
Abstract PROLOG machine

::.a. specification

Ui.a_McCabe
lfil .1.9ll

~ 83[12

Abstract

This document describes an abstract PROLCG machine (APM)
suitable as a target machine for a PROLOG compiler. Toe abstract
machine described here is a specification of a family of such
machines, it does not define a particular implementation; though
a style of implementation does natu·rally arise from the
specification.

The main characteristics of the APM are that it is quite low
level (and hence hopefully easy to implement on a particular
hardware/software system) and yet it· is still quite 'clean'. For
example the state of the machine can-be regarded as a PROLOG
terc, this property is very useful for·certain system-level
components of a complete PROLOG system.

The machine consists- of a number of- registers, with a
suitably large amount of uniformly addressable memory associated
with the machine. The memory is assumed to have memory. manage
ment in the form of a garbage collector of some navour.

This paper is not intended as an introduction to the concept
of the Abstract PROLOG Machine. In particular there is no

_ discussion of PROLOG, compiling it to APM code, the programming ·
environment of the APM and a whole host of other important

· issues.
The intention is to provide a complete specification of the

APM sufficient to enable a programmer to implement a version of
it for himself on a new computer systen~

. Keywords: PROLOG, Logic Progranming, Computer Jnchitectures.

Department of Computing
Imperial College

. 180 Queen's Gate
London SW7 2BZ

Telephone: 01-589-5111 Telex: 26150.3

1

f

l • ;

;

ii

,
Contents

..
1 • The registers of the Abstract PROLOG machine

2. The memory architecture of the APM
2 .1 Word types

Unbound variables UNB
Link.words LINK
NIL words
Integer words INT
List words LST
Tuple words TPL
Real Numbers REAL
Constants CON

2.2 Garbage collection
2.3 Correspondence between types

3. APH instruction and address specification
3 .1 Instruction operands
3.2 Instruction encoding
3.3 Links in addresses

4. Abstract PROLOG machine instruction set
4. 1 Control instructions

HALT
CALL
succ
LSTCALL
TRY
FAIL
NOP

4.2 Unification instructions
UNIFY
TUPLE
HOVE
LIST

4.3 General purpose data movement instructions
L
s
LX

4.5 Tag manipulation instructions
LTAG
STAG
TAG

4.6 Structure building instructions
CONS
TPL
EXTEND
FILL

4.7 Arithmetic instructions
ADD
SUB
HUL
DIV
INT
LESS
GE
BOR
BAND
BXOR
BNOT

. hp@ §, ,$. ,, tq .t,, UXJl CK\if!f0-r?
-'--------------

1-1

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-4
2-5
2-6

3-1
3-1
3-3
3-3

4-1
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-4
4-4
4-4
4-5
4-5
4-6
4-6
4-7
4-7
4-8
4-8
4-8
4-8
4-9
4-9
4-9
4-9
4-9
4-10
4-10
4-10
4-11
4-11
4-11
4-11
4-12
4-12
4-12
4-12
4-12
4-13

.JJ!IQ&. .._ S..i_# , ~· ; : ; a . - a At ,.., .

l

I
i
I
j

Abstract PROLOG Machine specification

a.8 Miscellaneous instructions
SERROR
SINTRUPT
EI
DI
ESCAPE

5. Interrupt and error handling
5.1 Process descriptors
5.2 Interrupts and errors

Interrupt Handling
Error Traps
Variable Interrupts

4-13
4-13
4-13
4-13
4-14
4-14

5-1
5-1
5-1
5-2
5-2
5-3

14 $

1. The registers or the Abstract PROLOG machine

There are 9 registers in the APM, each of which can hold a
single PROLOG object. Each of the various registers is dedicated
to a particular purpose. The registers are:

C

0

T

L

G

s

R

Instruction stream context. A tuple of instructions
forming the current context.

Instruction stream offset. The offset within the
context where the current instruction being executed
is. The offset is an integer which 'points' to the
first word of the current instruction.

Accumulator. Holds a term during unification

Local Environment.-Tuple of variables in the clause

Goal register. Remaining calls to be executed on success

Stack. Contains backtracking points

Reset list. List of variables bound

INTERRUPT Holds a tuple of interrupt service process descriptors

ERROR Holds a tuple of error response process desciptors

Remark about references .t.Q variables

Each of the registers can hold a word which can represent
any PROLOG object. HOWEVER NO register can be a variable. A
register with a variable as its value is achieved by having the
register be a variable link to the actual variable in memory. In
general variable-variable bindings are completely transparent.

1-1
111.:;+c;,4;.;;s.m. 4WJ!}:.:i~AK 1.1144Ql6ua:s .. ; xn .. ·~.d~@L#).wuo .. ,21. .-4L~-w.Ra, ..•

f
'f

)

I
j

J
' _,,

2· · The memory architecture of the APM

Memory is addressable in words and in multiples of words.
There is no assumed segmentation structure, in particular there
is no assumption which identifies addresses with integers.
However, a smoother implementation will result if a uniform
address space can be used.

A word has a structure consisting of a TAG·field, and a
value field. Where the tag is a number in the range O - 7, and
Value is either an integer or APM word address. There may be
other system fields, to hold garbage collection information for
example, depending on the implementation.

ITag Value

The tag gives the 'type' of the word, individual tag values
are discussed below. Since all tags are in the range Oto 7 only
3bits are required to represent it.

The value field is at least big enough to hold a full memory
address or a single precision integer. The actual size of neither
the value field nor a complete APM word are defined, nor is this
information easily determinable by a running AP~ program.

2.1 Word types

Unbound variable m .t.ag .lQ.l

An unbound variable is signalled by the UNB (0) tag in the
word. The value field is also normally zero (or the address of
the zeroth APM word). If the value field is not zero then it is
the address of a process descriptor. Certain operations on such
a variable will cause the process descriptor to be triggered and
entered. See Section 5 for a more complete description of
process descriptors and other exception conditions.

A link word is a synonym for another word. The value field
of a link word is the address of another word which actually
contains the object represented by the link. Thus for almost all
purposes it is as though the link word were replaced by the word
referenced. Of course the 'target' of the link may also be a
link, in general an arbitrary chain of links can be set up.
These links have to be followed to access the real value of the
word. ·

Link words are the main mechanism used to make variable
variable bindings. Through the use of links many references to a
single logical variable can be constructed. When that variable
becomes instantiated then the value is 'transmitted'
simultaneously to all links which referenced the variable.

Since logical variables can occur almost anywhere. in the
system it is important that the system automatically dereferences
such links at all times. In particular links can occur within
and be part of the executable object code of the PROLOG programs.

The only exceptions to the automatic dereferencing of link
words is in the addressing of operands of instructions. See
section 3 for a discussion of when links are followed or not in
this situation.

Jt,.p! d JQ[C

t

I
I
f

I

I
l
i

l
I

[L
,,.,.

The NIL word is used to represent the empty list, or the end
of a non-empty list. The value field of a NIL word is
essentially irrelevant, however it is permissable to assume a
value such as -1, or O. This may simplify certain comparison
operations which form part of some instructions.

Integer word, .IN.I .til .i3.l

The integer word is used to represent an integer number. It
is guaranteed that .a_t least 16 bits be used to represent
integers, allowing all integers in the range -32768 •• +32767 to be
represented by such a word. Of course integers may be larger
than this, and it is perfectly possible to represent -more numbers
in an integer word in a particular implementation. However it is
not considered good practice to rely on the range of an integer
word to be more than 16 bits since this limits the portability of
software.

All instruction function codes are represented by integers
in no more than 15 bits. Hence all instruction codes are
guaranteed to be positive integers in all implementations of the
APM.

1J.ll lLQ.t.d. .Ls.I .t.u ill
/-5

A list word represents a cell in a list. The value field of
a list wofd i~ the address of a list pair, represented by two
consecutive APM words. The address points to the first or zeroth

. word of the pair. The first is the head of the list, and the
second word is the tail word of the list. A list of arbitrary
length is constructed by stringing list words together:

...
'N

The end of the list is signified by a NIL word in the tail
or a list pair.

This method for representing lists uses a Tagged pointer
architecture, so-called because the tag of each pointer gives the
type of object being pointed at. This approach contrasts with
the tagged record architecture where all pointers are the same
but the target (such as the list cell) carry a tag giving the
type of the record. In a tagged pointer architecture it is quite
possible for different pointers to• given block of words to view
the same area of memory as though they were different sorts of
objects. __ , . __ .

2-2
· 1!!4?4JJUL · -···• .. £. - :JUL A_k J.¥#S&I ti¥

,;
•
I .
l

j
'

a a AIO

/
/

/

: ru P 1 e · ~ I.ll ..t.u i5J.

A tuple word represents a tuple of objects. The ialue field
of a tuple word contains the start address of a contiguous block
of APM words. The 0th word is al ways an integer and gives the
number of entries in the tuple: it is the length of the tuple
(not including the length word itself). Tuples are similar to
arrays in more conventional systems, in a PROLOG system they
principally play the role of fixed length lists •

.k.a..l Numbers .RE.AL. .til ill
A complete system often requires the ability to manipulate

numbers which are either not whole numbers (such as 3.14) or
extremely large (3.0x109) or extremely small (200x1Q-9). For
this purpose a separate (but compatible) type of number is
provided for in the APM.

These real (sic) numbers can be represented in any way that
is convenient. Usually some kind of floating point numbers will
be used but other alternatives exist including rational numbers
(the dividend & divisor represented as a pair of integer
numbers).

It is possible that a floating point number can be
represented inside the value field of an APM word but it is not
required. It is perfectly allowable for the value field to be
the address of some structure giving the number. Again this
could be in a separate array of floating point numbers or some
combination of APM words. There are no operations in the APM
which look inside such numbers, only operations of the number as
a whole are performed. This gives considerable freedom in the
representation of this class of number.

A separate type of integer is used because many integers
will fit in a value field of an APM word. While this constraint
is not strictly necessary it is included as a guide to a
reasonably efficient implementation. Integers are so frequently
needed (they form the bulk of the object code of PROLOG programs)
that it is desirable to optimize them separately.

constants rn .t.a.& 1.11

Constants are essentially indivisable symbols as commonly
manipulated by PROLOG programs. They are represented in the APM
as a unique reference to a special data structure whose main role
is to represent various properties of the constant. The value
field of the constant word points to this structure which is
actually a 3-tuple. Two constants are the same only if they both
reference the same APM structure. This is common but not
universal practice in symbol manipulation systems such as LISP
and PROLOG.

2-3
---------~---~"""'l!""'l!!!!l!'~lll!"llll!l--""""!!ll'Jllll!'1!1111l'"""""'~l!'llll!l!.-.!!l!ll!!IIJlll!lllll!lll!!ll!IIIJ!!ll!lill!!'!!l!(!!l!!llll!!'llll!!!!!ll!!!,pll!l!l!!""!'"""""--,._.-w-~--~• - -c•- -••~ ;_._tAL?A...:-• •·' •]f.t_§f.:J_.2$2. '·• .·>, 4:q. •.•, ¥.£./ -~•<•- K .$?(, __ @(. • _.,.,_.~@ES,~,.- •-~•lt.((¥-)ff)),,_{ 4

_ .. --- "' ____ -_,--,,., ____ , ___ _

/

Constants have a number of roles in the APM system. They
are used for predicate symbols, file names, names of programs
(modules) and many other uses. Hence a given constant can have a
number of properties, including the string of characters which
form the print name of the constant. Other common properties are
object code (for compiled PROLOG programs), source code, module
structures, file control structures and so on.

The two main properties of principal concern to the APM are
the print name and the object code. Other properties are
possible but not directly manipulated by the APM itself. To
avoid the cost of a complex property list structure for the
essential code and text properties they are represented by
special entries in the main control sructure. The first is the
code property (a tuple) which occupies the first entry in the
constant tuple; and the second is the text of the symbol.

The text is represented by a tuple of integers which form
the character codes which make up the print name of the constant.
Usually these will be ASCII codes but others are not excluded.

The third element of the constant's structure is left
undefined at this stage. It is expected that it will be used as
the entry point for a generalized property list structure. No
operations in the APM itself make any assumptions about the
contents of this field.

-A complete constant may be quite a complicated object, for
example the constant "member" might look like:

109 101 110 98 101 114>
'm' 'e' 'm' 'b' 'e' 'r'

2.2 Garbage collection

The memory is assumed to be self garbage collecting, there
are instructions to create new list cells and tuples but none to
explicitly de-allocate them • .E..a.M word, even if it is part of a
list or tuple, is individually garbage collectable •. In particu
lar there may be references to components of tuples & list cells
as well as references to whole tuples and list cells. This
possibility. arises from the fact that link words (logical
variables) tan link two arbitrary data structtires together.

The actual garbage collection scheme which should be used is

2-4

/
f

/
/

undefined, though there are a number of possibilities. A mark &
collect scheme is probably the most feasable for a small •soft'
implementation of the system. In such a system each word of a
list or tuple would be ~arked and during the collect phase
unmarked words collected together into some kind of free list.

Another possibility is maintain a separate bit map in
another part of the system memory. This bit map would have 1 bit
for each word in the memory, and new cells are allocated by
searching the bit map for a contiguous group of free bits. (This
means that a garbage collector only needs to mark, it does not
need to scan & collect, at the cost of searching for each new
cell)

2.3 Correspondence between types

To ensure portability of APM code accross different imple
mentations there are .D.Q. assumptions about the word length of the
APM. ·Furthermore, there is no assumed mapping from integers to
addresses apart from that defined in the addressing modes.

For example, it is possible to 'change the type' of a word
using various instructions. If the type of a word is changed
from an address of one type to an address of another type then
the address is still valid. However, if the type of a word is
changed from an integer to an address of some kind then it is not
guaranteed to be valid. Nor would converting an · address to an
integer necessarily produce a se·nsible result.

2-s·
j X Uh, au .. ll !. (4£2 _:Jf .. 22 ttz .. u •

l
t
t

,.

/

/
/

/

/

&13. Abstract PROLOG machine instruction & address specification
/

The instruction stream consists of a tuple of integer
opcodes and operands. Each instruction forms a segment of the
tuple consisting of one to four elements of the tuple. The first
element of the instruction's segment is a 15bit (hence positive)
integer. This integer encodes the operation to be performed and
a specification of the operands of the instruction. The encoding
scheme is discussed in detail below.

The operands of an instruction can evaluate to any legal
PROLOG term; i.e. they may be integers, constants or even sub
tuples of instructions to execute. The actual type of operands
expected by given instructions will vary with the individual
instruction.

Notice that the instruction stream is a valid PROLOG object,
albeit one in a particular format. This gives immense
flexibility to the system, and also means that a PROLOG compiler
in PROLOG can generate the 'machine code' for the APM (without
recourse to a special assembler). It also means that a hardware
system does not need two languages (the second is the non-PROLOG
version of the APM [or Concrete (sic) PROLOG machine {CPM!}]).

3.1 Instruction operands

Instructions can have zero, one, two or three operands.
These operands usually respresent data that is being manipulated
by the instruction however they can be sub-streams of execution
(see for example the CALL instruction).

There are no particular restrictions as to the type of
objects pointed to by the operands. Often they can be any legal
PROLOG object; though some instructions do make certain

.assumptions about their operands. For example, the TRY
instruction expects its operand to be a tuple in the format of a
stream of instructions to execute.

The assumed types of operand an instruction may have are not
always checked, if they are checked then a 'Bad operand' error
may be signalled.

The operands of an instruction -can be computed in a variety
of addressing modes. The detailed meaning of an operand depends
on whether it is being used as the destination address of an
instruction or the source or auxilliary address.

When used as a source or auxilliary address the operand is
the contents of the register or structure element, except when it
is a variable in which case the operand evaluates to a liJlk to
the variable (i.e. the address of the variable).

When used as the destination the operand is nearly always
the address of the register or cell described. The available
addressing modes are: (using terminology of conventional register
architectures)

.L..1...t~ul. (address mode 0) - the operand is the next element
occurring after the initial opcode word in the instruction
stream.

The literal made is only allowed as the source or auxilliary
operand of an instruction; the use of literal mode as a
destination address is undefined. In some implementations using
a literal as a destination will signal a 'Bad operand' error.

3-1
J;tp. _a._,_; ---* , 1.-.;: _, ~ +x.a _, ,_- .·- __ AQJ.... ~l_--~:-¥M -,-+., >- --•·t·'¥~-¥¥{-._ ,;ts.-"

--,>~-

J

l
►

I

/
/'

/
/Register

T
L
G
s
R

- the operand is one of the registers

address mode 1
address mode 2
address mode 3
address mode 4
address mode 5

Recall that this means the contents (after pursuing any
variable references i.e. links) of the register when used as a
source, and the register itself when used as the destination.

Offset - where the element following the instruction opcode in
the instruction stream is a positive integer which is an offset
to an address contained in one of the registers. The normal
way the offset mode is written in symbolic APM 'assembler' is:

<reg>[<offset>]

where <reg> is either the T register (address mode 6) or the L
register (address mode 7), and <offset> is a small positive
integer whose range is determined by the local limitation on
sizes of tuples. For example to specify the 1st element of the
L-tuple (i.e. the local variables) qse:

L[1]

If the T register (say) contains a list, then the head of the
list is accessed by using the form:

T[O]

and its tail is accessed via:

T(1]

If T contains a tuple, then the length of the tuple in Tis
accessed by:

'l'[0 J

If an instruction uses the offset addressing mode (or
literal addressing mode) for one or more of its operands then the
offsets (and/or literal data) follow the initial instruction
integer in the instruction stream.

In these circumstances the litiral data involved in the
destination address comes before the literal data needed in the
source address, which in turn comes before the off~et for the
auxilliary address computation. If two operands are specified
then the destination comes before the source in the instruction
stream; and the source comes before the auxilliary address. For
example, the instruction:

L L[1],T[3]

loads the first local variable with the third argument of the T
register. This instruction is coded up as the segment of the
instruction stream:

< ••• 31755 1 3 ••• >

3-2
.. '. :-·.- ----~ ', ---.---'- .· . --- ,-, __ _

,i-o;J., ~-

I
'

I
I
t

t
i
l
i
t
I
l

, / Al terna ti vely to add 23 .5 to the third local variable

/
putting the result in the fifth the instruction

ADD L[5],L[.3],23.5 ·
/ r could be used. This would be encoded as the sequence:

< ••• 32277 5 3 23.5 ••• >

3.2 Instruction encoding

Although instructions are described by a positive integer,
for the purposes of encoding the instruction's addresses and
function code it is better to see the number as a string of 15
bits lying in the least significant part of the integer value.

The function code of the instruction is a number in the
range 0-63 which is coded up in a 6bit field in the least
significant part of the number (bits Oto 5). ·

Instructions can have zero, one, two or three operands.
Each operand is coded as a 3bit address specifier in the
instruction's bit string. The three address specifiers occupy
bits 6 to 14.

The auxilliary address mode specification occupies bits 6 to
8 in the instruction format, the destination is in bits 12 to 14,
and the source address occupies bits 9-11. A complete
instruction operation code with·its four sub-fields looks like:

ldddlssslaaalffffffl
'----., '"-- ~ ,.. ,
dest aux function

source code

3."3 Links .in addresses

Link words can appear in almost any part of an address
computation, up and including the final location specified. For
example, suppose the address L[3] is specified as the destination
mode for some instruction.

The L register may itself contain.a link to another word in
memory which points to the tuple. This link is followed when
computing the L[3] address.

Similarly the "3", which is part of the address
specification, may be reached through one or more link words. In
this case the links start from inside the instruction stream
itself: since the instruction stream is a normal PROLOG tuple the
various members of that tuple may have link words in their data
structures.

Finally, the third location in the L tuple may also contain
a link word. This link is followed only if the L[3] is a source
operand (the contents is being looked for). If L[3] is a target
then this final link is not normally followed.

3-3
g !. . .

_ 'instruction
/

/'
/

/
L:

••• ,___.l,_I---'d=-:s=-:a=-f=-=-f___._l ..,,_V_""'~-....._....;.• ••

4-1---3-1
Rest of instruction stream

~
L[3]~~ t~get

, ..,I r--,-c-•

.....,.11 _ __,...n---.;----r---"T:...,v,...,--l'-~~~~~~-

''---'
L[3] as source

NOTE Al though normalfy the address contained in the
destination field is normally the target location for the
instruction this is not always the case. Similarly the address
in the source and auxilliary fields are normally sources, but
some instructions treat these as targets.

For example, the LIST instruction checks the destination
operand to see that it is is list pair. Thus it treats the
destination as a kind of source (if the destination turns out to
be a variable then it does overwrite it). The source and
auxilliary addresses are assigned the contents of the head and
tail respectively of the list being matched against, and hence
are target rather than source addresses.

3-4

~

I

I
•
'

./
~. Abstract PROLOG Machine Instruction set

/
/ In this section we give a complete listing of the

instruction set of the APH.

In describing each instruction below, the memnonic of the
instruction is given together with a bit-wise encoding of the
instruction (for bit fanatics only). Also (where appropriate) a
register transition diagram is given, followed by a brief English
description of the action of the instruction. This diagram
displays each register, together with its assumed contents, both
before and after the execution of the instruction. The letters
stand for the registers, if a value remains unchanged then the
same letter is used both before and after.

C' 0' T' L' G' S' R'
=> C O T L G S R

Note that the old context is often referred to as just C, rather
than repeating the whole argument. Also the new value for the
offset is also often expressed as "0+1" or "0+2" etc. This
should be read as 'increment the offset by one plus how ever many
literal arguments there are to the instruction'. In many cases
this will be actually the integer 1, or 2 etc.; however it may be
less if the actual operands refer to regis~ers rather than
literals or register offsets.

For example, the normal CALL instruction has the transition
diagram:

=>
< •• CALL constant
constant[1]

~• > 0 TL G SR
1 TL <C 0+2 LG> SR where C is old

context

but the instruction "CALL L" .has the transition:

< c• CALL L •• > 0 TL G SR
L[1] 1 TL <C 0+1 LG> SR

Conventions

The following conventions are used in this document for
syntax:

()
< >

sss
ddd
aaa
???

list (XlY) element X followed by list Y
tuple
undefined/don't care
source address
destination address
auxilliary address
don't care usually zero

Each instruction is written in the form:

<opcode> {{<destination>,}<source>{,<auxilliary>}}

Instructions with their arguments are actually coded up as
small (15bit) integers possibly followed by extra integer and
other elements in the instruction stream. However we will
normally display instructions by using a mnemonic rather than the
instruction code itself.

4-1

/
~ /4. 1 Control Instructions

/ The first instruction group implements the main control
instructions which are used to compile the top-level problem
reduction. There are instructions for calling sub-programs (i.e.
for sub-goals in the bodies of clauses) and for trying
alternative clauses.

HALI ?????????000000

This is used to halt execution of the APM. In a soft
implementation this would initiate a return to the operating
system. In a hardware system HALT makes no sense except possibly
to turn the hardware off •

.tAll source Execute£ program. ???sss???000001

< •• CALL source •• > 0 TL G SR
=> source[1] 1 TL <C 0+2 LG> SR if const
=> source[O] 1 T source[1] <C 0+2 LG> SR if PD

source should evaluate to a constant or a process desciptor.
The case where source is a constant is the more usual one, and
corresponds to calling a PROLOG program. The first element of the
constant's structure taken to be the new ins~ruction stream,
typically code that has been compiled, which is inserted into the
C (context) register. The O (offset) register is initialised to
1 (the first instruction in the new context).

The old values of the C and O register are saved, together
with the L register, in an entry on the G (goal) register.
When a subsequent SUCC instruction is executed this information
is restored allowing the instructions following the CALL
instruction to be executed.

If the source is a process descriptor (i.e. a list pair
whose head is a code tuple, and whose tail is a tuple of
variables etc.) the head is loaded into the Context register and
the tail is loaded into the L register.

This form of call is used to apply lambda expressions; the
head of the process descriptor is the compiled body of the lambda
expression, and the tail is the vector of values for the free
variables occurring in the body. The T register holds the values
for the bound variables of the lambda expression.

Return successfully ?????????000010

< oo SUCC •• > 0' TL' <COL G> SR
=> C O T L G S R

Pop the goal, collecting the C, 0 (remaining calls to
execute) & L (local env) registers. This instruction is placed
after all the calls in the body of a clause; or ll .t.M .b.oil of an
assertion. It is executed when unification is successful, and
there are no (more) calls in the body to check.

Because of the existence of the next instruction the main
use is actually for unit assertions rather than rule clauses.

~-2
£. w. - # @.' {$

'> /

ILSTCALL Source .c.au ~~subprogram ???sss???000011 I <~. LSTCALL source •• > 0 TL GS R
=> source[1] 1 TL GS R if ~ource is a constant

This is similar to CALL except that the Goal register is .D..2.t
changed.

The LSTCALL instruction can also 'execute' a process
descriptor in a similar way to the CALL instruction:

< •• LSTCALL (codelenv) •• > 0 TL GS R
=> code 1 T env G S R

A CALL instruction would be used for every atom on the right
hand side of a clause except for the last atom which uses the
LSTCALL. This then replaces the SUCC instruction at the end of
the clause which is now not necessary •

.I.RI source .IJ:.y .t.2 rn £ clause ???sss???000100
.

< •• TRY source •• > 0 TL G S R
=> source 1 TL G <C 0+2 T GR S> R

This instruction is used to 'try' each clause of a program
in turn. The fail return stack is used to store the state of
the APM should backtracking become necessary.

The T register is saved by the TRY instruction because it
holds the tuple of arguments of the call, the C and O registers
are saved to indicate the next clause to try, G is saved as it
forms the continuation after the current call has succeeded, and
S & R form the current backtracking state of the APM.

The last clause in a program is D.Q.t normally prefixed by a
TRY instruction as there are no more alternative clauses. By not
growing the stack for the last clause it avoids the situation
where the stack contains entries of the form:

<< •• FAIL> n ••• S>

In fact a stack of this form is exactly equivalent to the shorter
stack S. A program for a relation is compiled as a sequence of
TRY instructions, except for the last:

fAIL Backtrack .t.2 a previous state ?????????000101

< •• FAIL •• > 0' T' LG' <COT GR S> R'
=> C O T L G S R

with variables R'-R reset
The terms pointed to in the reset list R'-R are changed back

into unknowns. Note that at this point the old stack frame can
be explicitly removed if necessary (as opposed to relying on
automatic G/C).

Fail is normally not explicitly executed, but a number of
instructions can fail, in this case the FAIL instruction 1s
executed implicitly.

I
f

"1 ./'

J&E. Source .N.Q operation/comment ???sss???000110

The comment instruction performs no operation in the APM.
However since it potentially has a single argument (which it does
nothing to) the NOP instruction can be used to embed comments in
the code.

Such comments might be inserted by the comoiler to enable
the code to be decompiled, or to allow some kind of symbolic
debugging of the APM code. The degenerate form of NOP (with the
source address specifying no address) is exactly analogous to the
NOP instructions of more conventional computers. (Though its
application here is not certain.)

e.g. To embed at the head of a compiled clause information
describing the variables used in the clause:

< •• NOP (X Y Z Total) •• > 0 TL GS R
=> C 0+2 T L G S R

Other kinds of comment might include the original text of
the clause, or meta-level assertions about the use of compiled
clauses.

4.2 Unification instructions

These instructions are used to perform matching and binding
operations.

UNIFY left,right .El.l.ll unification ???lllrrr000111

This instruction implements the full unification algorithm.
The UNIFY instruction is used to implement the EQ(x x) test. In
other words the UNIFY instruction is typically compiled for the
second and subsequent occurrences of variables in the head of a
clause.

If during the unification an attempt is made to bind a
variable with a non-zero value field, then the instruction is
llnH.2.Yn~ (including undoing any bindings made) and the process
descriptor for the variable is activated. On return the UNIFY
instruction is re-started.

There may be arbitrarily many bindings of variables made
during the course of this instruction. If the UNIFY is succesful
then on completion the reset list is grown accordingly.

If the unification fails, then any bindings made are undone,
and the next instruction to be executed is "FAIL".

< •• UNIFY L[1],L[3] •• > 0 TL GS R
=> C 0+3 T L G S R'

where R' - Rare all the variables bound during the unification.
The following PROLOG program defines the effect of this

instruction (it contains an assignment not normally allowed in
PROLOG): · -

UNlFY{left right resets newresets) if
VAR(left)&
NOT(VAR (right) & SAMEVAR(left,right))&
BIND(left right resets newresets)

UNIFY{left right resets resets) if
SAMEVAR(left right)

UNIFY(left right resets newresets) if

4-4
tLAt ... : :e ... ,.AAtth@l@#!L &J&Qfa.Sl ' .

L U $@

I
' I
I
1
i

i
'

VAR{right)&
NOT{VAR (left) & SAMEVAR(left, right)
BIND{right left resets newresets)

UNIFY{left right resets newresets) if
TAG{left tag)&
TAG{right tag)&
UNICASES(tag left right resets nresets)

UNICASES(CON left right resets resets) if
EQSYMBOL(left right)

UNICASES(INT left right resets resets) if
EQINT{left right)

UNICASES(REAL left right resets resets) if
EQREALS(left right)

UNICASES(LIST {lefthlleftt) {righthlrightt) resets nresets) if
UNIFY{lefth righth resets iresets)&
UNIFY(leftt rightt iresets nresets) ·

UNICASES(TUPLE left right resets nresets) if
LENGTH(left length)& {test the lengths}
LENGTH(right length)&
UNITUPLES(left right length resets nresets)

UNITUPLES(left right O resets resets) if
UNITUPLES{left right pos resets nresets) if

NTH{left pos leftel)& .
NTH(right pos rightel)&
UNIFY(leftel rightel resets iresets)&
UNITUPLES(left right pos+1 iresets nresets)

BIND{left right resets (leftlresets)) if
left := right

TUPLE dest,length Unify .a tuple dddlll???001000

This instruction tests to see if the Dest is a length-tuple
or a variable. In the case of it being a variable a new length
tuple is created and stored in Dest.

=>
=>

=>

<.. TUPLE dest,length •• > 0 T L G S
C 0+3 T L G S
C 0+3 TL GS

<FAIL> 1 T L G S

R
R if dest:length-tuple
{destlR)

if var{dest)
R otherwise

A reset entry is grown on the R register pointing to the word
which was bound.

Remarks above concerning non-zero value fields for variables
also apply to the TUPLE instruction.

If Dest is a n9n-variable and not a length-tuple then a FAIL
instruction is executed.

The TUPLE instruction is roughly analogous to the call:

EQ{dest <_ •• _>)
~

length

m Dest,source,specifiec Unload tuple dddsssaaa001001

Locations in dest are loaded with values from successive
locations in source as determined by the specifier. This
instruction is the complement of the FILL instruction, and indeed

4-5
AZ,4$$ *·~

/

/is very similar except that the specifier modifies the the
1 · destination rather than the source; and no new structures are I created.

The locations

•.

llllr.

source[1] ••• source[n]

are Loaded into locations

dest[specitier[1]] ••• dest[specifier[n]]

For example, the instruction

MOVE L,T,<5 6>

is equivalent to the instruction sequence:

L L(5],T(1]
L L(6],T(2]

HOVE is primarily used to 'unload' a tuple during
unification. In particular if the unification is matching a
tuple of variables all of which are their first occurrence then
the MOVE instruction can in one go load up all the values of the
tuple or list pair. This is actually quite a common phenomenon
with tuple processing.program~ and by judicious use of extra
'hidden' local variables can be made even more effective.

NOTE that it is possible for this instruction to be used in
situations where it makes no sense, for example the source (or
destination) might actually not be a tuple, or the specifier may
nt be a tuple in the correct form. The implementor may if he

· chooses to check this, in any case the programmer should make
sure that the preconditions are properly fulfilled otherwise
anything may happen •

.L.I.SI Dest,Head,Tail dddhhhttt001010

The LIST instruction compares the term found.in Dest and
checks that it is unifyable with a list pair. If Dest is a
variable then a new list cell is created and stored in it and a
new reset entry is grown on the R register.

If Dest is non-variable and not a list pair then the LIST
instruction FAILs.

Otherwise the head and tail of the list pair are Loaded into
the addresses given by Head and Tail respectiveley (corresponding
to Source and Auxilliary modes).

The LIST instruction is anomolous in that it is the only
instruction with more than one destination; in fact it can be
regarded as having three destinations since the source might be
overwritten. ·

As with the TUPLE instruction, the LIST instruction can be
regarded as being equivalent to the call:

EQ(dest (headltail))

4.3 General purpose data movement instructions

This group of instructions shift data about amongst the
registers. Most of them may not be used very often by a
particular compiler, though some will be very co~mon.

4-6
; ,L# 42JQQJ!&~Q,¥Jk#$11A{J 2.;zo4,,

_ ... -,..- -~' ~-.' .. ~~
Z? Pi4.@14i.·

' .1,. Dest, source L.o.a.d. register dddsss???001011

This instruction loads the destination register with the
contents of the source register. If the source was an unbound
variable then a link word is left in the destination rather than
another variable, otherwise the contents of the source word is
stored in the destination.

Note that the destination can have any previous value, it is
not restricted to overwriting variables; in fact the Lis a form
of assignment.

If the T register contains some arbitrary list "(AIB)", then
accessing the tail into the second local variable becomes:

< •• L L[2],T[1] •• > 0 TL GS R
=> C 0+3 T L/[2]::T[1] GS R

T

L:

.S Dest,source Store register dddsss???001100

The S instruction is identical in effect to the L
instruction except in one respect. If the destination already
contains a variable li.nk then the S instruction uses the value of
the link as its destination address rather than the register
itself. The L instruction simply overwrites the destination
regardless of its prior contents. ·

The S instruction is one way of bi~ding a non-local variable
in a clause: if the variable reference is passed in a register
then Storing into that register binds the variable as opposed to
re-assigning the register. However it does .D..Q.t. grow the reset
list by doing so.

For example, to bind the variable referenced by the third
local variable to the contents of T:

< •• s L[3],T •• > 0 T L G s R
=> C 0+2 T [L[3]]::T G s R

L: . •

T:

If the source and destination are actually both the same
variable then the S instruction performs no operation. (If th~·
normal mechanisms were to apply a link would be set up in the
target word _t_g_ jtself I This is extremely dangerous· and could

4-7
J '-··

t,
I
ft i4

,, /4ause the APM to enter an infinite loop).

~ / .LX Dest,source,offset Indexed .l.QM

/ The indexed load instruction is
/ instruction, except that the source address

source[offset]

i.e. it is •equivalent• to the instruction

L dest,source[offset]

dddsssooo001101

similar to the L
is specified by:

This instruction is used to implement the NTH builtin primitive,
unify with the nth element of a tuple. The following code would
implement the NTH program:

NTH: <TUPLE
L
LX
UNIFY
SUCC>

T,3
L,T
T,L[1],L[2]
T,L[3]

;usage .is NTH(tuple, n, element)
;no pattern matching needed
;fetch the nth element
;unify against the element
;all done

The auxilliary address is used
specify the index location.

in this instruction to
C

4.5 Tag manipulation instructions

These instructions operate on the tag field directly. They
are only used by system level programs. (E.g. a constant can be
created in this way from a tuple of small integers.)

.LI.Mi Dest,source

<.c LTAG Dest,source •• > 0 TL GS R
C 0+3 TL GS R

dddsss???001110

dest:=tag[source]

The destination is replaced by an integer word whose value
is the TAG field of the source. For example, the TAG field for
a constant is 7 then if the accumulator was a constant, LTAG T,T
leaves the integer 7 in the accumulator. (The accumulator
should previously have been stored.)

rn Dest,source ,S,n .t..u field dddsss???001111

Ths instruction is similar to the S(tore) instruction except
that only the tag field of the destination is affected. The tag
field is taken from the least significant three bits of the value
field of the source. This instruction is used for example, to
create a new constant having constructed a tuple of the required
form:

STAG 7,T

Type conversions which have been effected using this
instruction are not always guaranteed to be valid. So long as an
address type is converted to an address of another type then the
conversion ll valid. ·

However, for those instances. where either an integer is
converted to an address, or where an address is converted to an
integer the results ..ii.CA .D.Q.t defiped.

4-8
44%

. , , ..

I

/

I

,/
· IAG. source, aux Check .t.a.& .2.f: source 'l??sssaaa010000

This instruction checks the tag of source is the same as tha
integer contents of aux. For example, to check that the 2n
argument of Tis a constant use:

< • •
=>
=>

TAG T[2],7 •• > 0 TL GS R
C
<FAIL>

0+3 TL GS R
·1 TLGSR

if T[2] is a constant
otherwise

4.6 Structure building instructions

These build lists and tuples directly.
pointer to the structure in the destination.

.c.QN.S Dest,head,tail Construct~ lill . .l2..all

They ali leave a

dddhhhttt010001

A new list pair is created and loaded into the destination.
The head of the new list pair is Loaded from the source address~
and the tail of the list pair is Loaded from the Auxilliary
address. For example, to put a new unit list in the accumulator
whose head is the 2nd local variable then we have:

< •• CONS T,L[2],() •• > 0 T LG SR
: > C 0+4 (L [2)) L G S R

.IfL Dest,source Construct£ tuple dddsss?'l?010010

The destination is left with a tuple of length defined by
the value field of the source register. Each element of the
tup'ie is initialized to unbound. This instruction can be used
to create a new local environment on entering a new clause, as
in:

=>
< •• TPL L,n •• > 0 T
C 0+3 T <

L G S R
> G S R

n vars
EXTEND Dest,source,length extend tuple dddsssaaa010011

The EXTEND instruction is used to extend a tuple with
unbound variables. source should evaluate to a tuple whose
length is less than (or equal to) the length operand. A new
length-tuple is created in dest, and the first few locations are
filled by copying the source tuple into the new tuple.

The instruction is equivalent to the instruction sequence:

TPL .t..e..Iru2,length
L .t.eJru2[1),source[1)

;create a length tuple
;copy the source tuple into it

e C

• •
L lilJU2[source[O]],source[source[O]]
L dest,..t.eilW.

where .t.eJ]m is some internal temporary register.
The main use for EXTEND is in the bodies of lambda

expressions; it is used to'extend the environment containing the
free variables of the lambd.a expression at the time of the call
to include the other local variables needed to execute the body
of the lambda expression.

4-9

..E.l.Ll, Dest,source,specifier fill-in tupl~ dddsssaaa010100

A new tuple the same size as the specifier is created in
dest, and then it is filled by values from source.

Successive locations in dest are Loaded with values from the
source as determined by successive locations in specifier.

If the specifier is an-tuple then locations

dest[1] •• dest[n]

are Loaded with values

source[specifier[1]] •• source[specifier[n]]

respectively.
For example, the instruction

FILL T,L,<2 3 5 O>

is equivalent to the instruction sequence:

TPL ~,4
L .t&m.R[1],L[2]

.L ~[2],L[3]
L ~[3],L[5]
L ~[4],L[O]
L T , .t.e.uu2

where li.mJ2 is some internal temporary location.
The specifier must therefore always be a tuple containing

only integers that can be used as offsets to the source of the
instruction.

4.7 Arithmetic Instructions

These implement the arithmetic operations needed by a PROLOG
system. The arithmetic instructions operate on both integer and
real number operands. Either type may be used freely with any of
the instructions. Any results that are computed will be
represented using an integer word if possible, otherwise a real
number is used (which may involve constructing it from the heap)
to represent the result.

Essentially an integer word will be used if the result is an
integer which can fit naturally into an integer word as defined
by the word length of the actual implementation (at least
16bits). Because the integer size is guaranteed to be at least
16 bits, then it follows that if the result of an operation is an
integer in the range -32767 •• 32767 then an integer word can be
(and will be) used. ·

The arithmetic instructions are all three address
instructions.

Al2l2 Dest,source,aux ~ .t.H2 numbers together

=>
<.c ADD Dest,source,aux •• > 0 TL GS R
C 0+4 T L G S R

4-10
WP.CMJ{t AU ,,; 4¥.24,¥, AJJAU~A!4'§_ &?_Xi

dddsssaaa010101

dest:=source+aux

✓

I
I

If the result of the addition is an integer in the range
defined by the implementation then the result will be represented
by an integer word. Otherwise the destination will contain a real
number word which may well be a pointer to a real number as
described in section 2.

If the source and auxilliary are not both numbers then a
'Bad operand' error will be signalled. If the result of the
addition is not containable as a number (either its too small or
too large) then an 'Overflow error' or 'Underflow error' is
signalled •

.film Dest,source,aux Subtract .t.H2 numbers

=>
< •• SUB Dest,source,aux •• > 0 TL GS R
C 0+4 T L G S R

dddsssaaa010110

:
dest::source-aux

The remarks above about the representation of the result of
the operation also apply to this instruction: the destination
will be represented as ~n integer if it is possible within the
implementation •

.M.llL Dest,source,aux Multiply .t.H.2 wmbers

=>
< •• MUL Dest,source,aux •• > 0. TL GS R
C 0+4 T L G S R

dddsssaaa010111

dest::source*aux

MUL multiplies the two numbers in the source and aux and
loads the result into the destination.

lU)l Dest,source,aux Divide .tH.Q numbers

=>
< •• DIV Dest,source,aux •• > O TL GS R
C 0+4 T L G S R

dddsssaaa011000

dest::source/aux

The destination is left with a number which represents the
quotient of the division. This quotient will be an integer word
if the quotient is an integer in the right range, otherwise a
real number will be used.

A~ ..Q.Il arithmetic overflows~

Arithmetic overflows and divide by zero result in an error
trap. See below for discussion on the way errors are handled •

.IBI Dest,source .fi.ru1 ~ nearest integer dddsss???011001

The destination is replaced by an number which the nearest
integer (towards zero) of the source. Of course, if the source
is already an integer then INT amounts to a L instruction.

Note that the nearest integer to a large real number might
still be too large to be represented using an integer word. In
this case a real number is us~d to represent the integer.

< •• INT Dest,source •• > 0 TL GS R
= > C O+ 3 T L G S R

dest:=sign(source)*floor(abs(source))

4-11'·
. ! MM 14 . . . 2.4J & 4f c-.eJ\t,42,.®$.k L :. ., Jl 02.Q.MJW •. 4 -~ . . at;& OJ 4!t.J

.,.,.

.- - - - - - -- -----
I

. / .il.S.S source, aux Arithmetic ineguality ???sssaaa011010

This instruction compares the number in source with the
number in aux. If the source number is numerically smaller than
the auxilliary number then no operation is performed, otherwise
the instruction FAILs.

The numbers involved can be either integers, or real or a
mixture.

< •• LESS source,aux •• > 0 T L G s R
=> C 0+3 T L G s R if source<aux
=> <FAIL> 1 T L G s R otherwise

.G£ source,aux Greater .t.h.an -2.1: egual ???sssaaa011011

This instruction is the complement of the LESS instruction,
it succeeds if the source number is greater than or equal to the
auxilliary number.

=>
=>

< •• GE source,aux
C
<FAIL>

•• > 0 TL GS R
0+3 TL GS R
1 T L G S R

J3.Q.R Dest,source,aux Bitwise .Q.B.

if source2.aux
otherwise

dddsssaaa011100

The destination is replaced by the bitwise OR of the two
integers in source and aux.

< •• BOR Dest,source,aux •• > O TL GS R
=> C 0+4 T L G S R

dest::source OR aux

This in·struction assumes that the two numbers are integer
words and generates an integer word in the destination.

.BAHll Dest,source,aux Bitwise .A.ND. dddsssaaa011101

The destination is replaced with the bitwise AND of the two
source integers.

< •• BAND Dest,source,aux •• > O TL GS R
=> C 0+4 T L G S R

dest::source AND aux

.BXO.R Dest,source,aux Bitwise rn dddsssaaa011110

The destination is overwritten by the bitwise XOR of the two
integers in source and auxilliary.

<.~ BOR Dest,source,aux •• > 0 TL GS R
:> C 0+4 T L G S R

dest::source XOR aux

I
I
t

. ;;'
,, .aN.QI Dest,source Bitwise one's ~m~~ dddsss???011111

This instruction performs a one's complement of the source
(which should be an integer).

=>
< •• BNOT Dest,source •• > 0 TL GS R
C 0+3 T L G S R dest::NOT source

Note If the operands to either the BOR, BNOT, BXOR or the
BAND instructions are not integers or have more than 15
significant bits then the result is not guaranteed to be
portable. In general the explicit use of such numbers is
discouraged.

4.8 Miscellaneous instructions

In this group are a miscellaneous collection of instructions
which interface with the APM's environment and set up the various
interrupt handling facilities.

Because of the way the APM is (deliberately) isolated from
the outside world in which it is embedded, it is difficult to
communicate 'control' information to and from the APM.

To enable a running PROLOG program-to actually perform I/0 a
special ESCAPE instruction is used. This instruction is used to
connect physical files and devices to logical numbers as well as
actually performing the I/0.

$ERROR Source .L.2.aa .tM Error register ???sss???100000

< •• SERROR source •• > 0 TL GS R
= > C 0+2 T L G S R

Source should evaluate to a tuple of 11 process descriptors;
The tuple of process descriptor is loaded· into the ERROR
register, and from now on internal errors that arise will
activate process descriptors from the tuple. If Error i is
signalled then the 1th element of the tuple is used for the
process descriptor for that error.

SINTRUPI Source ~~Interrupt register ???sss???100001

< •• SINTRUPT source •• > 0 TL GS R
=> C 0+2 T L G S R

Source evaluates to a tuple of process descriptors which is
loaded into the INTERRUPT register. This process descriptor now
forms the interrupt handler; i.e. any external 'hardware•
interrupts will cause this process to be activated.

ll Enable interrupts ?????????100010

< •• EI •• > 0 TL GS R
= > C O+ 1 T L G S R Interrupts are enabled.

If an external interrupt is detected by the machine then the
relevant interrupt process descriptor is triggered. The APH
starts off life with interrupts disabled.

4-13

Disable interrupts ?????????100011

1 Prevent incoming interrupts from being handled. Any
incoming interrupt will be serviced if it is still pending when
interrupts are re-enabled.

ESCAPE source Invoke external function ???sss???100100

Source should be an integer in the range 0-maxescape, where
maxescape is the implementation defined number of external
functions supplied with the APM. It is similar to a CALL
instruction except that instead of calling an APM program, an
assembler or C (or whatever) program is called instead. The
accumulator Tis used to pass the arguments to and from the
external function.

< •• ESCAPE source •• > 0 arguments LG SR
=> C 0+2 arguments LG SR

No other registers are (normally) affected by the ESCAPE
instruction; however an individual ESCAPE code may well as part
of its function alter a register.

The number and layout of the various escape functions is
inevitably implementation dependant; however it is suggested that
a minimum number of them be implemented, and for the sake of
portability the initial numbering should be as follows:

ESCAPE 0
ESCAPE 1
ESCAPE 2
ESCAPE 3
ESCAPE 4
ESCAPE 5
ESCAPE 6
ESCAPE 7
ESCAPE 8
ESCAPE 9
ESCAPE 10
ESCAPE 11
ESCAPE 12
ESCAPE 13

<directory-nam~>
<port file>
<port file>
<port file>
<port>
<file>
<file1 file2>
<port position>
<port position>
<port char>
<port char>
<port token type>
<port token>
<port term>

mount a directory
open file into port
create file into port
open file for append into port
close port down
delete file
rename file1 to file2
return the position of the port
set position of the port
read character(integer) from port
write character(integer) to port
read token from port return type
write tokeA to port
read a term in object code form

In a hardware implementation there is no other underlying
hardware so this escape instruction does not make sense; however
an escape instruction might well be useful as a way of
communicating with a co-processor. In any case it is assumed
that users (as opposed to compiler writers) will .ru21' be making
direct use of the escape function.

4-14
§i&S

I.,

.... , 5.
\ ... Interrupt and error handling

5.1 Process decriptocs

Interrupts, errors and unification interrupts are all
handled in a uniform manner using an object called the process
descriptor. The process descriptor is a data structure which
describes a suspended goal or process; it is similar to the body
of a clause. The suspended program might be responsible for
binding a variable, responding to an interrupt, patching an error
(such as no clauses) or handling special operating system
functions.

The process descriptor is a li~t cell which contains the
compiled PROLOG code to execute in the head cell, and data
(usually a tuple of local variables) in the tail cell.

A Process Descriptor (PD) looks like:

When a process is activated it is as though a CALL has been
executed. Thus the Goal register is grown as for a normal CALL,
and the environment of the process decriptor is installed in the
L _register, and the code of the process descriptor is installed
in ~he C register, the O register being set to 1.

The only difference between an ordinary CALL and a resumed
process . is that . the latter can occur almost anywhere, in
particular in the case of an interrupt it can occur during the
unification process. So the process would normally also have to
•save• other registers (in particular the T register) so that
when resuming the interrupted process all the registers are left
intact.

Thus on an error or inte.rrrupt the state of the APM
becomes:-

C OTL G SR
=> Service 1 T service-variables <COL G> SR

If the interrupting service code uses other APM registers
then their values should be explicitly stored and restored by the
service code itself.

The three registers affected by an interrupt are the
instruction stream, which will now contain the compiled PROLOG
program used to service the interrupt, the local variables
register which now contains the local ~ariables of the service
code, and the G register which points to where to resume after
the interrupt has completed.

s~2 Interrupts .a.rul errors

Two special registers allow the processor to service
interrupts error conditions.

The INTERRUPT register contains a tuple of process descriptors
which describe code which is executed whenever, interrupts are
serviced. The ERROR register contains a tuple of 11· (the number

5-1 .1-,

.f errors detected) process descriptors for servicing error
~onditions.

Interrupt handling

An interrupt is an event which occurs external to the APM
but which must be recognised by some program in the system.
Typically this is some kind of I/O event such as a key being
pressed, or data becoming available at an input port.

The APM only responds to such events if the EI instruction
has been executed, until a DI is executed.

With each possible kind of interrupt is associated a small
integer: the interrupt number. The interrupt number is used
as an index into the tuple of process decriptors previously set
up to handle interrupts. It is the responsibility of the system
designer to ensure that a process descriptor exeists for each
possible interrupt. The tuple of process descriptors used for
servicing interrupts is exactly analogous to an interrupt vector
in more conventional machines.

In a software implementation which is embedded in a host
operating system it may not actually be possible or desirable to
detect many interrupts. The two most useful interrupts in such a
system would be a keyboard break (the user types AC) and ·possibly
somekind of clock interrupt. This latter might be based on a
real time clock or simply a count of the APM instructions
executed.

Because it can be quite expensive to continuously poll the
keyboard between each instruction it is suggested that only
certain instructions actually do this. An implementor might,
·instead, only poll the keyboard during each execution of the CALL
instruction (say).. When a AC is detected then the interrupt
process is triggered.

In a hardware system the low level polling is accomplished
by hardware circuits. This therefore means it is quite
reasonable to poll for interrupts between each instructions.

Error traps

Various internal conditions give rise to an ERROR trap.
These are errors which are detected during the execution of a
program, for example a division by zero raises error trap 1.

Error traps result in a process from the ERROR tuple being
activated. Since one of the available error conditions is
actually the 'no space left' it is important that the handler for
this error does not use any space until such time as it is
guaranteed that there is space to execute.

Usually this means that the process decriptor for the space
error must deliberately remove from the system enough data so
that a normal return to the top-level supervisor is possible.
This might mean, for example, losing the current execution of the
user's program and restarting the system with some kind of warm·
start.

In fact the space error represents a particular problem
since the context switch to the error handler itself involves
growing the G register. To get around this will involve some
fiddling of the space allocation method to keep in reserve a
special space for the space error to 'grow into'.

The error codes actually available may vary from system to
system, but should include the following:

_,, x=>.. zw _ c a #

