘B1’, etc.

Chapter 2: Builtin Predicates 15

writeq(7X)

writeq(+Stream,+X)

writeq(+Stream, 7X, +VarNames)
Same as write/1 except that it quotes those atoms that would need to be quoted on
input.
In the 3 argument version, atoms in the list VarNames are not quoted. This gives a
way of printing the original variable names provided the term was read using gread/3.

display (7X)

display (+Stream,+X)
Term X is written to the current output stream ignoring operators. Variables are
displayed as underscore names. This is particularly useful for seeing the structure of
terms containing multiple operators.

write_canonical (7X)

write_canonical (+Stream,+X)
Term X is written to the current output stream ignoring operators. Variables are
displayed as underscore names. Atoms that would need to be quoted on input are
quoted. This is useful for writing out terms that will be read back using read/1-2.

portray (?Term)
This is a user defined predicate which can be used to override the default system ways
of printing terms.

print (?Term)

print (+Stream, ?Term)
This primitive allows user control over the output of terms. The print primitive looks
for the program portray/1. If there is no definition for portray, the effect of print is
exactly the same as for writeq/1.

If the portray program is defined, then it is called to output the Term. If portray/1
succeeds, then print/1 succeeds and exits.

If the call to portray/1 fails, and Term is atomic, then Term will be output using
display/1.

If the call to portray/1 fails, and Term is compound, then the principal functor of
Term will be output using display/1, and portray/1 will be called recursively on the
arguments of Term.

If the call to portray/1 fails, and Term is a list, then the list will be output using
bracket notation with print/1 being called for each element.

format (Format, Arguments)

format (Stream, Format, Arguments)
Provides a means of writing formatted data. The following description is extracted
from the Sicstus Prolog on-line manual.

16

ICP][0.96

Print Arguments onto Stream according to format Format. Format is a list of format-
ting characters. If Format is an atom then name/2 will be used to translate it into a
list of characters. Thus

| ?- format("Hello world!", []).

has the same effect as
| ?7- format(’Hello world!’, []).

format/3 is a Prolog interface to the C stdio function printf (). It is due to Quintus
Prolog.

Arguments is a list of items to be printed. If there is only one item it may be supplied
as an atom. If there are no items then an empty list should be supplied.

The default action on a format character is to print it. The character ~ introduces a
control sequence. To print a ~ repeat it:
| ?- format("Hello ~~world!", []).

will result in
Hello “world!

A format may be spread over several lines. The control sequence \c followed by a LFD
will translate to the empty string:

| 7- format("Hello \c

world!", [1).
will result in

Hello world!

The general format of a control sequence is ‘“NC’. The character C determines the
type of the control sequence. N is an optional numeric argument. An alternative form
of N is ‘*¥’. “*’ implies that the next argument in Arguments should be used as a
numeric argument in the control sequence. Example:

| ?- format("Hello~4cworld!", [0°x]).
and

| ?- format("Hello™*cworld!", [4,0°x]).
both produce

Helloxxxxworld!

The following control sequences are available.
a The argument is an atom. The atom is printed without quoting.

““N¢’ (Print character.) The argument is a number that will be interpreted as an
ASCII code. N defaults to one and is interpreted as the number of times
to print the character.

C~Ne7
C~NE7
(~Nf7

Chapter 2: Builtin Predicates 17

(”Ng7
C~NG7

C~Nd7

C~ND7

C~Nr7

C~NR7

(Print float). The argument is a float. The float and N will be passed to
the C printf () function as

printf ("%.Ne", Arg)

printf ("%.NE", Arg)

printf ("%.Nf", Arg)

printf ("%.Ng", Arg)

printf ("%.NG", Arg)
If N is not supplied the action defaults to

printf ("%e", Arg)
printf ("%E", Arg)
printf ("%f", Arg)
printf ("%g", Arg)
printf ("%G", Arg)

(Print decimal.) The argument is an integer. N is interpreted as the
number of digits after the decimal point. If N is 0 or missing, no decimal
point will be printed. Example:

| ?- format("Hello ~1d world!'", [42]).

| ?7- format("Hello ~d world!", [42]).
will print as

Hello 4.2 world!

Hello 42 world!

respectively.

(Print decimal.) The argument is an integer. Identical to ‘~Nd’ except
that ¢, will separate groups of three digits to the left of the decimal point.
Example:

| ?- format("Hello ~1D world!", [12345]).

will print as
Hello 1,234.5 world!

(Print radix.) The argument is an integer. N is interpreted as a radix. N
should be >= 2 and <= 36. If N is missing the radix defaults to 8. The
letters ‘a-z’ will denote digits larger than 9. Example:

| ?- format("Hello ~2r world!", [15]).

| ?- format("Hello ~16r world!", [15]).
will print as

Hello 1111 world!

Hello f world!

respectively.

(Print radix.) The argument is an integer. Identical to ‘"Nr’ except that
the letters ‘A-Z’ will denote digits larger than 9. Example:

18

C~Ns7

C~k7

ICP][0.96

| ?- format("Hello ~16R world!", [15]).

will print as
Hello F world!

(Print string.) The argument is a list of ASCII codes. Exactly N characters
will be printed. N defaults to the length of the string. Example:

| ?7- format("Hello “4s ~4s!", ["new","world"]).

| ?- format("Hello s world!", ["new"]).
will print as

Hello new worl!

Hello new world!

respectively.

(Ignore argument.) The argument may be of any type. The argument will
be ignored. Example:

| ?- format("Hello ~i~s world!", ["old",'"new"]).

will print as

Hello new world!

(Print canonical.) The argument may be of any type. The argument will
be passed to write_canonical/2. Example:
| ?- format("Hello “k world!", [[a,b,cl]).

will print as
Hello .(a,.(b,.(c,[]))) world!

(print.) The argument may be of any type. The argument will be passed
to print/2. Example:

| 7- assert((portray([X|Y]) :- print(cons(X,Y)))).

| 7- format("Hello “p world!", [[a,b,c]l]).
will print as

Hello comns(a,cons(b,cons(c,[]))) world!

(Print quoted.) The argument may be of any type. The argument will be
passed to writeq/2. Example:
| 7- format("Hello ~q world!", [[’A’,’B’]1]).

will print as
Hello [’A’,’B’] world!

(write.) The argument may be of any type. The argument will be passed
to write/2. Example:
| ?- format("Hello ~w world!", [[’A’,’B’]1]).

will print as
Hello [A,B] world!

Chapter 2: Builtin Predicates 19

““Nn’ (Print newline.) Print N newlines. N defaults to 1. Example:
| ?- format("Hello ~n world!", []).

will print as

Hello
world!

gread(-T)

gread (+Stream,-T)

gread (+Stream,-T,-V)
Same as read/1 except that the variable names which occur in the read-in term appear
in T as quoted atoms, rather than being converted into variables.

In the 3 argument version V is instantiated to the list of atoms that are the variable
names of the read-in term.

| ?- gread(user_input, T, V).
foo(X, a(Y, X)).

T = foo(’X’,a(’Y’,’X?))
VvV = [’X’,’Y’]

writeseq(+X)

writeseq(+Stream,+X)
Uses write/1 to write the elements of the list X in sequence and separated by single
spaces.

writegseq(+X)

writeqseq(+Stream,+X)
Uses writeq/1 to write the elements of the list X in sequence and separated by single
spaces.

writenl (7X)
writenl (+Stream,+X)

Starts a new line on the current output stream after having used write/1 to write X.

writeqnl (7X)
writeqnl (+Stream,+X)

Starts a new line on the current output stream after having used writeq/1 to write X.

writeseqnl (+X)

writeseqnl (+Stream,+X)
Starts a new line on the current output stream after having used write/1 to write the
elements of X in sequence and separated by single spaces.

20 ICP][0.96

| ?7- writeseqnl([al,’A2’,4]).
al A2 4

yes

writegseqnl (+X)

writegseqnl (+Stream,+X)
Starts a new line on the current output stream after having used writeq/1 to write
the elements of X in sequence and separated by single spaces.

write_term(?Term)

write_term(+Stream, ?Term)
Same as write/1 except that the term will be written in an encoded form which can
only be decoded by read_term/1. This is more efficient than write/1 because the
structure of the term is preserved in the encoding.

read_term(-Term)

read_term(+Stream, -Term)
Reads an encoded term from the current input stream. The encoded version of a term
is read by read_term/1 at a greater speed than read/1 can read the original term.
write_term/1 and read_term/1 can be used to write to files large terms that require
frequent reading.

portray_clause (?Clause)
Displays a clause in the same way as listing/1. In fact listing/1 and listing/2
use portray/1.

2.3.2 Input and Output of Characters

Most of these predicates use the current input or output streams but have a version where
the stream may be specified. In this case the extra argument for the stream, Stream, is the first
argument of the predicate. The stream versions of the predicates are implemented in terms of
the current input/output versions and the predicates of section Section 2.3.3 [StreamHandling],
page 21. Hence if multiple reads or writes are to be performed on a stream, it is more efficient to
set the current input or output to the stream than to use the stream io primitives.

get0(-C)

getO(+Stream, -C)
Reads the next character (ASCII code) from the current input stream and instantiates
C to it. The predicate returns 26 (CTL-Z) on end_of_file.

get (-C)

Chapter 2: Builtin Predicates 21

get (+Stream, -C)
Reads the next character (ASCII code) from the current input stream and instantiates
C to it, ignoring non printable characters (ascii code < 33 or > 126). The predicate
returns 26 on end_of_file.

skip(+N)

skip(+Stream, +N)
Skips over characters from the current input stream to the first occurrence of the
character with ASCII code N.

put (+N)

put (+Stream, +N)
Writes N to the current output stream. N should be either a valid ASCII code or an
integer expression.

nl
nl (+Stream)

Starts a new line on the current output stream.
tab(+N)

tab(+Stream, +N)
N (>=0) spaces are written to the current output stream.

tty_get0(-C)
Reads the next character (ASCII code) from the current terminal input stream and
instantiates C to it. This is used when an input character must come from the keyboard,
not necessarily the current stream.

unget (+NN)
Puts ASCII code N back onto the current input stream.

2.3.3 File and Stream Handling

Input and output streams are represented as unique prolog terms having the following form
where N is an integer.

stream(N)
refers to the terminal or files

memory (N)
refers to ram files, which can be converted to and from prolog atoms.

There are also three streams which are opened automatically by the system

22

user_input

user_outpu

user_error

ICP][0.96

The standard input channel (‘C’ stdin)

t
The standard output channel (‘C’ stdout)

9

The standard error channel (‘C’ stderr)

open (+F,+M,-Stream)

Opeuns file F' in mode M on file-stream Stream. M must be one of read, write and
append.

close (+Stream)

set_input (

set_output

current_in

current_ou

open_ram(+

open_ram(+

ram_const(

Closes the stream corresponding to Stream.

+Stream)

Makes Stream the current input stream.

(+Stream)

Makes Stream the current output stream.

put (-Stream)
Instantiates Stream with the current input stream.

tput (-Stream)
Instantiates Stream with the current output stream.

C,+M,-Stream)

Opens ram-file C in mode M on memory-stream Stream. M must be one of read,
write and append. When opening a ram-file in read or append mode C' must be an
atom representing the file’s contents. This atom is usually the result of a ram_const/2
call. When opening the file in write mode, argument C is ignored and the file is
created empty.

C, +M, -Stream, +Size)

As open_ram/3 but allows the size of the ram file to be specified.

+F, -C)

Converts the contents of the ram-file +F into an atom -C. Typically, -C' is subsequently
used as the first argument of an open_ram/3 call to access the contents of the ram-file.

ram_pipe(-Out,-In)

Creates a pseudo-pipe by allocating a ram file with two references to it. The first
reference QOut is opened in write mode, and the second reference In is opened in read
mode. This allows one thread to pass terms to another. It is the responsiblity of the
programmer to make sure that there is data available before it is read. For pipes with

Chapter 2: Builtin Predicates 23

blocking read and write, see pipe/2 in chapter 14. The advantage of ram pipes is that
they can be made the subject of current input and current output.

tty (+Name, -Read , - Write)
Creates a new window with title Name and two streams — Read and Write. Input
typed in the new window can be read from stream Read. Output written to stream
Write will appear in the window.

flush_output (+Stream)
Stream must be a stream open for output. Output to a stream is not necessarily sent
immediately; it is buffered. This predicate flushes the output buffer for the specified
stream and thus ensures that everything that has been written to the stream is actually
sent at that point.

flush Same as flush_output/1 except that the flushed stream is the current output stream.

file_exists(+F)
Succeeds if file F' exists.

2.4 Arithmetic

-X is +Y X is the result of evaluating arithmetic expression Y.

An arithmetic expression is either an number, or a variable which is bound to a number,
or a singleton list whose head is an integer (in this case the value of the expression is
the integer itself), or a single character in double quotes (in this case the value of the
expression is the ASCII code of the character), or a compound expression. A compound
expression is a tuple whose functor is an arithmetic operator and whose arguments are
arithmetic expressions. A description of the allowed compound expressions, together
with the result of their evaluation follows:

-E negative of E

El1 + E2 sum of El and E2

E1 ++ E2 integer sum of integers K1 and E2

E1 - E2 difference of E1 and E2

El1 -- E2 integer difference of integers E1 and E2

E1 x E2 product of E1 and E2

E1 *xx E2 integer product of integers E1 and E2

E1 / E2 quotient of E1 and E2

E1 // E2 integer part of quotient of integers E1 and E2

24

ICP][0.96

E1 mod E2
remainder of the integer division of E1 and E2
E1 ~ E2 EI raised to the power E2
El1 << E2 integer E1 shifted left by E2 bits
E1 >> E2 integer E1 shifted right by E2 bits
\E bitwise logical negation of integer E
E1 /\ E2 Dbitwise logical And of integers E1 and E2
E1 \/ E2 bitwise logical Or of integers E1 and E2
int (E) integer truncation of E towards 0
abs (E) absolute value of E
sign(E) sign of E: -1 if negative, 1 if positive and 0 if 0
ceil(E) round up to next higher integer
floor(E) round down to next lower integer
sin(E) sine of an angle E in radians
cos(E) cosine of an angle E in radians
tan(FE) tangent of an angle E in radians
sin(E) arcsine of E (in radians) in the range -pi/2 to pi/2
acos(E) arcosine of E (in radians) in the range 0 to pi
atan(E) arctangent of E (in radians) in the range -pi/2 to pi/2
atan2(E1, E2)
arctangent of E1/E2 (in radians) in the range -pi to pi
sinh(E) hyperbolic sine of an angle E in radians
cosh(E) hyperbolic cosine of an angle E in radians
tanh(E) hyperbolic tangent of an angle E in radians
exp (E) natural anti-logarithm of E
log(E) natural logarithm of E
logl0(E) logarithm (base 10) of E
sqrt(E) square root of E
pow(El, E2)

E1 raised to the power E2

Chapter 2: Builtin Predicates 25

pi value of pi
rand random integer in the range 0 to 32767
deg2rad(E)

number of radians in E degrees

rad2deg(E)
number of degrees in F radians

integer (E)
the integer component (integer closest to 0) of E’s value.

float (E) FE’s value.

2.4.1 Arithmetic Comparison

X is equal to Y.

+X =\=+Y
X is not equal to Y.

+X <+Y X is less than Y.
+X >+Y X is greater than Y.
+X =<+Y X is less than or equal to Y.

+X >=+Y X is greater than or equal to Y.

2.5 Type Primitives

tag(+Term,-Tag)
Tag is bound to an integer in the range 0-6 which uniquely identifies Term’s type. The
tag values are as follows:

Tag=0 variable

Tag=1 integer
Tag=2 floating point
Tag=3 atom

Tag=4 nil (empty list)

26 ICP][0.96

Tag=5 list
Tag=6 tuple
var (?X) Succeeds if X is an uninstantiated variable.

nonvar (7X)
Succeeds if X is instantiated.

atom(7X) Succeeds if X is an atom.

integer (7X)
Succeeds if X is an integer.

float (7X)
Succeeds if X is a floating point number.

number (7X)
Succeeds if X is a number (integer or floating point).

atomic (7X)
Succeeds if X is an atom or a number.

1list(?X) Succeeds if X is a list (empty or non-empty).

compound (7X)
The call succeeds if and only if X is bound to a tuple or a non-empty list.

tuple (7X)
Succeeds if X is a tuple.

tuple(7X,-N)
Succeeds if X is a functor of arity N-1 (N >=1).

length(?Term, ?N)
If Term is a list with a non variable length, N will be bound to its length.
If N is an integer then Term will be instantiated to a list with N elements.
If Term is a tuple, N will be unified with the tuple’s arity plus one.

T1 =712
Defined as if by the clause "Z=Z."; that is, T1 and T2 are unified.

?T1\=7T2
Succeeds if an only if the call T1=T2 fails; that is, if T1 and T2 are not unifiable.

functor (?Term, ’Name, ?Arity)
Term is a term with functor Name and arity Arity. Atomic terms are taken to have
arity 0 and functor identical to the term. If Term is a variable the arity must be an
integer >= 0 and Name a valid ICP tuple functor.

Chapter 2: Builtin Predicates 27

| ?- functor(foo(al, a2, a3), Name, Arity).

Name = foo
Arity = 3

| ?- functor(Term, foo, 3).
Term = foo(_132,_133,_134)
| ?- functor(foo, Name, Arity).

Name = foo
Arity = 0

| ?- functor(T, £(Z), 2).

Unbound variable : Z
T = £(Z)(_113,_114)

arg(+N,+Tup,-Arg)
If N is a positive integer less than or equal to the arity of tuple Tup then Arg is unified

with Tup’s Nth argument.

| 7- arg(2, foo(al, a2, a3), Arg).

Arg = a2

nthO(”N,+List, 7EI)
If N is a positive integer, this finds the nth element ?EI in a list +List, counting the
first element as 0. If N is a variable, then the position of the element ?El is calculated.

nth1l (?N,+List, 7ED)
If N is a positive integer, this finds the nth element ?EI in a list +List, counting the
first element as 1. If N is a variable, then the position of the element ?7EI is calculated.
If N is a positive integer less than or equal to the arity of tuple Tup then Arg is unified
with Tup’s Nth argument.

’X=..7Y
Y is a list. Its head is the functor of X and its (possibly empty) tail is a list of X’s

arguments.

2.6 Term Comparison

28 ICP][0.96

2.6.1 The Standard Order on Terms

If two terms are of a different type, then the ordering is as follows:
variable < number < symbol < nil < list < tuple

If two terms have the same type then:

e variables are compared by their machine address

e numbers are compared using ‘</2’.

e symbols are compared lexicographically, using the ASCII ordering.

e lists are compared by their first element. If equal, the tails are compared.

e tuples are compared first by arity, then by each of the arguments.

2.6.2 Term Comparison Predicates

compare(?Op, 7T1,7T2)
The result of comparing terms T'1 and T2 is Op, where the possible values of Op are:

€= If T'1 is identical to T2,

‘< If T1 is before T2 in the Standard Order

> If T1 is after T2 in the Standard Order
Tl == 7T2

Succeeds if the terms currently instantiating T1 and T2 are literally identical (in par-
ticular, variables in equivalent positions in the two terms must be identical).

?T1 \==7T2
Succeeds if the terms currently instantiating T'1 and T2 are not literally identical.

?T1 @> 712
Succeeds if term T1 is after term T2 in the Standard Order.

?T1 @< 7712
Succeeds if term T1 is before term T2 in the Standard Order.

?7T1 @>= ?T2
Succeeds if term T'1 is not before term T2 in the Standard Order.

?T1 @=< ?7T2
Succeeds if term T1 is not after term T2 in the Standard Order.

Chapter 2: Builtin Predicates 29

2.7 Examining the Program State

defined (+PredArity)
Succeeds if PredArity is currently defined.

| ?- defined(defined/1).

yes

predicate(?Pred, ?Term)
Succeeds if it can unify Pred with the name of a currently defined predicate and Term

with the most general tuple with the same arity (i.e. a tuple with distinct variables
for all of its arguments) and having Pred as its functor and the predicate’s arity as its

arity.

| ?7- predicate(Pred, Term).

Pred = mod%f
Term = mod%f(_149,_150,_151)

| ?- predicate(predicate, Term).

Term = predicate(_143,_144)

current_predicate (7Pred, ?Term)
Succeeds if it can unify Pred with the name of a user-defined predicate and Term with

the most general tuple (i.e. a tuple with distinct variables for all of its arguments)
having Pred as its functor and the predicate’s arity as its arity.

| ?- current_predicate(Pred, Term).

Pred = system_file
= system_file(_153)

-
[0]
[a}
B
|

| ?- current_predicate(foo, Term).

| 7- assert(foo(1,2)), current_predicate(foo, Term).

Term = foo(_466,_467)

30 ICP][0.96

system_predicate(?Pred, ?Term)
Attempts to unify Pred with the name of a system-predicate and Term with the most
general tuple with the same arity (i.e. a tuple with distinct variables for all of its
arguments) having Pred as its functor.

| ?- system_predicate(Pred, Term).

Pred = mod%f
Term = mod¥f(_153,_154,_155)

| ?7- system_predicate(listing, Term) .

Term = listing ;
Term = listing(_145) ;
no

predicate_property(?Term, ?Property)
Finds the property associated with predicate Term. A predicate can have more than
one property. The possible properties are

static The predicate is static (i.e. compiled).

dynamic The predicate is dynamic (i.e. consulted or asserted).
system The predicate is a system predicate.

user The predicate is a user defined predicate.

A predicate can have more than one property

| ?7- predicate_property(predicate_property(_,_), Property).

Property = static ;

Property = system ;

no

clause(?Head, ?Body)
Searches the database for a clause whose head matches Head and whose body matches
Body. This predicate is non-determinate and can be used to backtrack through all the
clauses matching Head and Body. It fails when there are no (further) matching clauses
in the database.

For the purpose of this matching, unit clauses (clauses with no body) are treated as if
they had a body consisting of the single goal true/0.

Chapter 2: Builtin Predicates 31

listing Lists to the current output channel all the relations (if any) which are in the data base.
listing(+Pred)
All forms of 1isting/1 can only be used for dynamic predicates.

If Pred is an atom, lists to the current output channel all the relations (if any) which
are in the data base and have Pred as name.

If Pred is a term of the form Name/Arity then the predicates of the specified name
and arity are listed.

If Pred is a term of the form Name/Arityl-Arity2, then listing lists the relations with
name Name and arities in the specified range to the current output channel.

Pred may also be a list of terms of the above form. Thus the goal
?7- listing([foo, bar/2]).

is equivalent to the goal
?7- listing(foo), listing(bar/2).

listfile(+File)
Lists to the current output channel all predicates in file File. If File does not end in
‘.pl’ this extension is appended to the file name.

2.8 Execution and Error Handling

Error handling in ICP is based on the idea of catch-and-throw. The query

catch(Goal)

behaves in exactly the same way as

call(Goal)

if Goal succeeds or fails. However, if an error occurs during the execution of Goal, then the
behaviour is as if system_error/2 was called, with the first argument being Goal and the second
argument bound to the error number. The error numbers are listed in the appendix.

Note that system_error/2 is called with the argument Goal even though the error might have
occurred in a subgoal of Goal. e.g. in the program,

p:-q, T.
q:—- s, t.

32 ICP][0.96

and the call

catch(p)

the system error handler will report the error occurring in p even though the error might have
occurred in the subgoal t. This has the advantage that the low-level definition of p can be hidden.
If the user really wanted to report t as the culprit goal, this can be specified by changing the
definition of g to be

q :- s, catch(t).

This introduces another nesting level of ‘catch’. Errors are always reported at the innermost
catch level.

Errors are normally generated from the execution of built-in primitives. Typically, a primitive is
called with the wrong arguments. However, it is possible to manually force errors by using throw/1,
where the argument specifies the error number. This is also the mechanism for generating any user-
defined errors.

There are cases when we would like to call the system error handler with a different goal from
the one which ‘caught’ the error. We can do this using catch/2.

If the user wishes to handle specific errors but default to the system error handler for all other
cases, then the user_error/2 hook should be used.

There is yet another form catch/3 which offers the most control in error-handling. In this form,
any goal may be called as the error handler to be used.

These different options are described in more detail below.

catch(+Goal)
This defines a catch point. Goal is executed. If Goal succeeds without any errors, the
call to catch/1 succeeds. If Goal fails without any errors, the call to catch/1 fails.
Otherwise, if an error occurs during the execution of Goal, the system error handler of
ICP is invoked with Goal and the error number.

throw (+Error)
An error with error code Error is forced. The error is handled by the error handler
associated with the most recent call to catch.

Chapter 2: Builtin Predicates 33

catch(+Goal,+BadGoal)
Same as catch/1 except that the ICP error handler is invoked with BadGoal, rather
than Goal, being the culprit goal.

catch(+Goal,+FErrorHandler,-Error)

Goal is executed. If Goal succeeds without any errors, the call to catch/3 succeeds. If
Goal fails without any errors, the call to catch/3 fails. Otherwise, if an error occurs
during the execution of Goal, Error is bound to the appropriate error code and then
ErrorHandler is executed. This predicate is a hook for enabling user-defined error
handling. This is very powerful because the user-defined error handler may contain
any number of arguments. For simple cases where the error goal and the error number
are sufficient, the user_error/2 hook described next is better.

user_error (+Goal, +Errno)
Error handlers may be defined by user_error/2, where the first argument is the goal
at the catch point (not necessarily the goal that caused the error) and the second
argument is the error number.

Here is a sample error handler. Note the use of cut for each clause, and the final catch-
all clause that passes the error to the error handler at the next level up (typically the
system error handler).

user_error (Goal, 403) :- !, /* predicate not defined error */
writeseqnl([Goal, ’not defined yet’]),

fail.

user_error(Goal, 600) :- !, /* divide by O error */
writenl(’divide by zero is not possible’),

fail.

user_error (Goal, Error) :- !, /x throw to the next level up */
throw(Error) .

For convenience, access to the system error handlers is provided via system_error/2
and system_fail/2. The difference between the two is that system_error/2 will
cause a return to the top level ICP prompt, whereas system_fail/2 will simply fail
and cause a backtrack. Typically, these will be used in user-defined error handlers for
the ‘uninteresting’ cases.

system_error (+Goal, +Error)
Display an error message for the error number Error and return to the top level prompt.

system_fail (+Goal, +Error)
Display an error message for the error number Error and then fail.
Undefined predicates are handled slightly differently. Initially they are not errors as
such, but you may define them to be errors. So what is so special about undefined
predicates 7 Recall that a call
catch(p)

34

ICP][0.96

creates a catch point. Any errors that occur while executing p will cause a throw to the
most recent catch point where it is reported. The part of the search tree between the
catch and the throw (where the error occurred) is discarded. This is important because
it means that whatever action we can take to recover from the error, it can only proceed
from the ‘catch’ and not from the point where the error occurred (which may be deep
down the search tree). This is fine for most errors where we want to continue from a
known point, however for undefined predicates it is not ideal. Consider the following
program :

P
q :-
r

n K .Q

and the call
| 7- catch(p).

(Actually the ‘catch’ is redundant here because all top-level queries are automatically
caught) The system will report the error as
ERROR 403 : undefined predicate : p/0

This is confusing because it is ’s’ that is undefined, not ’p’. However, this is what
happens because the only catch point created was at 'p’. Moreover, even if we defined
our own error handler to try to recover, we cannot continue from ’s’, but instead we
are forced to restart from ’p’ again. The solution is ‘obvious’ - catch everything ! This
solution is very expensive, because it means we use meta-call for everything. There
must be a better way ...

The solution we adopted in ICP is to consider undefined predicates as interrupts rather
than errors. With interrupts, we always know the exact point of interruption and we
have the option to continue execution. This is more general than the above, because
we can get the same behaviour by making the default action of the interrupt handler to
throw error 403 (undefined predicate error). Of course, we can also do other things like
load/consult files which may contain definitions for the culprit goal, or even arbitrarily
succeed, fail or bind the culprit goal interactively to continue the execution. The
interrupt handler just described is exactly the default action in ICP.

This default action may be changed by setting the ‘undefined’ property of the thread.
Each thread has a thread identifier which may be retrieved by the call
thread (-Id)

By default, this property is not set and the interactive handler is invoked whenever an
undefined predicate is encountered. If the property is set as follows :
set_prop(Id, undefined, fail)

then all undefined predicates are assumed to fail silently.

set_prop(Id, undefined, warning)

causes all undefined predicates to fail, but a warning message is displayed.

Chapter 2: Builtin Predicates 35

set_prop(Id, undefined, error)

treats all undefined predicates as errors, which means that an error is thrown to the
most recent catch point. Note that in this case the exact location of the undefined
predicate will be lost as explained previously.

Even if we installed our own user_error/2, undefined predicates will not call the new
error handler because undefined predicates are not (by default) errors. To invoke the
user-defined error handler, you will need to specify undefined predicates as being errors.
We do this like so :

thread(Id), set_prop(Id, undefined, error)

as discussed previously.

Now this invokes our error handler as expected. However, we still have the problem of
the catch point not being where the undefined predicate occurred. (This may not be
a problem if the programmer has taken care to put catch calls around all potentially
undefined predicates. In this case, no more action is required.) What we need is not
just a replacement for the error handler, we need a replacement for the ‘undefined-
predicate-interrupt-handler’ too !

This interrupt handler is specified using the user_undefined/1 hook.

user_undefined (+Goal)

This is a hook to allow users to trap undefined predicate errors. The argument is the
undefined goal. The user may specify actions to take and perhaps retry the goal. Note
that this is independent of any error handler since undefined predicates are not errors
unless explicitly thrown as in the example below.

user_undefined(Goal) :-

functor(Goal, Pred, Arity),

writeseqnl([’missing predicate :’, Pred/Arityl),
throw(403). /* error code for undefined predicate */

system_undefined (+Goal)

halt

abort

For convenience, access to the system undefined predicate interrupt handler is provided.
This will typically be called from a user_undefined/1 relation.

Exits ICP.

Aborts execution and, after warning the user, returns control to the top-level query
handler.

op (+Priority,+Type,+Opname)

Declares an operator with name Opname. Priority should be an integer between 1 and
1200, which will determine the operator precedence when the operator’s arguments are
themselves operator expressions. The lower the priority number, the tighter binding
the operator. The type argument is one of

fx non associative prefix operator. The subexpression forming the argument
of the operator must have lower precedence than the operator itself.

36

fy

xf
yf
xfx
xfy

yix

ICP][0.96

associative prefix operator. The subexpression forming the argument can
have the same precedence as the operator.

non associative postfix operator.
associative postfix operator.
non associative infix operator.
right-associative infix operator.

left-associative infix operator.

Note that an operator may be declared to be prefix, postfix and infix all at the same

time, though this is confusing and not recommended.

The precedence and type of an operator may be changed by re-declaring it. To remove

an operator, re-declare it with precedence 0 for the relevant type.

When several operators have the same declaration, the Opname argument can be a list

of operator names.

current_op(?Priority, ?Type, 7Opname)

If Opname is an atom, the call can be used to find the priority and type of a given

operator. If Opname is a variable then the call to current_op may be used to backtrack

through operators, and in this case if either Type or Priority is an atom then only

operators of that Type and/or Priority will be retrieved.

2.9 Modifying the Database

assert (+Clause)

Adds the specified Clause to the database as the last clause of its procedure.

asserta(+Clause)

Adds the specified Clause to the database as the first clause of its procedure.

assertz (+Clause)

Same as assert/1.

assertx (+Clause, +Index)
Adds the specified Clause to the database. If Index is positive then the clause is asserted
as the Indexth clause of its procedure. If Index is negative then the clause is asserted

as the last but Indexth of its procedure. If Index is zero, or too large a positive integer,

then the clause is asserted as the last one. If Index is too large a negative number then

the clause is asserted as the first one.

Chapter 2: Builtin Predicates 37

retract (+Clause)
If there is a clause in the data base that matches Clause, then that clause is deleted
and any variables in Clause are instantiated by the match. On backtracking there is
an attempt to find another matching clause. The search always starts at the beginning
of the list of clauses for the relation name of Clause. The call fails when there is no
matching clause.

retractx(+Name, +Arity, +Index)
If the dynamic predicate Name/Arity is defined, then one of its clauses, as specified
by index, is deleted. If Index is positive, then the Indexth clause of the procedure
is deleted. If Index is negative then the last but Indexth clause of the procedure is
deleted. If Index is too large a positive integer then the last clause of the procedure is
deleted. If Index is zero, or too large a negative number, then the first clause of the
procedure is deleted.

retractall (+Clause)
All the data base clauses which match Clause are deleted, with any variables in Clause
left uninstantiated. retractall/1 always succeeds.

abolish(+Pred)
If predicate Pred is currently defined, then it becomes undefined. This can be used to
remove definitions for both static and dynamic predicates.

kill (+Pred)
If predicate Pred is currently defined, then it becomes undefined. If predicate Pred
is currently defined by a static segment, then all the predicates which are currently
defined by that segment become undefined. This gives an easy method to remove all
associated predicate definitions e.g. normally all predicates defined in the same file.

save (+Pred,+File)
Saves the object code for predicate(s) Pred to file File. Pred is either a single predicate
or a list of predicates. Only those predicates which are defined are saved.

save (+Pred,+File,+Mode)
Opens the file File in Mode mode and saves the object code for predicate(s) Pred.
Pred is either a single predicate or a list of predicates. Only those predicates which are
defined are saved. Mode must be either write or append.

2.10 Property Management

38 ICP][0.96

set_prop (+Object,+Property, ?Value)
Sets a property value; Value becomes the remembered value of the property Property
of the object Object. Any previously remembered value of the Property of the Object
is lost.

get_prop(+Object,+Property,-Value)
Retrieves the value of a property; Value is instantiated with the current value of the
Property of Object. If there is no remembered value, the call fails.

del_prop(+Object,+Property)
Removes a property value; the remembered Property value of Object is forgotten.
A subsequent call to get_prop(0Object,Property,Value) will fail. del_prop/2 does
nothing and succeeds if there is no such Object or Property.

del_props (+Object)
Deletes all properties for a symbol; All the property-value pairs for the given Object
are forgotten.

del_cons (+Property)
Deletes all symbol values for a property. All the property-value pairs for the given
Property are forgotten.

remember (+Atom, ?Value)
Stores Value as the currently stored value of Atom. Any previously assigned value is
lost.

recall (+Atom,-Value)
Value is instantiated with the currently stored value of atom. recall/2 fails if Atom
has no currently stored value.

default_prop (+Atom,-Value, ?Default)
Value is instantiated with the currently stored value of Atom, if there is one. It will
be instantiated with Default if there is no currently stored value.

forget (+Atom)
Deletes the stored value associated with Atom. A recall/2 on Atom will now fail. A
call to forget always succeeds, even if there is no stored value.

get_cons (+Property,-List)
List is bound to to the list of all the atoms that currently have a value for the property
Property.

get_props (+Object, -List)
List is bound to the list of all the names of the properties currently associated with
Object.

list_props (+Object,-List)

List is bound to the list of all the ‘Property=Value’ pairs currently associated with
Object.

Chapter 2: Builtin Predicates 39

2.11 Metalogical Primitives

ntpl(+Len,-TpD)
Tpl is instantiated to the most general tuple having Len as its positive (>=1) arity,
that is, a tuple with distinct variables for its functor and all of its arguments.

| ?- ntpl(3, Tpl).

Tpl = _125(_126,_127)

tohollow(+Ground,-Hollow,+Varnames)
Varnames a list of atoms. Only the atoms in the Varnames list of atoms are replaced
by variables in the Hollow copy of Ground. Any atom can be on the Varnames list.
The main use of this call is to convert a term and its associated list of variable names
that has been read in using gread/1, gread/2 or gread/3 into a hollow term that can

be used in an evaluation.

| ?- tohollow(foo(a,b,c), Hollow, [a,c]).

Hollow = foo(_175,b,_178)

tohollow(+Ground,-Hollow,+ Varnames, - Vars)
Essentially the same as the above three argument use except that the list of variables
in Hollow that have replaced the atoms on Varnames is also returned. The ith variable
on Vars is the replacement for the ith variable name on Varnames. This is useful if
you want to subsequently output bindings for these variables using the original variable

names.

| ?- tohollow(foo(a,b,c), Hollow, [a,c], Vars).

Hollow = foo(_189,b,_192)
Vars = [_189,_192]

toground (?Hollow, -Ground)
Simple use to convert any term into a variable free term. Ground is bound to a
copy of Hollow in which all the variables are replaced by new atoms beginning with
underscores. Different variables are replaced by different underscore names, and there
will be no clash with any atom that begins with underscore which already appears in
Hollow.

40

ICP][0.96

| ?- toground(foo(A,B,C), Ground).

Unbound variables : A, B, C
Ground = foo(’_0’,’_1’,7_27)

toground (’Hollow,-Ground, - Varnames)

Varnames will be bound to the list of all the underscore variable names that have been

used to replace variables in Hollow.

| ?- toground(foo(A,B,C), Ground, Varnames).

Unbound variables : A, B, C
Ground = foo(’_07,7_17,°_27)
Varnames = [’_0°,’_17,°_27]

toground (?Hollow,-Ground, - Vars, -Varnames)

Same as the three argument use except that the corresponding list of the replaced
variables is also returned as the binding for Vars.

If there are more variables in Hollow than given in Vars, new underscore names are
given to the extra variables. More generally, the elements of Vars can be any terms.
Non-variable terms on Vars, and the corresponding atoms on Varnames are ignored -
but the lists must still be of the same length. This relaxation allows lists of names
and variables returned by some previous use of tohollow/3 or tohollow/4 to be used
as arguments to toground/4 without having to remove variables that may have been

bound by the intervening evaluation.

| ?- toground(foo(A,B,C), Ground, Vars, Varnames).

C
)

Unbound variables : A, B,
_1),)_2)

Ground = foo(’_0’,’
Vars = [A,B,C]
Varnames = [’_0’,’_1’,°_2’]

toground (?Hollow,-Ground , + Vars, + Varnames , - Usednames)

Varnames a list of atoms, Vars a list of variables which may appear in Hollow. The
Varnames list of atoms will be used to replace the variables of Vars in Hollow in the
order in which they are given - the first variable of Vars is replaced by the first atom

on the Varnames list, and so on.

Finally, Usednames is bound to the complete list of the actual variable names that

have been used to replace variables in Hollow.

Chapter 2: Builtin Predicates 41

| ?- toground(foo(A,B,C),Ground, [A,B,C],[’W’,’X’,’Y’] ,Usednames) .

Unbound variables : A, B, C
Ground = foo(W,X,Y)
Usednames = [W,X,Y]

varsin(?Term, -Vars)
Vars is a list of the variables appearing in term Term

| ?- varsin((foo(X,Y) :- bar(X,Y,1,Z)), Vars).

Unbound variables : X, Y, Z
Vars = [X,Y,Z]

forall (+Gen,+Test)
This call succeeds if for all the solutions of Gen, Test is true.

| ?- forall (member(X, [1,2,1,3,5,2,-1]1), X<3).

no
| ?- forall(member(X, [1,2,1,3,5,2,-1]1), write(X)).
121352-1

Unbound variable : X

findall (?Term,+Call,-List)
List will be unified with a list of instantiations of Term, one for each successful evalu-
ation of Call.

| ?- findall(X, (member(X, [1,2,1,3,5,2,-1]), X < 3), List).

Unbound variable : X
List = [1,2,1,2,-1]

The instantiations of term correspond to the different solution bindings for the variables
in Call. At the end of the evaluation no variable in Call will be bound. All the ‘local’
variables in Call, the variables which do not appear in Term, or in any other condition
in the clause or query in which the findall/3 is used, are implicitly existentially
quantified. All ‘global’ variables of Call, variables that are also used in other conditions
in the clause or query, should be bound to variable free terms before the findall/3 is
evaluated.

Note that findall/3 is faster then bagof/3 (see below) and should be used instead of
bagof /3 when there will be no unbound global variables in the Call for which solutions
are to be found.

42 ICP][0.96

| ?- findall(Y, (member(X, [1,2]), Y is X+1), List).

Unbound variables : X, Y
List = [2,3] ;

no

bagof (?Eterm, +Existential Call, ?List)
ExistentialCall must be a term of the form v1~v2~...vk~Call where Call is a call term,
and vl,...,vk (k>=0) are variables in Call (when k=0 just the Call is given). At the
time of the call, Call will generally contain variables. The variables in Call that are not
in either Eterm or the sequence vl,...,vk of variables preceding Call are the global

variables of the bagof/3 call. vI,...,vk are the existentially quantified variables of
Call.

bagof/3 partitions the list of all the values of Eterm for all the solutions of Call by
different solution values for these global variables.

That is, suppose that in the space of all the successful evaluations of Call there are n
different sets of bindings for its global variables. Then bagof/3 will backtrack giving n
different answers. Each answer will comprise a set of bindings for the global variables,
and a corresponding value for List which comprises the instances of Eterm for different
solutions of Call that make this assignment to the global variables.

| ?- bagof(Y, (member(X, [1,2]), Y is X+1), List).

Unbound variable : Y
X=1
List = [2] ;

Unbound variable : Y
X =2
List = [3] ;

no
| ?- bagof(Y, X~ (member (X, [1,2]), Y is X+1), List).

Unbound variables : X, Y
List = [2,3] ;

no

setof (?Eterm, +ExistentialCall, ?List)
Same as bagof /3 except that the bindings for List will be ordered lists of terms without
duplicates. The terms are ordered by the @</2 primitive as a list of increasing terms.

Chapter 2: Builtin Predicates 43

| ?7- bagof (Y, X" (member(X, [2,1,2,3,0,4]), Y is X+1), List).

Unbound variables : X, Y
List = [3,2,3,4,1,5]

| ?7- setof(Y, X~ (member(X, [2,1,2,3,0,4]), Y is X+1), List).

Unbound variables : X, Y
List = [1,2,3,4,5]

map (+Rel, +Inlist)
For each use of map/2, the term Rel may be either a relation name or a call term of
the form reln(argl, ..., argn) whose principal functor reln is a relation name.

If Rel is a unary relation name, this call will test if all the elements of a list Inlist
satisfy Rel. If Rel is a compound term of the form reln(Argl,..., Argn) then the call
tests if all the elements EI of the list Inlist satisfy reln(Argl,..., Argn, El).

map (+Rel, ?Inlist, 7Outlist)
If Inlist is given, map/3 will produce a list Outlist such that each element of Outlist is
in the relation Rel to the corresponding element of Inlist. Alternatively, map/3 may be
used to check that a given Outlist is in this relationship to Inlist.

map (+Rel, +Inlist, +Invalue, 7Outvalue)
The given Rel is applied to ‘accumulate’ the elements of Inlist using Invalue as the initial
value of the cumulated term. The variable Outvalue is bound to the final cumulated
term.

map (+Rel, +Inlist , +Outlist , +Invalue, 7Outvalue)
The given Rel is applied both to produce an Outlist from Inlist, and to ‘accumulate’
the elements of Inlist using Invalue as the initial value of the cumulated term.

2.12 Transformations on Reading

There are two forms of program transformations which can be done by ICP when reading in
files.

The first is using term_expansion/2 is based on a clause by clause transformation and is
primarily used for converting grammar rules. The implementation of grammar rules is the same
as that of Quintus Prolog Quintus Prolog Development Environment, Quintus Computer Systems,
Inc., Mountain View, California, USA. The grammar rule translator used is based on a public
domain program written by Richard O’Keefe.

44 ICP][0.96

The second method allows users to define a complete transformation on a file determined by the
file name extension.

2.12.1 Definite Clause Grammars

A grammar rule takes the form

head --> body

expand_term(+Terml, -Term2)
This predicate is used by consult/1 and compile/1 to determine the transformation
of terms before they are asserted or compiled. Term1 is the input term and Term?2 the
output term. By default, only terms corresponding to grammar rules are transormed;
in all other cases Term?2 is identical to Terml. This performance may be changed if
the user predicate term_expansion/2 is defined.

phrase (+Phrase, ’List)
This predicate determines whether a list List is a phrase of type Phrase

phrase (+Phrase, 7List, 7Rest)
’C? (751, ?Terminal, 7S2)
This predicate is used in expessing grammar rules and is defined by the clause
'c’([x18], X, 8).

term_expansion(+Terml, -Term?2)
The standard transformation of terms before compilation or consultation can be over-
ridden by defining this predicate. It can be used to define different ‘sugared’ syntaxes.

query_expansion(+Terml, -Term2)
A user query may be transformed before calling the goal by defining this predicate. If
it succeeds, Term?2 will be executed but the variable bindings will be printed as usual
upon completion.

2.12.2 File Transformations

The transformations in the previous section are at the clause level. A more powerful method
of transformation is at the level of files, since this allows contextual transformation of clauses. For
example, when writing a preprocessor for an object-oriented extension to Prolog, we may wish to
generate default inheritance clauses for objects depending on whether the object has an explicit

Chapter 2: Builtin Predicates 45

superclass defined in the same file. This requires a global view of all the clauses in a file rather
than the simple clause-level transformations.

File-level transformations are specified by defining a new file extension type and a user
hook relation to read (and transform) the new file type. The user hook relation is either
user_consult/3 or user_compile/3. An example of the use of these predicates is shown in
‘$ICP_INSTALLDIR/skilaki/source/icp_comp.pl’.

user_file_type(7Ext, ?Type)
This declaration allows the user to define an alternative compilation or consultation
for files with the extension Ext. The term Type may be used to select which paticular
transformations to perform on reading the file.

read_prolog_file(-Preds)
This predicate reads an entire file using any user-defined hooks, returning the predicates
in the list Preds.

user_consult (+Type, +FileName, -Preds)
On consultation, if a user_file_type/2 declaration exists for the file, the system calls
this predicate having already opened the file FileName and set current input to it. This
should read and process the file returning a list of predicates as specified below. These
predicates will then be asserted into the database automatically.

The file may be read using read_prolog_file/1 and post-processed into the list Preds.
The intended usage is to allow more flexible transformations than grammer rules would
allow.

user_file_type(’.foo’, foo_type).

user_consult(foo_type, File, Preds) :-
read_prolog_file(Source),
process(Source, Preds).

user_compile(+Type, +FileName, -Preds)
As user_consult/3 but Preds are automatically compiled rather than asserted.

In all the above predicates, Preds is a list of terms of the form pr (Pred/ Arity, List) where Pred
is the predicate name (an atom), Arity is an integer and List is a list representing the clauses for
this predicate. Each term in this list is of the form VarNames-GroundClause, where VarNames is
a list of atoms representing the variable names in the ground clause GroundClause.

46 ICP][0.96

2.13 List Handling

gsort (+List,-Sorted,+Test)
Test must be the name of a binary relation. The call succeeds if Sorted can be unified
with the result of sorting List with respect to Test.

append(7Listl, 7List2, 7List3)
Succeeds if List3 is List1 followed by List2.

member (7El, ?List)
Succeeds if El is a member of list List. This may be used to backtrack over the whole
list.

memberchk (7El, ?List)
Succeeds if El is a member of list List. This is different from member/2 since it does
not backtrack.

on(?7El, ?List)
Same as member/2

occ(?X,7L)
Succeeds if term X occurs in unsafe list L. An unsafe list is one which has a variable
as the tail. If X is not in L then it is put there.

no_occ(?X,7L)
Succeeds if term X is not in unsafe list L.

remove (?Item, -List, -Remainder)
Succeeds if Remainder is the list List with the element Item removed. If Item does not
occur in List, the call to remove fails. If Item occurs in List more than once, subsequent
occurrences will be removed on backtracking.

delete(?Item,-List,-Remainder)
Same as remove/2

reverse (?List, 7Revlist)
Succeeds if Revlist is the list List with the order of its elements reversed.

2.14 String and Atom Handling

name (X, 7L)
X is that atom or integer such that L is a list of the ASCII codes for its printed
representation.

Chapter 2: Builtin Predicates 47

| ?- name(hello, List), name(Hello, List).

List = [104,101,108,108,111]
Hello = hello

| ?7- A1="12’, name(Al, List), name(A2, List).

Al = 212
List = [49,50]
A2 = 12

| ?7- A1="12’, name(Al, List), name(A2, List), Al1=A2.
no
| ?- A1=12, name(Al, List), name(A2, List).

Al = A2 = 12
List = [49,50]

atom_chars(”X, 7L)
X is the atom such that L is a list of the ASCII codes for its printed representation.

| ?7- A1="12’, atom_chars(Al, List), atom_chars(A2, List).

Al = A2 = 212
List = [49,50]

| ?7- A1="12’, atom_chars(Al, List), atom_chars(A2, List), A1=A2.

A2 = 2127
List = [49,50]

=
—
I

| ?- A1=12, atom_chars(Al, List).

number_chars(7X, 7L)
X is the number such that L is a list of the ASCII codes for its printed representation.

48 ICP][0.96

| ?- A1="12’, number_chars(Al, List).

| ?- A1=12, number_chars(Al, List), number_chars(A2, List).

Al = A2 = 12
List = [49,50]

numbervars (?Term, +Start, -End)
Transforms each of the variables in Term into ground terms of the form ’$Var’ (IN)

where N is an integer greater than or equal to the integer Start.

| ?- numbervars(a(X,Y), 0, End), display(a(X,Y)).
a($VAR(0) ,$VAR(1))

The first variable in Term gets N equal to Start while the second distinct variable gets
Start+1 and so on. End is the value of N when the last variable has been grounded.

concat(?X,?Y,?2)
Z is instantiated to the atom formed by concatenating the printed representation of X

with that of Y. The limit of the size of a single atom is 255 characters. If you try to
construct a new atom with more than 255 characters the extra trailing characters will

simply be ignored.

| ?- concat(foo, bar, Full).

Full = foobar

| ?- concat(Start, bar, foobar).

Start = foo

| ?- concat(foo, End, foobar).

End = bar
J

concat_atom(?List, 7Atom)
This primitive concatenates a list of constants 7List into a single atom ?Atom. The

constants may be numbers or atoms.

pname (7T, 7N)
This primitive converts between a Prolog term and an atom representing its print name.

If T is bound, N is bound to the atom of the print name of T.

Chapter 2: Builtin Predicates 49

If N is bound, T is bound to the term whose print name is N.

| ?- pname(a(X, 2), N).

Unbound variable : X
N = ’a(_0,2)’

| ?- pname(T, ’a(X, 2)°).

T

a(_243,2)

pname (7T, 7N, ?VNames, ?Vars)
Same as pname/2 but with better control of the print name of variables. If Vnames is
given is a variable, N is bound to the atom of the print name of T, with each variable
in list Vars being represented by the corresponding atom in list VNames. In the second
form, T is bound to the term whose print name is N, Vars is bound to a list of variables
found in the term and VINames is bound to a list of the corresponding print names.

| ?- pname(a(X, 2), N, [’V1’], [X]).

Unbound variable : X
N = ’a(V1,2)°

| ?- pname(T, ’a(X, 2)’, VNames, Vars).
T = a(_273,2)

VNames = [’X’]
Vars = [_273]

This predicate is useful for meta-programming.

copy_term(?Term, ?CopyTerm)
Creates a copy of term Term with new variables but preserving bindings

| 7~ copy_term(a(X, b(G,X)), Copy).

Unbound variables : G, X
Copy = a(_141,b(_146,_141))

gensym (+Prefix, -Atom)
Creates an atom Atom whose prefix is Prefix and whose suffix is an integer. Successive
calls to gensym/2 are guaranteed to give different atoms.

50 ICP][0.96

| 7- gensym(a,Atoml), gensym(a,Atom2), gensym(b, Atom3).

Atoml = al
Atom2 = a2
Atom3 = b1l

2.15 Threads

In the description below, a pipe is a communication channel between two threads or processes.
A pipe has two end which are called ports. An output port is where terms enter the pipe (i.e.
written out by a thread), and an input port is where the terms leave the pipe (i.e. read in by a
thread).

fork(+Goal)
Forks a child thread to run Goal. The current thread is not suspended. The child
thread must wait for a resume call or a time slice to start executing.

fork(+Goal,-Th)
Creates a child thread to run Goal, a thread identifier Th is returned. The current
thread is not suspended. The child thread must wait for a resume call or a time slice
to start executing.

gprolog(+Goal)
Similar functionality to fork/1, but without the overhead of creating a new thread.
The Goal is executed in a background reserved thread. Use this in preference to fork/1
only when Goal is simple, since complex queries will delay other calls to gprolog/1.

new_thread (-Th)
This creates a new thread structure and binds Th to an integer identifier for the thread.
This low-level primitive is typically not used by the user directly.

thread (?Th)
Returns the identifier of the current thread.

kill_thread(+Th)
Kills the specified thread and reclaims the memory space.

suspend Sets the status of the current thread to unrunnable. Note that this does not immedi-
ately suspend the thread, but merely removes it from the run queue. The thread must
be explicitly named in order to resume it.

suspend (+Th)
Sets the status of the thread Th to unrunnable. This removes the specified thread from
the run queue. The thread must be explicitly resumed using resume/1 to continue
executing.

Chapter 2: Builtin Predicates 51

resume

Non-specific scheduler. The next thread in the circular run queue resumes execution.

resume (+Th)

Resume execution of the specified thread. This is the only way to change the status of
a thread from unrunnable to runnable. If Th is 0, the next runnable thread is resumed.
resume/1 returns an error if Th is not a currently valid thread.

timeslice(+N)

pipe (-OP,

If N is the integer 0, time-slicing is switched off. This has the effect of preventing other
runnable threads from executing, thus giving the current thread exclusive use of the
processor. If N is any other integer, time-slicing is resumed. This primitive is used
when atomicity is required or when critical code regions are entered.

-1P)

Creates a new pipe and binds OP to the output end and IP to the input end of the
pipe. Terms which are written to OP may be read from IP. The structure of a port
term is port (IN) where N is an integer.

write_pipe(+OP, 7T)

Outputs the term T to the output port OP. OP must be an output port owned by the
current thread, otherwise the primitive fails. Ownership of a port is automatically set
to the current thread if there is no current owner. Note that creation of a pipe does
not set ownership for the ports. Thus a pipe may be created by one thread and used
by another thread. If any thread is suspended on a read, write_pipe/2 wakes it after
T is written out to the pipe.

look_pipe (+IP, -T)

Copies a term T from the input port IP. The term is not removed from the pipe.
IP must be an input port owned by the current thread, otherwise the primitive fails.
Ownership of a port is automatically set to the current thread if there is no current
owner. The pipe is ‘locked’ before the term is read. This is to prevent multiple readers
accessing the pipe simultaneously. The lock is not released by this primitive (see
commit_read/1). look_pipe/2 suspends if the port is already locked or if the pipe is
empty. If the output port of the pipe is closed, look_pipe/2 binds T to the constant
end_of_file.

commit_read (+IP)

Removes the term previously read by look_pipe/2 from the pipe and unlock the pipe.
IP must be an input port owned by the current thread, otherwise the primitive fails.
commit_read/1 fails if the pipe is not locked (i.e. no previous look_pipe/2).

read_pipe (+IP, 7T)

Reads a term T from the input port IP. Semantically, this is equivalent to look_
pipe (IP, T) followed sequentially by commit_read (IP).

52

ICP][0.96

empty_pipe (+IP)

Is true if pipe IP has no data to be read. %LOOK

is_iport (+Port)

Is true if Port is an input port.

is_oport (+Port)

Is true if Port is an output port.

unlock (+Port)

Unlocks a pipe which has been locked by a previous look_pipe/2. The port must be
owned by the current thread, otherwise the primitive fails. This is used in the case
where the term read is not the one expected. The pipe is unlocked so that another
thread can re-read the same term.

close_port (+Port)

Closes the specified port. The port must be owned by the current thread, otherwise the
primitive fails. close_port/1 suspends if the pipe is locked and fails if the port has a
suspended operation pending. If an output port is closed, subsequent (and suspended)
reads from the input port will return end_of_file. Closing an input port does not
affect the output port. If both ports are closed, space used for the pipe is reclaimed.

release_port (+Port)

shell

exit

Releases ownership of the port to allow other threads to use it. The port must be
owned by the current thread, otherwise the primitive fails. release_port/1 suspends
if the pipe is locked.

This starts a read-eval-print loop in a new window to handle Prolog queries. It is
usually used as the goal to be executed in a new forked thread.

Kills the current thread and resumes another runnable thread, if any. This is usually
used to exit a shell as started above a la Unix.

2.16 Prolog - Parlog Interface

xparlog

parlog

Starts the parlog thread and redirects its console input and output to a new window
under X11. It also opens a pipe for communication between the prolog and parlog
processes. The new window may be used to type parlog queries directly or you may
use parlog/1 to call it from prolog. Only one parlog thread may be started.

Switches the query handler from prolog to parlog. The first time that parlog/0 is
called, a parlog thread is started and a pipe is opened for communication between the
prolog and parlog processes. Subsequent calls just switch to the existing parlog thread.

Chapter 2: Builtin Predicates 53

This primitive is useful when X Windows is not available or if you wish to run ICP in
an Emacs buffer. To get back to prolog, type the parlog query prolog/0.

parlog(+Goal)
Passes a goal Goal to the parlog thread to solve.

close_parlog
Closes the communication port to parlog.

2.17 Miscellaneous Primitives

unix (+A) Execute the atom A as a unix command.

cd(+A) Change current directory to A.

cd Change current directory to the user’s home directory.

1s Execute the unix command ‘1s’ to list the current directory.
1s(Dir) Execute the unix command ‘1s’ to list the directory Dir.
pwd Display the path name of the current directory.

edit (+File, +Editor)
Edit the file File using the editor, Editor. If the filename does not have an extension,
the suffix “.pl” will be added.

edit (+File)
Edit the file File using the editor, stored as property editor (by default ‘vi’). If the
filename does not have an extension, the suffix “.pl” will be added.

vi(+File) Edit the file File using the ‘vi’ editor.

out_of_date(+File, Type)
Is true if the file File(‘.icp’) is older than file File(.Type). The files are can exist
anywhere on the current search path.

max (+I,+J,-K)
K is bound to the greater of I and J.

arb_member (7El, ?Term)
Succeeds if El is a subterm of Term. This is a deterministic test.

not_arb_member (7El, ?Term)
Succeeds if EI is not a subterm of Term.

address(?V,-Address)
Binds Address to the heap-address of variable V.

54 ICP][0.96

time (-Time)
Binds Time to CPU time (in 60ths of a second) since last call.

realtime (-Time)
Binds Time to the time since 00:00:00 GMT, Jan. 1, 1970 measured in seconds (the
Unix epoch).

ctime (?Time, ?Year, 7Month, ?Day, ?Hour, ?Minutes, ?Seconds)
If Time is a number (as returned by realtime/1), binds the remaining arguments with
the corresponding integer representations. Alternatively if the other arguments are
integers, instantiates Time.

statistics(?Keyword, -List)
This gives various execution statistics. These statistics pertain to the thread in which
the call is issued. For each of the values of Keyword, List is unified with a list of values.

runtime List = [Timel, Time2] where the times are since the start of prolog exe-
cution and since the last call to statistics/2 with Keyword = runtime.
Both times are in milliseconds.

garbage_collection
List = [Number, Bytes, Time] where Number is the number of garbage
collections, Bytes the total number of bytes collected and Time the time,
in milliseconds, spent doing the garbage collection.

errno (?Number, -Message)
If Number is a variable, instantiates Number to the ‘C’ error number (errno) of the
underlying system. Message is the textual message for the error.
If Number is a number, Message is the textual message for the error corresponding to
this number.

getenv (+EnvName, -Value)
Gets the value Value of the Unix environment variable EnvName.

debugicp Drops into the WAM-level ICP debugger.

noref Displays on user_error a listing which gives the name and arity of the currently
referenced but undefined static predicates.

window_label (+Name)
Sets the name in the xterm title bar to Name.

icon_label (+Name)
Sets the name in the xterm icon to Name.

get_prolog_flag(+Flag, -Value)
Gets the value, Value, of the flag Flag for the thread in which the goal appears. The
currently supported flags are

Chapter 2: Builtin Predicates 55

debug The values can be one of the atoms on, off

undefined_predicate
The values can be one of fail warning error. The default is error.

set_prolog_flag(+Flag, -Value)
Sets the value, Value, of the flag Flag for the thread in which the goal appears. The
currently supported flags are

argc (-Number)
The number of arguments passed to prolog at initialization. These must be prefixed
by -z.

argv (-List)
The list of arguments passed to prolog at initialization. These must be prefixed by -z.

cursor (+Stream, ?Pos)
If Pos is a variable, this returns the position in the stream Stream. If Pos is an integer,
the stream position is set to its value.

shell_escape
Prompts the user for a goal to be executed. This is a useful menu option to provide so
that queries can be made from deep inside a user program.

get_path(-PathList)
This predicate returns a list of the directories which will be searched when prolog is
trying to locate a file.

set_path (+PathList)
This predicate can be used to set the directories which will be searched when prolog is
trying to locate a file. PathList is a list of directories, each of which is an atom.

56

ICP][0.96

Chapter 3: TCP Interface 57

3 TCP Interface

To allow for the communication between different ICP processes, a TCP interface is provided.
To make the interface accessible to users who are not experts at TCP and or socket level pro-
gramming, we provide a restricted subset of the full TCP functionality provided at the C level.
The intention was that simple communication can be written quickly without knowledge of the

underlying communication protocol.

The primitives described here are implemented for both the Prolog and Parlog sub-systems in
ICP. The TCP interface is not part of the core ICP system and must be loaded by a command of
the form

7- ensure_loaded(tcp).

The Prolog and Parlog interfaces are distinct libraries and so must be loaded separately.

3.1 Introduction to TCP/IP

It is beyond the scope of this manual to give a full description of the TCP/IP communication
protocol. For details the reader is refered to Unix Network Programming by W. Richard Stevens
and to the Unix documentation.

In TCP communications happen through sockets which are similar to file handles used in file
I/O. Inter-process communication occurs between two peers; the source and destination addresses.
An address consists of two components

network address
This specifies the IP address of the machine

port This allows multiple peers on a given machine

There are essentially two means of communication supported under the TCP protocol, connec-

tion and connectionless.

58 ICP][0.96

3.2 Connection Oriented Protocol

A socket is created and bound to a particular port and host address. The host address indicates
the machine with which to communicate. Typically a single process on any one machine will listen
for data on a particular port. Once a socket has been bound, subsequent reads on this socket do
not require the specification of the source of the data (tcp_send/2, tcp_send/3). A connected server
will typically have the following form

b

tcp_server(Port, Socket), % open and bind socket
tcp_accept (Socket, NewSocket), % accept connection
tcp_recv(NewSocket, Terml), % read from connection
tcp_send (NewSocket, Term2), % write to connection
tcp_close(NewSocket), % close connection

ces % here could do more accepts
tcp_close(Socket). % close socket

The corresponding clients which connect to the server would have the following form

b

tcp_client(Port, Address, Socket), 7% connect to server address and port
tcp_send(Socket, Terml), % send data to server

b

tcp_recv(Socket, Term2), % receive data from server

b

tcp_close(Socket) .

tcp_server (+Port, -Socket)
tcp_server (+Port, -Socket, +Address)
This predicate may be used to initiate a connection-oriented server. It is defined as

tcp_server (Port, Socket) :-
tcp_open(connection, Socket),
tcp_bind(Socket, Port),
tcp_listen(Socket) .

The three argument form passes the extra argument to tcp_bind/3.

tcp_client (+Port, +Address, -Socket)
tcp_client (+Port, +Address, -Socket, +TimeQOut)
This predicate may be used to initiate a connection-oriented client. It is defined as

tcp_client (Port, Address, Socket, TimeOut) :-
tcp_open(connection, Socket),
tcp_connect (Socket, Port, Address, TimeOut).

Chapter 3: TCP Interface 59

See tcp_connect/4 for details about the arguments.

tcp_accept (+Socket, -NewSocket)

tcp_accept (+Socket, -NewSocket, -Port, -Address)

tcp_accept (+Socket, -NewSocket, -Port, -Address, +TimeOut)
In the case of the server in a connection oriented protocol after listening, the socket
must accept connections from clients. This returns a new socket NewSocket through
which communication with the client specified by Address and Port can proceed. This
is equivalent to the C fragment

{
struct sockaddr_in add;
int socket=Socket, newsocket=NewSocket;
int length=sizeof (struct sockaddr_in);

newsocket = accept(socket, (struct sockaddr *) &add,
&length);

Address = ntohl(add.sin_addr.s_addr);

Port = ntohs(add.sin_port);

}

The variable TimeOut must have one of the values
block The call will block until a connection is established

poll This throws error 702 if immediate connection is not possible. By default
this error simply fails but a user defined error handler can override this.

Integer The call will block for Integer seconds after which if no connection is es-
tablished error 702 is thrown.

tcp_send (+Socket, +Term)

tcp_send (+Socket, +Term, +EFlag)
This is used to send data on a connected socket. It can not be used for connectionless
protocols as it does not specify the address of the recipient. Eflag must be one of the
following atoms

normal Normal data in encoded form

raw Normal data. Suitable for communication with non prolog processes. Raw
data must be a prolog atom.

tcp_recv(+Socket, -Term)
tcp_recv(+Socket, -Term, +EFlag)
tcp_recv(+Socket, -Term, +EFlag, +TimeOut)
Is used to receive data from a socket. The variable +Timeout must have one of the

values

block The call will block until a connection is established

60

ICP][0.96

poll This throws error 702 if immediate connection is not possible. By default

this error simply fails but a user defined error handler can override this.

Integer The call will block for Integer seconds after which if no connection is es-

tablished error 702 is thrown.

tcp_recv/2 is equivalent to the following definition
tcp_recv(Socket, Term) :-

tcp_recv(Socket, Term, normal, block).

Eflag must be one of the following atoms

normal Normal data in encoded form

raw Normal data. Suitable for communication with non prolog processes. Raw

data must be a prolog atom.

peek Used to determine if there is normal data without removing it from the

buffer.

peek_raw Used to determine if there is raw data without removing it from the buffer.

3.3 Connectionless Oriented Protocol

Here the socket is not associated with any particular port or host address. Hence to send data,

the destination port and host address must be specified (tcp_sendto/4, tcp_sendto/5)

An example of a connectionless server follows

tcp_connectionless(ServerPort, Socket), pA
tcp_recvfrom(Socket, Terml, Port, Machine), %

b

tcp_sendto(Socket, Term2, Port, Machine), %

b

tcp_close(Socket).

tcp_connectionless(ClientPort, Socket),
tcp_sendto(Socket, Terml, Port, Machine), %

b

tcp_recvfrom(Socket, Term2, Port, Machine), %

b

tcp_close(Socket).

tcp_connectionless (+Port, -Socket)

open socket
receive data from client

send data to client

send data to server

receive data from server

This predicate may be used to initiate a connectionless server or client. It is defined as

Chapter 3: TCP Interface 61

tcp_connectionless(Port, Socket) :-
tcp_open(connectionless, Socket),
tcp_bind(Socket, Port).

tcp_broadcast (+Port, -Socket)
This predicate may be used to initiate a broadcast socket. It is defined as

tcp_broadcast (Port, Socket) :-
tcp_open(broadcast, Socket),
tcp_bind(Socket, Port).

Typically, Port is specified as 0, which lets the system choose an unused port number.
tcp_sendto (+Socket, +Term, +Port, +Address)

tcp_sendto (+Socket, +Term, +Port, +Address, +EFlag)
This is used to send data on either a connected or connectionless socket.

Eflag must be one of the following atoms
normal Normal data in encoded form

raw Normal data. Suitable for communication with non prolog processes. Raw
data must be a prolog atom.

tcp_sendbr (+Socket, +Term, +Port)

tcp_sendbr (+Socket, +Term, +Port, +EFlag)
This broadcasts on the specified port. The socket must have been opened in broadcast
mode.

Eflag must be one of the following atoms
normal Normal data in encoded form

raw Normal data. Suitable for communication with non prolog processes. Raw
data must be a prolog atom.

tcp_recvirom(+Socket, -Term, -Port, -Address)

tcp_recvirom(+Socket, -Term, -Port, -Address, +EFlag)

tcp_recvirom(+Socket, -Term, -Port, -Address, +EFlag, +TimeOut)
Is used to receive data from a socket, also returning the IP address and port of the
sender. The variable +Timeout must have one of the values

block The call will block until a connection is established

poll This throws error 702 if immediate connection is not possible. By default
this error simply fails but a user defined error handler can override this.

Integer The call will block for Integer seconds after which if no connection is es-
tablished error 702 is thrown.

tcp_recvirom/4 is equivalent to the following definition

62 ICP][0.96

tcp_recvfrom(Socket, Term, Port, Address) :-
tcp_recvfrom(Socket, Term, Port, Address, normal, block).

Eflag must be one of the following atoms
normal Normal data in encoded form

raw Normal data. Suitable for communication with non prolog processes. Raw

data must be a prolog atom.

peek Used to determine if there is data without removing it from the buffer.

3.4 Miscellaneous TCP Predicates

This section describes some useful TCP primitives which are not restricted to either connection
or connectionless protocols. The are typically used to enquire about the state of the communication

channel.

tcp_close (+Socket)
This predicate is used to close a socket obtained with one of the calls tcp_socket/3,

tcp_open/2 or tcp_accept/5.

tcp_checkconn (+Socket)
This predicate succeeds if the socket is ready to be written to and fails if it is not.

tcp_checkrecv (+Socket)
tcp_checkrecv (+Socket, +EFlag)
This predicate succeeds if the socket is ready to be read from and fails if it is not.

tcp_getsockaddr (+Socket, -Port, -Address)
This predicate returns the IP address Address and port number of this side of a socket.

| ?- tcp_server (5569, Socket).
Socket = 0
| ?- tcp_getsockaddr (0, Port, Address).

Port = 5569
Address = 2460554497

| ?7- tcp_gethost(Name, Address).

Name = laotzu
Address = 2460554497

Chapter 3: TCP Interface 63

tcp_getpeeraddr (+Socket, -Port, -Address)
This predicate returns the IP address Address and port number of the far side of a

connected socket.

| 7- tcp_server(5569, Socket).

Socket = 0

| ?7- tcp_accept(l, NewSocket, NewPort, Address).

NewSocket = 1
NewPort = 1108
Address 2460554499

| ?7- tcp_getpeeraddr(l, Port, Address).

Port = 1108
Address = 2460554499

tcp_currenthost (-Name, -Address)
Gets the name and address of the current host.

| ?- tcp_currenthost(Name, Address).

Name = sophia
Address = 2460554499

tcp_gethost (?Name, ?Address)
The machine of name Name has IP address Address. The predicate is deterministic.

| 7- tcp_gethost(laotzu, Address).
Address = 2460554497

| ?- tcp_gethost(Name, 2460554497) .
Name = laotzu

| ?- tcp_gethost(’146.169.21.1°, L).

L = 2460554497

64

tcp_getport (?Name, ?Protocol, ?Port)

The named port Name, is on port Port, using protocol Protocol.

ICP][0.96

These values

correspond to the entries in file /etc/services. Valid modes of use are tcp_
getport (+Name, ?Protocol, 7”Port) and tcp_getport(?Name, ?Protocol, +Port).

| ?- tcp_getport(login, Protocol, Port).

Protocol = tcp
Port = 513

| ?- tcp_getport(Name, Protocol, 513).

Name = who
Protocol = udp

| ?- tcp_getport(Name, tcp, 513).

Name = login

The predicate is deterministic; It only finds one port per name.

tcp_real_socket (+Socket, -Handle)

Predicates which return socket identifiers (such as tcp_open/2 return integers >= 0
which are unique identifiers for the socket. Given a socked identifier Socket, tcp_real _
socket/2 returns the file handle for the socket. This is useful if user defined predicates

require this descriptor.

3.5 Low Level TCP primitives

This section describes other less frequently used TCP primitives. They are provided here for

completeness.

tcp_open(+Type, -Socket)

The predicate tcp_open/2 is defined in terms of tcp_socket/3 providing a higher
level method of openning sockets. Opens a TCP connection of type Type returning

the identifier Socket. Type is one of the following atoms

connection

A connected socket is opened. This provides sequenced, reliable two-way
connection based byte streams. A stream socket must be in a connected

state before any data may be sent or received on it. A connection to another
socket is created with a tcp_connect/4 call. Once connected, data may

Chapter 3: TCP Interface 65

be transferred using tcp_send/3 and tcp_recv/4 calls. When a session
has been completed a close/1 call may be performed. This is equivalent
to the C call

sock = socket (AF_INET, SOCK_STREAM, IPPROTO_IP);

and is defined as

tcp_open(connection, Socket) :-
tcp_socket (sock_stream, ipproto_ip, Socket).

connectionless
A connectionless socket is opened. This provides unreliable messages of a
fixed (typically small) maximum length. Data may be transferred using
tcp_sendto/5 and tcp_recvfrom/5 calls. This is equivalent to the C call
sock = socket (AF_INET, SOCK_DGRAM, IPPROTO_IP);

and is defined as

tcp_open(connectionless, Socket) :-
tcp_socket (sock_dgram, ipproto_ip, Socket).

broadcast

A broadcast socket is opened. This is a connectionless socket intended for
broadcasting messages to the local network. Messages written to such a
socket may be received by any machines listening on the local network.
These are connectionless, unreliable messages of a fixed (typically small)
maximum length. The messages will be delivered to all broadcast endpoints
in the network. Data may be transferred using tcp_send/3 and tcp_
recvfrom/5 calls. This is equivalent to the C fragment

{
int i = 1;
sock = socket (AF_INET, SOCK_DGRAM, IPPROTO_IP);
setsockopt (sock,SOL_SOCKET,SO_BROADCAST, &1,
sizeof (int));
}

and is defined as

tcp_open(broadcast, Socket) :-
tcp_socket (sock_dgram, ipproto_ip, Socket),
tcp_setsockopt (Socket, so_broadcast, 1).

tcp_bind (+Socket, +Port)

tcp_bind (+Socket, +Port, +Address)
Once a socket has been opened by a call to tcp_open/2 or tcp_socket/3, and with
the exception of a connected client, it should be bound to a port and an IP address.
Some ports - typically 1-1023 are reserved by the system. If Port=0 the system will
assign an available port. The predicate tcp_getport/3 may be used to obtain the port
number of a port named in /etc/services. This is an interface to tcp_bind/3 and is
defined as

66 ICP][0.96

tcp_bind(Socket, Port) :- tcp_bind(Socket, Port, inaddr_any).

tcp_bind/3 is as tcp_bind/2 except that the variable Address is either the atom
inaddr_any or an IP address (integer such as 2460554498, or the equivalent atom in
dot notation ’146.169.21.2’) of an ethernet interface of the machine (obtained from the
predicate tcp_gethost/2). This is only important for machines which have more than
one ethernet interface. Specifying an IP address means that only messages on that
network will be sent/received. If Address is inaddr_any then all the interfaces are

used by default. This is equivalent to the following C fragment.
{
struct sockaddr_in server;
u_long machine = Address
u_short port = Port
int socket = Socket;

server.sin_family = AF_INET;

server.sin_addr.s_addr = htonl (machine);

server.sin_port = htons(port);

bind(socket, (struct sockaddr *) &server, sizeof(server));

¥

tcp_connect (+Socket, +Port, +Address)

tcp_connect (+Socket, +Port, +Address, +TimeOut)
In the case of the client in a connection oriented protocol the socket needs to be con-
nected to the server. The Address may be specified as a machine name (e.g. confucius,
or 'confucius.doc.ic.ac.uk’), or the IP address in integer form (e.g. 2460554498) or an
atom in dot notation form (e.g. '146.169.21.2).

tcp_connect/4 is equivalent to the C fragment

{
struct sockaddr_in add;
u_long machine=Address;
u_short port=Port;
int socket=Socket;

add.sin_family = AF_INET;
add.sin_addr.s_addr = htonl(machine);
add.sin_port = htons(port);
fcntl (socket, F_SETFL, FASYNC);
connect (socket, (struct sockaddr *) &add, sizeof(add));
fcntl(socket, F_SETFL, 0);
}

The variable TimeOut must have one of the values
block The call will block until a connection is established

poll This throws error 702 if immediate connection is not possible. By default
this error simply fails but a user defined error handler can override this.

Chapter 3: TCP Interface 67

Integer The call will block for Integer seconds after which if no connection is es-
tablished error 702 is thrown.

tcp_listen(+Socket)
In the case of the server in a connection oriented protocol after opening, and binding
a socket it must specify a backlog for incoming connections from clients. The backlog
size is 5. It corresponds to the C fragment:

{

int socket=Socket;

listen(socket, 5);
}

tcp_socket (+Type, +Protocol, -Socket)
This predicate is used to open a TCP socket. The variable Type must be one of

sock_stream
For use in connected (stream) communication

sock_dgram
For use in connectionless (datagram) communication

sock_raw For use in raw communication
The variable Protocol must be one of

ipproto_ip
Suitable for any Type

ipproto_udp
Suitable for Type=sock_dgram

ipproto_tcp
Suitable for Type=sock_stream

ipproto_icmp
Suitable for Type=sock_raw

ipproto_raw
Suitable for Type=sock_raw

The variable Socket is bound to an integer which can be used in subsequent TCP
operations.

tcp_setsockopt (+Socket, +Optname, +Value)
This predicate allows the setting of various options on sockets. The supported values
of Optname are the following

so_debug turn on debugging info recording

68 ICP][0.96

so_reuseaddr
allow local address reuse

so_keepalive

keep connections alive

so_dontroute
just use interface addresses

so_broadcast
permit sending of broadcast msgs

so_oobinline

leave received OOB data in line

so_sndbuf

send buffer size

so_rcvbuf

receive buffer size

so_sndtimeo
send timeout

so_rcvtimeo

receive timeout

The call is an interface to the UNIX system call setsockopt(2) and is equivalent to
the following C fragment

{

int val = Val, opt = Opt, sock = Sock;

setsockopt (sock,SOL_SOCKET,opt, (char *)&val,sizeof (val));
}

tcp_getsockopt (+Socket, +Optname, +Value)
This predicate allows the getting of various options on sockets. The supported values
of Optname are the following

so_debug turn on debugging info recording

so_reuseaddr
allow local address reuse

so_keepalive

keep connections alive

so_broadcast
permit sending of broadcast msgs

so_oobinline

leave received OOB data in line

Chapter 3: TCP Interface 69

so_sndbuf
send buffer size

so_rcvbuf
receive buffer size

so_sndtimeo
send timeout

so_rcvtimeo
receive timeout

so_error get error status and clear
so_type get socket type

The call is an interface to the UNIX system call getsockopt(2) and is equivalent to
the following C fragment

{
int val = Val, opt = Opt, sock = Sock;
getsockopt (sock,SOL_SOCKET,opt, (char *)&val,sizeof(val));

3.6 Simple TCP Examples

3.6.1 Connected Sockets

The program below is an example of using the TCP connection protocol. The full source
code can be found in the file ‘$ICP_INSTALLDIR/examples/tcp/simple_connected.pl’. A more
sophisticated example is in file ‘$ICP_INSTALLDIR/examples/tcp/connected.pl’.

To run the example, two ICP processes should be started and the command

‘I ?- server.

run on one process while

(I ?- client(Port, Address).

70 ICP][0.96

is run on the other. Input on the client is echoed by the server.

Jdkkkkokkkkokkkkkkkkkkkkk connected SETVET skskskokskskskokskok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok /
server :-
tcp_server (0, Socket),
tcp_getsockaddr(Socket, Port, Address),
write(’use ’), write(client(Port, Address)), write(’.\n’),
server_loop(ok, Socket).

server_loop(stop, Socket) :- !, tcp_close(Socket).
server_loop(_, Socket) :-
tcp_accept (Socket, NewSocket),
process_request (ok, NewSocket, T),
server_loop(T, Socket).

process_request(stop, Socket, stop) :- !, tcp_close(Socket).
process_request(end, Socket, end) :- !, tcp_close(Socket).
process_request(_, Socket, Final) :-

tcp_recv(Socket, T),

writenl (tcp_recv(Socket, T)),

process_request (T, Socket, Final).
process_request(_, Socket, end) :- !, tcp_close(Socket).

[FFokokkkkk sk kokokkkkkkokokkkkk connected client skkokskskskskskkskokokokkkkkkokokkkkk /
client (Port, Address) :-

tcp_client(Port, Address, Socket),

client_loop(ok, Socket).

client_loop(stop, Socket) :- !, tcp_close(Socket).
client_loop(end, Socket) :- !, tcp_close(Socket).
client_loop(_, Socket) :-
write(’enter term, "end" ends this channel, "stop" stops server> ’),
flush,
read(T),
tcp_send(Socket, T),
client_loop(T, Socket).

3.6.2 Connectionless Sockets

This example can be found in the file ‘$ICP_INSTALLDIR/examples/tcp/connectionless.pl’.

[F KKK KKK KKK KKK KKK KKKKK KK CONNECTIONIESS SETVET *kokskskskkkokokokskkk sk okokokk kK ok okokkkkk /

Chapter 3: TCP Interface 71

server :-

tcp_connectionless(0, Socket),

tcp_getsockaddr(Socket, Port, Address),

writeseqnl([’server Port:’, Port, ’ Address:’, Address]),

writeseqnl([’Server started.’,
’You can start a client with the following command: ’,’\n\t’,
client(Port, Address),’.’]),

server_loop(ok, Socket).

server_loop(stop, Socket) :- !, tcp_close(Socket).
server_loop(_, Socket) :-
tcp_recvfrom(Socket, Data, Port, Address),
writeseqnl([’got>’, Data, ’<’, ’from Port:’, Port,
> Address:’, Address]),
server_loop(Data, Socket).

Jdkkkkkokkokkkkkkkkkkkkkkkk connectionless client koo sk ok sk ok ok ok ok ok ok ok ok /
client(Port, Address) :-

tcp_connectionless(0, Socket),

client_loop(ok, Socket, Port, Address).

client_loop(stop, Socket, _, _) :— !, tcp_close(Socket).
client_loop(end, Socket, _, _) :- !, tcp_close(Socket).
client_loop(_, Socket, Port, Address) :-
write(’enter term, "end" ends this channel, "stop" stops server> ’),
flush,
read(Data),
tcp_sendto(Socket, Data, Port, Address),
client_loop(Data, Socket, Port, Address).

3.6.3 Broadcast Sockets

This example can be found in the file ‘$ICP_INSTALLDIR/examples/tcp/broadcast.pl’.

72

ICP][0.96

Chapter 4: Mailbox-based communication model 73

4 Mailbox-based communication model

TCP works well for applications which naturally map onto the client-server model. There is an
asymmetry between the clients and the server. However, in the simple case of two processes having
a conversation, it seems to be an unnecessary overhead and confusing complication to force one
process to be the server and somehow provide a service to the client, when it is much more natural
to think of them as two symmetrical processes.

In TCP, the instrument of communication is a socket. A socket is one end of a communication
channel. To set up a channel between a server and a client, two sockets are created (one by the server
and the other by the client) and are then connected to each other. This is analogous to a telephone
conversation where two telephones are required to set up a connection. As with telephones, TCP
communication is strictly one-to-one. There are no facilities to set up one-to-many or many-to-one

conversations.

In TCP, every communication channel set up between a server and a client is a separate network
connection. The system overheads of creating sockets and setting up connections over the network
become significant if the conversations are short and there are many such conversations. For
example, if ten processes on one machine are talking to ten processes on another machine, there
will be ten network connections between the two machines.

These disadvantages can be overcome by providing a higher level abstraction that is more
powerful and simpler to use. Mailboxes provide such an abstraction.

This section documents the Mailbox primitives. These primitives are available to both the
Prolog and Parlog sub-systems of ICP. The Mailbox interface is not part of the core ICP system
and must be loaded by a command of the form

?- ensure_loaded(mailbox) .

The Prolog and Parlog interfaces are distinct libraries and so must be loaded separately.

Note that only the ‘blocking’ form of the mailbox primitives are currently implemented.

74 ICP][0.96

4.1 Introduction to Mailboxes

In the mailbox model, the instrument of communication is a mailbox. A mailbox is simply a
repository for messages. Mailboxes may be created freely by any process. Messages can be sent
to and removed from a mailbox. Instead of having to create two sockets to communicate, we now
need to create only one mailbox. For two processes to communicate, the sender places a message
in the mailbox, and the receiver removes it from the same mailbox. A mailbox can store multiple
messages. Messages are kept in arrival order so that it naturally simulates stream communication.

4.1.1 Message Peeking

When a message is read from a mailbox, there is an option to not remove it. The message can
remain in the mailbox. This is so that a receiving process can determine whether it should be left
for another process to handle. This can occur because multiple processes may be reading from the
same mailbox. When a message is being checked in this way, further reads from this mailbox must
wait until a decision has been made regarding the message. The options are to commit the read
and remove the message, or to discard the read and leave it in the mailbox.

4.1.2 Two-way Communication

Messages in a mailbox may be read by any process, including the process that sent it. This
makes it difficult (though not impossible) to implement two-way communication using only one
mailbox. Mailboxes are best used when only one receiver reads messages from it. Since there is
very little cost associated with creating new mailboxes, two-way communication should be carried
out using two mailboxes.

4.1.3 Multi-way Communication

A link may be established between two mailboxes. When a message is sent to the first mailbox,
the message is automatically forwarded to the second mailbox. Note that the link is uni-directional
only - messages sent directly to the second mailbox will not by forwarded to the first. The second
mailbox remains an ordinary mailbox while the first becomes a ‘linked’ mailbox. Linked mailboxes
do not store any messages, only addresses of links. A mailbox may be linked to many mailboxes.
In this case, messages sent to the linked mailbox will cause a copy of the message to be forwarded
to each and every link. This is how we can configure one-to-many communication. Note that there
is a distinction between the case where multiple receivers each receive copies of all messages, and

Chapter 4: Mailbox-based communication model 75

the case where only one of the multiple receivers receive each message. In the former case, we can
use linked mailboxes but in the latter case, one mailbox is sufficient.

Many-to-one communication can also be configured by linking multiple mailboxes to the same
mailbox. Indeed, any arbitrary communication topology may be built up using links.

If a mailbox is linked to another mailboxes while some messages are stored in it (waiting to be
read), the messages will be kept until the mailbox is unlinked or closed. If is unlinked, the messages
will be accessible again.

4.2 Mailbox Server

All the above pre-supposes that a mailbox can be uniquely identified in a network and can be
accessed by all machines on the network. This can be guaranteed by ensuring that when a mailbox
is created, the identifier returned is a combination of the process number and the number of the
mailbox in that process. The process number is allocated by an external mailbox server program.
Note that the process number is a generalisation of the machine number since a machine may run
many processes.

When a process requires the use of mailboxes, it first registers with the mailbox server which
allocates a process number to it. The mailbox server replies by sending the process numbers and
physical network addresses of all the other registered processes. It also notifies existing registered
processes that there is a new process. By keeping all processes up-to-date with this information,
processes may communicate with each other directly without contacting the mailbox server again.
The mailbox server does not become a bottleneck in the system and in fact mailbox communication
can continue even if the server program is terminated. Of course in this case, any further changes
to the registered process list will not be reflected.

Using a mailbox server, a set of processes can cooperate and communicate with each other by
registering with this server. The set of processes is called a mailbox group. A completely different
mailbox group can exist if there is another mailbox server program running. In general, there is no
limit to the number of mailbox groups. Each group is a completely independent system.

76 ICP][0.96

4.2.1 Registering Mailbox Names

In the model presented above, we can see how it would be possible to communicate if we know
the mailbox identifier. However the bootstrapping problem of finding out the relevant identifier
still remains.

If a process is willing to accept incoming communication, it should create a mailbox and register
a name along with the mailbox identifier. This registration is done by sending a message to the
mailbox server program (the mailbox server has a pre-defined address). Thereafter, when another
process wishes to talk to the named process, it can query the mailbox server program for the mailbox
identifier. This is very similar to telephone directories. The correspondence between names and
telephone numbers is stored in a telephone directory. If you do not know the number, you look up
the name. The mailbox server program provides this necessary directory lookup service.

4.3 Restricting Access

Restricted access can be enabled for the mailbox server and individual mailboxes. This is

implemented in two layers.

The first layer is a user level restriction. At mailbox creation time, read and write permissions
can be defined for the user, group and others. The possible values for permissions are read_write,
read, write and none.

The second layer is a process level restriction. This filters the processes that pass the first
layer. At mailbox creation time, a read password and/or a write password can be defined and
every process wishing to access the mailbox must supply the correct password. The passwords are
actually integers.

These restrictions can be used for the mailbox server as well, restricting the access to the services
supplied.

4.4 Starting Mailboxes

The mailbox server is a standalone program written in C. To use mailboxes, there must first be
a mailbox server running on the network. A mailbox server with the mailbox group name of mbx1
is started in the background from the Unix command line like this :

Chapter 4: Mailbox-based communication model 77

mbx_server mbxl &

Note that this is run from Unix, not from within Prolog. A confirmation message should appear
as follows :

Server [mbx1] started on machine HOSTNAME

where HOSTNAME is the name of the machine on which the mailbox server is running. The
program runs until it is explicitly killed using CTRL-C.

The identifier mbx1 is associated with a particular port number in the file /etc/services. If you
get the message

service: mbxl not found

then /etc/services has not yet been modified. Please read the installation procedures on how
to do this. There are four pre-defined mailbox group names in /etc/services, they are mbx1, mbx2,
mbx3 and icprolog. You may define more if you wish by adding lines to the /etc/services file.

When starting the server, if you get the message

error: server is already running or socket is in use

this means that the server is already running for that mailbox group. If however, you do not
wish to participate in an existing mailbox group, then you should start another server using the
identifiers mbx2 or mbx3 instead.

4.5 Mailbox Primitives

The Mailbox primitives described below are available to both Prolog and Parlog components of
the ICP system.

In the short forms of the primitives, the dafault values for the arguments are user read_write,
group write and others write permissions, 0 read password and O write password and they supply
0 as password.

78 ICP][0.96

4.5.1 Opening, Modifying and Closing Mailboxes

mbx_init (+Address, +MailboxGroup)
Connects to server MailboxGroup on machine Address. This must be the first mailbox
primitive to be called since this initialises the connection. MailboxGroup is normally
one of mbx1, mbx2 or mbx3, but it may be any string as long as it is defined in the
/etc/services file.

mbx_create (-Mbx)

mbx_create (-Mbx, +User, +Group, +Others, +RPass, + WPass)
This creates a mailbox, returning its global address as an identifier Mbx. For efficiency
reasons, it is more natural (although not necessary) to create a mailbox on the machine
that the processes which are going to receive from it are running.

mbx_close (+Mbx)
mbx_close (+Mbx, +TimeOut, +RPass)
This primitive closes the mailbox specified, breaking all the links from or to it.

mbx_link (+MbxI, +MbxO)

mbx_link (+MbxI, +RPass, +MbxO, + WPass, +TimeOut)
This links one mailbox (MbxI) to another (MbxQO), allowing one to one, many to one,
one to many or many to many communication. Linking a mailbox to itself gives an

error.

mbx_unlink (+MbxI, +MbxO)
mbx_unlink (+MbxI, +RPass, +MbxO, + WPass, +TimeOut)
This breaks the link between MbxI and MbxO.

mbx_getlinks (+Mbx, -Links)

mbx_getlinks (+Mbx, +TimeOut, +RPass , -Links)
Not implemented yet. This returns the links of the specified mailbox. Links is a list
with two elements, the first is a list with the addresses of mailboxes to which Mbx is
linked to, and the second element is a list with the addresses of mailboxes linked to
Mbx.

4.5.2 Reading and Writing from Mailboxes

mbx_send (+Mbx, ?Term)

mbx_send (+Mbx, +Flag, +TimeOut, ?Term, +WPass)
This sends a term to the mailbox specified by the global address Mbx. Sending is
asynchronous (and therefore buffering is provided).

Chapter 4: Mailbox-based communication model 79

mbx_recv(+Mbx, -Term)

mbx_recv(+Mbx, +Flag, +TimeOut, -Term, +RPwd?)
This reads a term from the mailbox specified by the global address Mbx. Flag specifies
whether the message to be received is out of band data or normal data. TimeOut
specifies whether call is in block, poll or timeout (TimeOut is a number in seconds)
mode. block means that the call will suspend until a message is available. poll means
that if there is no message available, the call will fail with TIMEOUT error. TimeOut
means that the call will suspend for a message for at most the time specified and then,
if there is no message available, it will fail. RPwd is an integer password for reading
the mailbox.

mbx_look (+Mbx, -Term)

mbx_look (+Mbx, +Flag, +TimeOut, -Term, +RPass)
This reads a term from the mailbox Mbx. It is a blocking primitive. A mbx_look call
does not remove the message read. The mailbox is locked after such a call, so any
other mbx_read or mbx_look calls suspend until the mailbox is unlocked. The reading
process is supposed to test the message read and, depending on whether it is suitable
or not, it should call mbx_commit or mbx_discard, both of which unlock the mailbox.
mbx_commit or mbx_discard (whichever is chosen) should be run sequentially after
mbx_look, otherwise a SEQUENCE error will occur.

mbx_commit (+Mbx)

mbx_commit (+Mbx, +Flag, +TimeOut, +RPass)
This unlocks the mailbox Mbx removing the message read, so the next reader will read
a different message.

mbx_discard (+Mbx)

mbx_discard(+Mbx, +Flag, +TimeOut, +RPass)
This unlocks the mailbox Mbx without removing the message read, so the next reader
will read the same message.

mbx_check (+Mbx)
mbx_check (+Mbx, +Flag, +TimeOut, +RPass)
This primitive checks whether there is a message available in the mailbox specified. It

is a non-blocking primitive.

mbx_clear (+ Mbx)
mbx_clear (+Mbx, +Flag, +TimeOut, +Pass)
This removes all the normal data or out of band data kept in the specified mailbox.

4.5.3 Miscellanious Mailbox Predicates

80 ICP][0.96

mbx_bind (+Mbx, +Atom)

mbx_bind (+Mbx, +TimeOut, +Atom, +RPass)
This binds a global mailbox address to a global service in the mailbox server, making
the address accessible to the whole system. There can be different services (Atom)
with the same address (Mbx), but not one service with different addresses.

mbx_getid(+Atom, -Mbx)

mbx_getid(+Atom, +TimeOut, -Mbx, +Pass)
This returns the global mailbox address associated with the global service specified. If
the service is not recorded in the internal data base, the primitive fails.

mbx_getname (+Mbx, -Atom)

mbx_getname (+Mbx, +TimeOut, -Atom, +Pass)
This returns the global service associated with the global mailbox address specified. If
the address is not recorded in the internal data base, the primitive fails.

mbx_initdb(-Ptr)

mbx_initdb(-Ptr, +TimeOut)
This initializes the internal data base reading pointer, allowing sequential access to it
using the mbx_getdb/4 primitive. Returns an identifier for the initialize pointer.

mbx_getdb (+Ptr, -Atom, -Mbx)

mbx_getdb (+Ptr, +TimeOut, -Atom, -Mbx, +RPass)
This returns the global service and the global mailbox address associated with it,
reading sequentially from the internal data base. The next call to this primitive will
return the next data base entry. Ptr is the identifier for the internal data base pointer.

mbx_closedb (+Ptr)
mbx_closedb (+Ptr, +TimeOut)
It closes the internal data base reading pointer created by mbx_initdb/1.

The last two primitives always succeed, except when the arguments are incorrect.

Chapter 5: Foreign Language Interface 81

5 Foreign Language Interface

ICP offers an interface to functions written in the programming language ‘C’ — Brian W.
Kerninghan and Dennis M. Ritchie, The C Programming Language, Prentice-Hall, inc. Currently
the calling of ‘C’ functions from prolog is supported but ‘C’ can not call prolog. In later versions
this support will be provided. Dynamic loading is achieved through the unix ‘1d’ command.

The arguments of predicates corresponding to ‘C’ functions are restricted to non complex terms
- integers, floats or atoms. The type of each argument must be specified together with whether
it is an input or output argument. Input arguments must be ground when called, while output
arguments may also be variables. The interface provides the transformation to and from the internal
Prolog representation of the primitive types and the corresponding ‘C’ representation.

5.1 Foreign Language Predicates

load_foreign_files(+FileList)
This is used to load foreign functions into the running prolog system. FileList is a list
of object files (compiled ‘C’ files). The “tt .o’ extension may be ommited. A single
atom (file name) is also allowed as a value of FileList. The files are searched for in the
current search path.

load_foreign_files(+FileList, +LinkerArgs)
Same as above with the additional parameter LinkerArgs specifying a list of arguments
to be passed to the unix ‘1d’ command. This is typically used when additional system
libraries are required.

The user defined predicates foreign_file/2 and foreign/3 are used to specify the
prolog predicates and corresponding ‘C’ functions.

foreign_file(-File, -Functions)
File is an object (compiled ‘C’) file while Functions is a list of the ‘C’ function names
defined in this file which are to be interfaced.

foreign (+Cfunction, +Language, +PredicateSpecification)
Cfunction is the name of a ‘C’ function and Language is the atom c¢ (In future languages
other than ‘C’ may be supported). PredicateSpecification describes the form of the
prolog predicate to be used to access the foreign function. This is a term of the form
PrologName(ArgSpecl, ..., ArgSpecN)
Fach argument is of one of the following forms

e +integer The Prolog argument is an integer. The corresponding ‘C’ argument type
is long int.

82 ICP][0.96

e -integer The Prolog argument is an integer or a variable. The corresponding ‘C’
argument type is long int *.

e [-integer] The Prolog argument is an integer or a variable. The corresponding
‘C’ function type is long int *.

e +float The Prolog argument is a floating point number. The corresponding ‘C’
argument type is double.

e -float The Prolog argument is a floating point number or a variable. The corre-
sponding ‘C’ argument type is double *.

e [-float] The Prolog argument is a floating point number or a variable. The cor-
responding ‘C’ function type is long int *.

e +atom The Prolog argument is an atom. The corresponding ‘C’ argument type is
char *.

e -atom The Prolog argument is an atom or a variable. The corresponding ‘C’
argument type is char *x.

e [-atom] The Prolog argument is an atom or a variable. The corresponding ‘C’
function type is char *.

e +string Synonym for +atom.

e -string Synonym for -atom.

[-string] Synonym for [-atom].

The ‘C’ function must include the file ‘ICprolog.h’. There should be no more than one
argument corresponding to a ‘C’ function return type. If there is no such argument,
the return type of the ‘C’ function should be specified as bool, and it should return
one of the following values

FAIL The prolog call will fail.
SUCCEED The prolog call will succeed.

SUSPEND If a primitive returns SUSPEND, then that thread is taken out of the run
queue. This means that another thread will have to explicitly ‘resume’ See
Section 2.15 [Threads], page 50, it before it can run again.

REQUEUE REQUEUE means the primitive should be tried again later. This can result
in a busy wait if nothing happens in between to change the status.

5.1.1 Compilation and Example

When compiling the -I option should be given to the ‘C’ compiler to specify the directory where
the ‘ICprolog.h’ file is located. For example

Chapter 5: Foreign Language Interface

cc -w -0 -I$ICP_INSTALLDIR/include -c myfuncs.c

With the following code for ‘myfuncs.c’

#include "ICprolog.h"
char *malloc();

/* foreign(twice, c, ptwice(+float, [-float])). */
double twice(a)
double a;
{
return(2 * a);

¥

/* foreign(concat, c, pconcat(+atom, +atom, -atom)). */
bool concat(a, b, c)
char *a, *b, **c;

{
int len;
static int last_len = O;
static char *ret = NULL;
char *pt;
len = strlen(a) + strlen(b) + 1;
if (lret) {
last_len = len;
ret = malloc(len);
} else if (len > last_len) {
free(ret);
ret = malloc(len);
last_len = len;
}
pt = ret;
while (*pt = *a++)
pt++;
while (*pt = *b++)
pt++;
*c = ret;
return (SUCCESS) ;
}

/* foreign(foo, c, pfoo(+integer,-integer,+atom,-atom,+float,-float)). */
bool foo(intl, int2, atoml, atom2, floatl, float2)

int intl, *int2;

char *atoml, **xatom2;

double floatl, *float2;

84

*int2 = intl;
*atom2 = atoml;
*float2 = floatl;
return (SUCCESS) ;

and the following prolog declarations

foreign _file(’test.o’, [twice, concat, fool).

foreign(twice, c, ptwice(+float, [-float])).

foreign(concat, c, pconcat(+atom, +atom, —atom)).

ICP][0.96

foreign(foo, c, pfoo(+integer, -integer, +atom, -atom, +float, -float)).

will give the results:

=

7- [test], listing([foreign file, foreign]).

foreign_file(’test.o’, [twice,concat,foo]).
foreign(twice,c,ptwice(+ float,[- float])).
foreign(concat,c,pconcat (+ atom,+ atom,- atom)).

foreign(foo,c,pfoo(+ integer,- integer,+ atom,- atom,+ float,- float)).

yes

7- load_foreign_files(’test.o’).

{loading foreign from ./test_interface.o ./test.o }

yes

7- ptwice(1.1, T).

= 2.2

-~

- pconcat(ab, cd, E).

abcd

-~

- pfoo(4, I, hello, A, 1.3, F).

4
hello
1.3

Chapter 6: Prolog Tracer User Guide 85

6 Prolog Tracer User Guide

When programs do not work as expected, the next step is to use a Prolog tracer to trace through
the execution step by step. Our tracer uses an extended set of the four port model described by
Clocksin and Melish Programming in Prolog, Springer Verlag.

The tracer knows about the following eight ports: call, exit, redo, fail, unify, try_match,
succeed_match, and fail_.match. On invoking the tracer the first five of these are set on leash.
Leashed ports are always echoed, and skipping and unleashing are allowed at call and redo ports
only. At leashed ports the ‘7’ prompt awaits for the user to take action by typing one of RET s u
naelpd! The effect is as follows:

RET creeping takes place

s the current goal is skipped

u the current goal is unleashed

n the trace continues by

a tracing is aborted

e the predicate set_leashes is called

1 the predicate set_lechoes is called

P information is displayed indicating the ports that are currently leashed/echoed
d the ICP debugger is entered

! the user is allowed to solve a prolog query. On the user selecting this option the tracer
types | and awaits for a prolog query to be typed at the terminal. Once the query has
been solved, control returns to the tracer.

trace Turns the tracer on. All top level queries will be traced.
notrace Turns the tracer off.

set_echoes
Gives the user the opportunity to turn echoes on or off on any of the tracer’s ports.
set_echoes types the message ‘...ports to be leashed?’ and awaits for the user to type a
term of the form <Ports>:

<Ports> := all | none | <PortSeq>

<PortSeqg>
= <Port> | -<Port> | <Port> <Ports> | -<Port>,<Ports>

86

ICP][0.96

<Port> == call | exit | redo | fail | try_match | succeed_match | fail_match

If the term is ‘all’ then the echo is set to be on all the tracer’s ports.
If the term is ‘none’ then the echo and leash is set to be off on all tracer’s ports.

If the term has a subterm of the form <Port> then the echo is set to be on on the
corresponding port.
If the term has a subterm of the form -<Port> then the echo and leash are set to be off

on the corresponding port.

The port names call, exit, redo, fail, try_match, succeed_match, and fail match can be
respectively abbreviated to c, e, r, f, tm, sm, and fm.

set_leashes

?? +Goal

Gives the user the opportunity to turn leashes on or off on any of the tracer’s ports.

set_echoes types the message ...ports to be leashed?’ and awaits for the user to type a
term of the form <Ports> (see set_echoes).

If the term is ‘all’ then the echo and leash is set to be on all the tracer’s ports.

If the term is ‘none’ then the leash is set to be off on all tracer’s ports.

If the term has a subterm of the form <Port> then the echo and leash are set to be on
on the corresponding port.

If the term has a subterm of the form -<Port> then the leash is set to be off on the
corresponding port.

Goal is traced. This operator can be used to trace a single goal when the tracer is off.
Only dynamic code can be traced and if during a trace a query for a static predicate
is encountered, the query is solved by a standard call to prolog.

Appendix A: Operators

Appendix A Operators

87

Precedence Type Name
1200 yiy .
1200 yf .)
1200 xfx (-=>) (=)
1200 fx (:=) (7-)
1150 fx (multifile) (mode) (public) (meta_predicate) (dynamic)
1100 xfy)
1050 xfy (->)
1000 xfy @)
900 fy (nospy) (\+) (not) (spy)
900 fx (??)
700 xfx () (=)) (=) (==) (=:=) (<) (@) (e=<) (e>=)
A=) (\==) (=..) (=) (=\=) (is)
600 xfy)
500 yfx A/) (++) (=) (/) (=) (H)
500 fx) (=) ()
400 yix (<) (%) (/) (%) (/) (>>)
300 xfx (mod)
200 xty 9)
100 fx (1s) (cd) (vi)

88

ICP][0.96

Appendix B: Error Codes

Appendix B Error Codes

100
101
102
103

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

300
301
302
303
304
305
306
307
308
309
310
311
312

400
401
402
403
404
405
408

unbound variable in arithmetic expression
unbound variable in relational expression
unbound stream identifier

unbound filemode

non-integer in arithmetic expression
invalid clause

non-number in relational expression
non-atom filename

non-atom in operator declaration
non-variable stream identifier

invalid data for ram file

non-integer argument in throw/1

non-variable in 2nd argument

non-variable argument

invalid form of use

unterminated list

invalid list of ASCII codes

non-integer argument

attempt to assert/retract a static predicate
attempt to assert/retract a system predicate
invalid clause

invalid goal

non-number in arithmetic expression

invalid arithmetic expression

cannot open file

invalid stream

cannot close stream

incorrect or unknown file type

error occurred while reading object file
error occurred while writing object file
invalid ram file

invalid port

port has pending read

port has pending write

port is being read by another thread
port is being written to by another thread
port is owned by another thread

file mode must be read, write or append
operator priority must be in the range 0..1200

operator type must be fx, fy, xf, yf, xfx, xfy, yfx or yfy

predicate not defined
undefined property
undefined predicate
system deadlock

89

90

409
410
411
412

500
501
502
503
504
505
506
507
508
509
510

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614

700
701
702
703
710
711
712
713
714
715
716
717
718
719
720
721
722

invalid return code from service function
parlog thread exists already

invalid thread ID

cannot switch to parlog from this thread

compiler error

invalid instruction found during code generation
multiply-defined label found during code generation
term nested too deep

out of stack space

out of heap space

invalid ICP instruction

invalid tag type found

too many variables in term

term too large in property

term too large for pipe

division by zero in arithmetic expression
cannot open any more file streams

cannot open any more memory streams

no space for RAM file

code segment too large

symbol space full during code generation
out of space during code generation

out of code space

out of space in dictionary maintenance
out of space for constants

no space for new thread

no space for property

out of space in term reader

out of system heap space

illegal instruction

Bad sequence of TCP instructions
Socket closed

Timeout (TCP)

Invalid socket descriptor
socket error (TCP)
setsockopt error (TCP)
bind error (TCP)

listen error (TCP)

accept error (TCP)
connect error (TCP)

ioctl error (TCP)

send error (TCP)

recv error (TCP)

sendto error (TCP)
recvfrom error (TCP)
close error (TCP)
getsockname error (TCP)

ICP][0.96

Appendix B: Error Codes

723
724
725
726
727
728
729
730
731

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

gethostname error (TCP)
gethostbyname error (TCP)
getpeername error (TCP)
gethostbyaddr error (TCP)
getservbyname error (TCP)
getservbyport error (TCP)
getsockopt error (TCP)
cannot open any more sockets
data too long for buffer

Maibox initialisation

Timeout (mailbox)

Incorrect mailbox identifier

Mailbox permission denied

Invalid operation on linked mailbox

The mailbox is locked

The mailbox is empty

Attempt to commit or discard an unlocked mailbox

The machine on which the mailbox is located is shut down

An error has happened in the low level communications

Attempt to bind a mailbox to a service which already exists
The specified service does not exist in the internal database
The specified mailbox does not exist in the internal database
Unspecified Mailbox error

Unification failure error (mailbox)

91

92

ICP][0.96

Appendix C: Low-level Primitives

93

Appendix C Low-level Primitives

noref

debugicp

halt

>add%f’ (N,M, Sum)

’sub%f’ (N,M,Difference)
’mul’f’ (N,M,Product)
’divif’ (N,M,Quotient)
’mod’%f’ (N,M,Remainder)
>cmp%f’ (Order,terml,Term2)
’int%f’ (Int)

>atom%f’ (Constant)

‘var)f’ (Var)

’1ist¥%f’ (List)

>tpl%f’ (Tuple)
>arglf’ (N, Term,Element)
>univ’%f’ (Tuple,List)
’name’,f’ (Constant,List)
’o_stream),f’ (Filename,Mode, Id)
’c_stream’f’ (Id)

’o_mem%f’ (Initialiser,Mode,Id)
’c_mem%f’ (Id)

’set_in%f’ (Type, Id)
>set_outf’ (Type,Id)
’increment’f’ (N,OneMore)
’put_q_atom%f’ (Atom)
’get0%f’ (Char)

’put¥%f’ (Char)

’unget’f’ (Char)

>flush’f’ (StreamId)
’addr¥%f’ (Var,Address)
’deepcut’f’ (Cut)

’back%f’ (ChoicePt)
"meta¥%f’ (Goal)

’eq’f’ (Number ,Number)
’ne%f’ (Number ,Number)
’1t%f’ (Number ,Number)
’le%f’ (Number ,Number)
’gt%f’ (Number , Number)
’gelf’ (Number ,Number)
’syntax_errorf’ (Errorcode)
’assert’f’ (Index,Mode)
’retract’f’ (Name,Arity, Index)
>dec%f’ ([N])

>inc%f’ ([N])

list undefined preds
debug emulator

exit emulator

add two integers
subtract two integers
multiply two integers
divide two integers
modulus

compare two terms
integer test

atomic test

var test

list test

tuple test

extract from tuple

univ

print-names of terms
initialise stream I/0
finished with stream
initialise memory file
finished with memory file
set current input stream
set current output stream
increment by 1

write out a quoted atom
input a character

output a character

put back a character
flush output stream
numerical address of var
deep cut

pick up cut label
meta-call

equality test

inequality test

less than test

less than or equal test
greater than test
greater than or equal test
Syntax Error Handler
link clause of dynamic predicate
retract dynamic clause
decrement N by 1 in [N]
increment N by 1 in [N]

>find_clause,f’ (Name,Arity,ChainName,ChainArity, Index)

’time¥%f’ (Time)

b
b

find specific clause in dynamic chain
get CPU time

94

ICP][0.96

’arity%f’ (Term,Arity) % get arity of tuple

>funct¥%f’ (Term,Functor) % get functor of tuple

’interm)%f’ (Term,Priority,Vars) 7 read a term and produce var list
'ntpl%f’ (Length,Tuple) % create a new tuple of unbounds
’not%f’ (N,Complement) % binary complement

’1shiftl)f’ (N,Places,Result) % left shift function

’rshift%f’ (N,Place,Result) % right shift function

>and%f’ (N,M, Anded) % and function

>or%f’ (N,M,0r) % or function

>op_prefix)f’ (OpPrior,Right,Name) % define a new prefix operator

>op_postfix%f’ (Left,OpPrior,Name) A
’op_infix%f’ (Left,OpPrior,Right,Name) %

>op_look’%f’ (Name,Pre,PreRight,InlLeft,In,

define a new postfix operator
define a new infix operator
InRight,Post,PostLeft)

% read specified operator details
>op_get%f’ (Name, IndexIn,Pre,PreRight,InLeft,In,InRight,

Post,PostLeft,Index0Out) .

% read unspecified operator details

’put_strif’ (List,Quote) % write a quoted atom (list of ASCII)
’put_atom%f’ (Atom) % write out an atom

’put_number’f’ (Number) % write out a number

>atom_type’f’ (Constant, Type) % is atom alphanumeric or symbols 7
’defined’,f’ (Pred,Address) % return address of predicate
’read_catch’f’ (ChoicePt) % read CATCH register

’set_catch’f’ (ChoicePt) % set CATCH register

’read_error’)f’ (Error) % read and reset ERROR register
>catch%f’ (B) % set CATCH to most recent chpt.
>throw)f’ (Error) % throw an error

’cg_init%f’ (Type) % initialise code generator
’cg_fixupl%f’ (Public) % fixup generated code

’cght’ (Instructions) % generate code for one relation
>undef’,f’ (Name, Arity) % get name and arity of undfnd relation
>c_ram},f’ (Ramfile,Constant) % create constant from memory file
>load¥%f’ % load code block from current input
’varsin%f’ (Term,Vars) % Vars is list of variables in Term
’fix_tables)f’ % fixup externals and entries tables

’save%f’ (PredList,Saved,Unsaved) % save code for pred to current output

’pred_look’,f’ (Name,Arity,Seg,Type) % is

specified predicate defined 7

‘pred_get%f’ (Name,Arity,IndexIn,Index0Out,Seg,Type)
% Get unspecified predicate details

’abolishyf’ (Name,Arity) % Abolish predicate

’validate%f’ (DefindLst,ErrType) % Gets a list of preds being re-loaded
>unload%f’ % Free space for last loaded segment
’kill%f’ (Name,Arity) % Kill predicate

‘write_term)%f’ (Term) % write encoded term

’read_term%f’ (Term) % read encoded term

>taght’ (Term,Tag) % return tag as in integer
’grnd_funct%f’ (Functor) % test for ground functor

>tab%f’ (Number) % print spaces

>concaty%f’ (First,Second,Join) % concat two symbols
’prefixf’ (Longname,Prefix) % symbol prefix test

Appendix C: Low-level Primitives 95

>suffix%f’ (Longname,Suffix) % symbol suffix test
’to_ground’%f’ (Hllw,Grnd,Vr,VNm,Used) % create ground copy of term
>to_hollow%f’ (Grnd,Hllw,VNames,Vars) % creates hollow copy of a term

’delete’f’ (Name,Arity) % free space for clauses of Name/Arity
’cg_out%f’ % write out result of code generator
’set_up_seght’ % initialise segment from ram file
>tty%f’ (Name, InStream,OutStream) % create titled window with I/0 streams
’ram_pipe%f’ (Out,In) % create pseudo-pipe using ram files
’close_port%f’ (Port) % close one end of a pipe

’read_pipe’f’ (Port,Term) % read a term from a pipe
>write_pipe%f’ (Port,Term) % write a term to a pipe

’new_thread’,f’ (Thread) % create a new thread

’kill_thread’,f’ (Thread) % kill a thread

>fork’,f’ (Thread, InputStream) % fork a thread

>resume%f’ (Thread) % resume a thread

’suspend’,f’ % suspend a thread

>rpcf’ (Thread, InputStream,OutputStream) % remote procedure call
’pipe%f’ (In,0Out) % create a pipe using memory files
>thread’f’ (Thread) % get address of current thread

’set_prop%f’ (Object, Property, Value) 7 setting a property
>get_prop%f’ (Object, Property, Value) % retrieving a property
’del_prop%f’ (Object, Property) 7 deleting a property

’get_props%i’ (Object, List) % get property names of an object
’del_props%kt’ (Object) % delete all properties of an object
’get_cons’f’ (Property, List) % get objects which have property
’del_cons%f’ (Property) % delete objects which have property
>float’f’ (Num) % floating-point number test
’put_£float%f’ (Num) % write out a floating-point
’number’f’ (Num) % integer/float test

>fadd’f’ (N,M, Sum) % add two floating point numbers
>fsub%f’ (N,M,Difference) % subtract two floating point numbers
>fmul%f’ (N,M,Product) % multiply two floating point numbers
’fdivf’ (N,M,Quotient) % divide two floating point numbers
’int%f’ (Float,Int) % convert float to integer

’sin%f’ (N,Result) % sine function

’cos)hf’ (N,Result) % cosine functions

’tan’%f’ (N,Result) % tangent function

’asin’%f’ (N,Result) % arcsin function

>acos%f’ (N,Result) % arcosine function

’atan’f’ (N,Result) % arctangent function

’atan2%f’ (N,M,Result) % arctangent (N/M) function

’sinh’f’ (N,Result) % hyperbolic sine function

>cosh’f’ (N,Result) % hyperbolic cosine function
>tanh’f’ (N,Result) % hyperbolic tangent function
>expht’ (N,Result) % natural anti-logarithm function
>loght’ (N,Result) % natural logarithm function
’log10%f’ (N,Result) % logarithm (base 10) function
’sqrt’f’ (N,Result) % square root function

>pow’f’ (N,M,Result) % N raised to the power M

>abs¥%f’ (N,Result) % absolute value function

96

’sign’f’ (N,Result)
’ceil%f’ (N,Result)
’floor%f’ (N,Result)
*pikf’ (Pi)

>rand’f’ (N)

’deg2rad’,f’ (N,Result)
’rad2deg}f’ (N,Result)
’interrupt%f’ (Goal)
>unix’f’ (Command)
’out_of _date%f’ (File)
>look_pipe’f’ (Port,Term)
>commit_read’f’ (Port)
>look_pipe#%f’ (Port,Term)
’init_parloglf’ (Th)
>tty_get0%f’ (Char)
’curr_input%f’ (In)
’curr_output’f’ (Out)
’release_port%f’ (Port)
’empty_pipekf’ (Pipe)
’is_iport%f’ (Port)
>is_oport%f’ (Port)
’runtime’f’ (Flag, List)
’decrement’f’ (N,Oneless)

’load_foreign%f’(File,List,Lib)

’realtime’f’ (Number)
>errno)%f’ (Error,Msg)
’getenvf’ (Name, Value)

ICP][0.96

sign of N

round up to next higher integer
round down to next lower integer
value of pi

random integer in range 0-32767
degree to redian conversion
radian to degree conversion
retrieve interrupted goal
execute unix command

check if need to recompile

read from pipe without removing
commits the non-removing read
unlock a pipe

start up a Parlog thread

read character from terminal
identify current input

identify current output
relinquish ownership of port
test if pipe is empty

input port test

output port test

get CPU time (SICSTUS style)
decrement by 1

set up foreign C primitives
real time (seconds since 1/1/170)
C errno

get environment variable

Predicate Index

Predicate Index

!

L0 7
9

Y B 44
k

KK D 87
K 87
’

1072 7, 87
== 87
B 47 2P 87
/2 P 87
4”2 87
=3 87
P 4 T 87
/]2 87
]2 87
IN/2 87
FEy 5 87
Fy 2 87
F3/5 87
;

7T 7, 87
22 27, 87
57427 PP 26, 87

97
D 25, 87
a2 87
ST 87
S 87
?
Gl 87
PPL 86, 87
@
0=/ 87
O3/ 2 87
O3/ 87
O</ 2 87
+
e 87
F 87
e 87
>
> 87
> 87
> 87
5 A 87
\
N/ e 87
N 87
NS/ 87
A==/ 87
N2 B 7, 87
<
2 i 87
K 87

98

A

abolish/1 ... 37
AbOTrt/0 oo 35
AdATeSS/2 . 53
append/3 ... 46
arbmember/2 ... 53
ATE/3 27
arge/ Ll o 55
argv/ Ll o 55
assert/1l ... 36
asserta/l ... 36
ASSETTX/2 o 36
assertz/1 ... 36
AtOmM/ L o 26
atom_chars/2 ...t 47
atomic/1 ... 26
B

bagof/3 . 42
C

call/l 7
catch/1l . 32
CatCh/2 33
CAtCh/3 33
CA/0 e 53
CA/ L 53, 87
clause/2 ... 30
close/l 22
closeparlog/0iiiiiiiii 53
closeport/1 52
commit_read/1l 51
COMPATe/3 28
compile/1 ... 11
compile/2 ... 12
compile/3 ... 12
compound/1 ... 26
concat/3 ... 48
concat_atom/2 ... 48
consult/1 ... 11
copy-term/2 ... 49
CLIME/T et 54

current_input/1 ... i 22

ICP][0.96

current_op/3 ...l 36
current_output/1l i 22
current_predicate/2ol 29
CUTSOT/2 oot 55
D

debugicp/0 ... 54
default_prop/3 38
defined/1 e 29
del_cons/1 ... 38
del prop/2 ... 38
del props/1 ... 38
delete/3 ... 46
display/l oo 15
AiSPlay/2 .o 15
dynamic/1 ... 87
E

edit/1 . 53
edit/2 . 53
empty_pipe/l 52
ensure_loaded/1l 13
TTTIO/ 2 oot 54
eXIT/0 o 52
expand _term/2 ... 44
F

£ail/0 o 8
false/0 ..ot 8
fileexists/1 i 23
£findall/3 .o 41
£loat/1 oo 26
FIUSh/O oot 23
flush output/1 i 23
forall/2 ..o 41
forget/l ..o 38
fork/1 50
fork/2 o 50
Tormat/2 ..o 15
Format/3 .o 15
functor/3 .o 26

Predicate Index

G

BENSYIM/2 .. 49
get/l 21
Bet/2 21
Bet_COnS/2 38
getpath/1 i 55
get_prolog_flag/2 54
Bet _Prop/3 . 38
get _Props/2 ... 38
getO/ 1 20
get0/2 20
getenv/2 ... 54
gread/l ... 19
gread/2 ... 19
gread/3 ... 19
H

halt/0 oo 35
I

icon_label/1 54
integer/1 26
1S/2 23, 87
isciport/1 ... 52
is_oport/1 ... 52
K

Kil1/d e 37
kill thread/1lcoiiiiiiiiiii i 50
L

length/2 ..o 26
LisSt/ L o e 26
1istprops/2 ... 38
listfile/1 oo e 31
1iSting/0 oot 31
Listing/1 oot 31
load/1 .o 12
load/2 ... 13
load _foreign files/1 ..., 81
load_foreign files/2 81
loadicp/1 oot 13
loadicp/2 ..o 13

99
lookpipe/2 ... 51
1S/0 53
1S/ 53, 87
M
make/1 ... 13
MAKE/2 13
MADP/2 43
MAP/3 43
MaP/4 43
MAP/5 43
MAK/3 53
mbx_bind/2 ... 80
mbx_bind/4 ... 80
mbx_check/1 ... 79
mbx_check/4 ... 79
mbx_clear/1l 79
MbX_Clear/4 ... e 79
mbx_close/1 ... 78
mbx_close/3 ... 78
mbx_closedb/1 80
mbx_closedb/2 80
mbx_commit/1 79
mbx_commit/4 ... 79
mbx_create/l ... 78
mbx_create/6 ... 78
mbx_discard/1l ... 79
mbx_discard/4 i 79
mbx_getdb/3 80
mbx_getdb/5 ... 80
mbx_getid/2 ... 80
mbx_getid/4 ... 80
mbx_getlinks/2 oo 78
mbx_getlinks/4 78
mbx_getname/2 ... 80
mbx_getname/4 il 80
mbx_init/2 ... 78
mbx_initdb/1 80
mbx_initdb/2 ... 80
mbx_1ink/2 ... 78
mbx_1ink/5 ... 78
MbX_100K/2 .ttt 79
MbX_100K/5 .ttt 79

100

MDX_TECV/2 ittt 79
MbX_TeCV/5 ... 79
mbx_send/2 ... 78
mbx_send/5 ... 78
mbx_unlink/2 ... 78
mbx_unlink/5 ... 78
MEMbDET/2 ottt 46
memberchk/2 46
meta predicate/1 oL 87
MOA/2 o 87
mode/1 ... 87
multifile/1 87
N

NAME/2 ottt 46
new_thread/1lot 50
DL/ 0 o 21
DL/l 21
NO_OCC/2 i 46
no_style_check/1 10
nonvar/l ... 26
noref/0 ... 54
NOSPY/ L 87
ROt/ L o 7, 87
not_arbmember/2 il 53
NOtrace/0 ...t e 85
NthO/3 o 27
nthl/3 27
NEPL/2 39
number/1 ... 26
number_chars/2iiiiiiiiiii 47
nUMbervars/3 ... 48
O

0CC/ 2 e 46
OIL/2 ottt e 46
one/l . 8
OP/ 3 35
OPEN/3 o 22
open_ram/3 ... 22
OPEN_TaM/4 ...ttt 22
otherwise/0coiuiiiiii 8
out_of_date/2 ... 53

ICP][0.96

P

PArlog/O .. 52
parlog/l ... 53
PhTase/2 ... e 44
Phrase/3 ... 44
Pipe/2 51
PRAME/2 .. 48
Phame/4 ... 49
portray_clause/1 i, 20
predicate/2 29
predicate_property/2o 30
PTint/1 o 15
PTint/2 o 15
PUblic/1 o 87
PUL/ L e 21
PUL/2 21
PWA/0 53
Q

gprolog/l . 50
gSOrt/3 46
R

TAmM_COMSE/2 oottt 22
TAM PIPE/2 oo 22
read/l 14
read/2 .. 14
read pipe/2 ... 51
read_prolog file/1o, 45
read_term/1 i 20
read_term/2 20
realtime/1 54
rebuild/0 .. 13
recall/2 .. 38
reconsult/1l ... 11
release_port/1 il 52
remember/2 ... 38
TEMOVE/3 .ot 46
repeat/0 ... 8
resume/0 ... 51
Tesume/1l ... 51
retract/1l ... 37
retractall/1l 37

Predicate Index

Tetractx/3 ... 37
TEVErSe/2 ... 46
S

SAVE/2 37
SAVE/ B e 37
set_echoes/0 ... 85
set_input/1 ... 22
set_leashes/0oiiuiiiiitiiiiii e 86
set_output/1 ... 22
set_path/1 55
set_prolog_flag/2iiiiiiiiiiiiiia 55
Set_Prop/3 . 38
Setof/3 . 42
Shell/0 ..ot 52
shell_escape/0ciiiiiiiiiiiinia... 55
SKADP/L oo 21
SKAD/2 oo 21
SPY/ 1 87
statistics/2 il 54
style_check/1t 10
succeed/1 ... 8
suspend/0 ... 50
suspend/1 ... 50
system/1 ... 13
SyStem_error/2, 33
system_fail/2 i 33
system_predicate/2l 30
system_undefined/1 il 35
T

TAD/ L 21
£AD/ 2 21
BAG/2 25
tep_accept/2 ... 59
tep_accept/4 o 59
tepoaccept/5 59
tepbind/2 .. 65
tepbind/3 oo 65
tcpbroadcast/2 ... 61
tcp_checkconn/1ol 62
tecp_checkrecv/1o 62

tecp_checkrecv/2ol 62

101
tep_client/3 ... 58
tepoclient/4 ... 58
tepoclose/1 o 62
tepoconnect/3 ... 66
tepoconnect/4 ... 66
tcp_connectionless/2 ...l 60
tcp_currenthost/2 63
tep_gethost/2 ... 63
tcp_getpeeraddr/3 oL 63
tep_getport/3 ... 64
tep_getsockaddr/3 ...l 62
tep_getsockopt/3 ... 68
tepolisten/1 oo 67
TCP_OPEN/2 .. 64
tcp_real_socket/2o 64
TCPTeCV/2 . 59
TCPTeCV/3 . 59
TCPTeCV/4 .o 59
teprecvirom/4 ... 61
teporecvirom/5 ... 61
teprecvirom/6 ... 61
teposend/2 L. 59
tep_send/3 ... 59
tep_sendbr/3 ... 61
tep_sendbr/4 ... 61
tep_sendto/4 ... 61
tecp_sendto/5 ... 61
tCP_Server/2 58
teposerver/3 ... 58
teposetsockopt/3 ... 67
teposocket/3 L 67
thread/l ...t e 50
Throw/ 1 .o e 32
time/1 o 54
timeslice/1 ... 51
toground/2 ... 39
toground/3 ... 40
toground/4 ... 40
toground/5 ... 40
tohollow/3 39
tOholloW/4 .t 39
TTaCe/0 ottt 85
TTUE/0 e 8

102

BB/ 8 23
tty_get0/1 .o 21
tuple/1 o 26
tUPle/2 26
unget/1 ..o 21
UNiX/ 1 53
UN1ocKk/ 1 o 52
VaT/ L o 26
VaTSIN/2 ittt 41
Vil 53, 87
window_label/1 54
Wwrite/l .o 14
WEAte/2 oo 14
write_canonical/lo 15
write_canonical/2iiiiii 15

ICP][0.96

write_pipe/2 ... 51
write_term/1 20
write_term/2 ool 20
writenl/1 19
writenl/2 ... 19
writeq/1 ... 15
Writeq/2 ... 15
writeq/3 ... 15
writeqnl/1 ... 19
writeqnl/2 ... 19
writegseq/l ... 19
writeqseq/2 ... 19
writegseqnl/1 20
writegseqnl/2 ...l 20
writeseq/1 19
writeseq/2 ... 19
writeseqnl/1 19
writeseqnl/2 19
X

xparlog/0

User Defined Predicate Index

User Defined Predicate Index

F
foreign/3 ... 81
foreignfile/2 81
P
portray /1 ... 15
qUery_expansion/2 ... 44

103

T

term_expansion/2 ... 44
U

user_compile/3 ... 45
user_consult/3 ... 45
USET_EITOI/2 ottt 33
user_file_type/2 ... 45
user_undefined/1 oL 35

104 ICP][0.96

Concept Index

Concept Index

- comMMANdS .. 2
?

T-commands ... 2
command line 1
compile ... 11
compiling 8
consult ... 11
consulting 8
D

debugging 85
dynamic code ... 9
E

Error codes 89
F

file extensions 8
file location ... 8

L

loading ... 8

105
mailbox ... 73
notation i i i il i 6
Operators coueiiiiii i 87
P
predicate specificationl 6
reconsult ... 11
search path 8
Startup ... 2
static code ... 9
style checking il 10
Ssyntax ... 3
T
tracing ... 85

106 ICP][0.96

Short Contents

1 OVeIVIEW ot 1
2 Builtin Predicates 7
3 TCP Interface e 57
4 Mailbox-based communication model 73
5 Foreign Language Interface 81
6 Prolog Tracer User Guideot 85
Appendix A Operatorsiii 87
Appendix B Error Codes e 89
Appendix C Low-level Primitives, 93
Predicate Index i e 97
User Defined Predicate Index i .. 103

Concept Index ... 105

i

ICP][0.96

Table of Contents

1 OVervVIeW ... 1
1.1 Introductiono 1
1.2 Command line Optionso ittt 1
1.3 Startup ettt 2
1.4 SyMBaX oo 3

141 Inbegers ... e 3
1.4.2 Floating Point Numbers 3
1.4.3 AtOmS .o o 4
1.4.4 Variables 4
1.4.5 Tuples ..o 4
1.4.6 LiStS oottt 5
1.4.7 Character Escapingociiiiiiiiiiiiin... 5
1.5 Notation 6

2 Builtin Predicates 7
2.1 Control .. 7
2.2 Loading, Consulting and Compiling 8

2.2.1 Introduction 8

2.2.1.1 The Search Path 8

2.2.1.2 Dynamic Codecoiiiiiiiiiiii. 9

2.2.1.3 Static Code i 9

2.2.2 Style Warnings ... 10

2.2.3 Loading Dynamic Codecccoiiiiiiian... 10

2.2.4 Loading Static Code oo 11

2.3 Input and Output Primitives i i, 14
2.3.1 Input and Output of Terms 14

2.3.2 Input and Output of Characters 20

2.3.3 File and Stream Handling, 21

2.4 Arithmetic 23
2.4.1 Arithmetic Comparisonccoiiiiiiiiininn. 25

2.5 Type Primitives 25
2.6 Term CompariSOnuuet ittt 27
2.6.1 The Standard Order on Terms 28

2.6.2 Term Comparison Predicates 28

2.7 Examining the Program State 29
2.8 Execution and Error Handling 31
2.9 Modifying the Databasec i, 36

iii

iv
2.10 Property Managemento i,
2.11 Metalogical Primitives i
2.12 Transformations on Reading o L.
2.12.1 Definite Clause Grammarsc.eeviuueennn.
2.12.2 File Transformationscciiiiieainn...
2.13 List Handling ... e
2.14 String and Atom Handling i
2.15 Threadsooini
2.16 Prolog - Parlog Interface i,
2.17 Miscellaneous Primitives,
3 TCP Interface,
3.1 Introduction to TCP/IPo i
3.2 Connection Oriented Protocoliiiiiiiin..
3.3 Connectionless Oriented Protocol
3.4 Miscellaneous TCP Predicatescciiiiiiiino....
3.5 Low Level TCP primitivesciiiiiiiiiieiiiiaiiannn.
3.6 Simple TCP Exampleso ..
3.6.1 Connected Socketsc i
3.6.2 Connectionless Socketsc.ccoiiiiiiii...
3.6.3 Broadcast Sockets i
4 Mailbox-based communication model
4.1 Introduction to Mailboxescoiiiiiiiiiiiiiieniinn.
4.1.1 Message Peeking i
4.1.2 Two-way Communicationcoeveiirnennnn.
4.1.3 Multi-way Communicationc.ooiuee..n.
4.2 MailboX SErveriiiiii i e
4.2.1 Registering Mailbox Names,
4.3 Restricting ACCESSvtitt i e
4.4 Starting MailboXesiiiiiiii
4.5 Mailbox Primitives
4.5.1 Opening, Modifying and Closing Mailboxes
4.5.2 Reading and Writing from Mailboxes
4.5.3 Miscellanious Mailbox Predicates
5 Foreign Language Interface
5.1 Foreign Language Predicates,
5.1.1 Compilation and Example

6 Prolog Tracer User Guide

ICP][0.96

Appendix A Operators 87

Appendix B Error Codes 89
Appendix C Low-level Primitives 93
Predicate Index L, 97
User Defined Predicate Index 103

Concept Index 105

vi

ICP][0.96

