
L & O
on IC PROLOG][

User’s Guide DRAFT

Z.Bobolakis
email:zb@doc.ic.ac.uk

1 Introduction

In this chapter, Logic & Objects (L&O for short) on top of IC PROLOG
][is presented. It is not intended as a complete description of L&O but as
a user’s guide to the system. L&O is defined in detail in the book Logic

& Objects by F.G.McCabe, Prentice Hall, 1992. What is presented in the
following section is only an outline of some important concepts.

L&O is an extension to Prolog which supports an object-oriented no-
tation. An object consists of a label which identifies it (the label may be
parametrized) and program which defines its behaviour. The program de-
scribing its behaviour is a Prolog program with some additional features.
The most important features will be described here.

2 L&O programs

2.1 Object definitions

An L&O object is defined as follows:

Label: { Program }.

Label is a Prolog atom or compound term which identifies the object. Program
is a set of clauses which can be one of the following:

Relation definitions Relations can be defined for the object locally using
ordinary Prolog clauses. Standard Prolog syntax applies here, but the
body of a clause can contain specific kinds of calls which are defined
in L&O . The following clauses are an example of relation definitions in
an object1:

1The calls in the body will be explained later.

1

age(Ag).

likes(X) :- X:age(A),A<Ag.

likes(X) :- X:likes(self).

Equations Equations are used for defining functions.

An example of equation is:

route_length(T)=0 :-atom(T).

or

no_of_legs=2.

The function (on the LHS of the head) evaluates to the value (on the
RHS of the head) if the body of the clause succeeds. If there is no body,
it is enough that the call unify with the LHS of the head. A function
can be defined using more than one clauses but the equations should
not overlap in defining the function2. Guaranteeing this, is not a mere
syntactic checking, so the responsibility for it lies with the programmer.

Variable initializations for example:

foible:=34.

Such variables in L&O are mutable, i.e. their value can change during
the execution of the program. The effect of the above clause is to assign
the variable to the value at the time the object is created, i.e. when
the program is loaded or consulted.

A call in the body of a clause can be:

Prolog call It can be a call to an ordinary Prolog relation, built-in or user-
defined, or to a relation defined within the same object. In both cases
the call is executed as an ordinary Prolog call3.

A labelled call for example

2Otherwise they do not define a function in the strict sense.
3Inheritance can also be used for such a call, see later for inheritance.

2

animal:mode(X)

The general form of a labelled call is

Label:Call

A labelled call is a call to another object. Label (animal in the example
above) is an object and Call (mode(X) in the example) is a call to a
predicate defined in that object.

A special L&O call for example

self:mode(X)

or

super:mode(X)

Special calls will be presented later in this section.

2.2 Inheritance

Apart from object definitions, an L&O program can also contain inheritance
definitions. Different kinds of inheritance can be defined:

Ordinary inheritance is defined as follows:

L <= M.

where L and M are two objects, for example

horse <= animal.

The effect of this rule is that any call of the form horse:Call can be
transformed to the call animal:Call. Therefore, the definition of the
relation specified in Call in horse is augmented with the corresponding
definition in animal.

3

Overriding inheritance can be defined as follows:

L << M.

for instance

horse << animal.

In this case, a call horse:Call is transformed to animal:Call but
only if the predicate to which Call is a call is not defined in the object
horse.

Differential inheritance relationships are defined as follows:

L <= M-Preds.

or

L << M-Preds.

for example

bird <= animal-mode(walk).

In this case, bird inherits animal except for calls of the form
bird:mode(walk).

2.3 Expressions

Prolog provides the ability to use expressions in programs but in a clumsy
and not natural way. A variable should be used and the value of the variable
should be assigned to the expression’s result after an explicit evaluation using
the is primitive. For example, instead of

..., foo(X+1), ...

the programmer should write

..., X1 is X+1, foo(X1), ...

4

This is only possible for primitive functions (such as +/2). For a user-defined
function, a relation should be defined and called explicitly, for example, in-
stead of defining the function length/1 which returns the length of a list,
one would write:

length([], 0).

length([_|X], N) :- ...

and call it as follows:

..., length(List, L), foo(L), ...

instead of

..., foo(length(List)), ...

L&O provides this ability to use expressions which can be evaluated. In
particular, built-in functions are provided as well as the ability for the user
to define functions.

In practice though (for various reasons), the kinds of expressions that are
evaluated by the L&O system are more restricted.

In particular, an expression is evaluated if:

• Its functor is a built-in function. The built-in functions are listed later
in this chapter. Therefore, a call of the form

p(2+3, length([a,b,c]))

is the same (unlike in Prolog) as

p(5, 3)

• It is explicitly labelled, i.e. it uses an equation defined in a different
object. For example

horse:no_of_legs

is evaluated using the definition for no of legs in the object horse.

• It is a mutable variable, for example:

5

p(c)

is interpreted as p(V) where V is the current value of a mutable vari-
able c, if such a variable exists in the object (i.e. if there exists an
initialization clause for the variable).

L&O provides a ‘quote’ operator ‘ which prevents the expression on
which it is applied from being evaluated. So if an equation for f(X) in an
object defines f(X) = 2*X, then the expression f(4) evaluates to 8 while
‘f(4) is not evaluated, it stands for f(4) as a Prolog term.

Moreover, an ‘unquote’ operator is provided, namely #, which enforces
evaluation of the expression it is applied to, allowing so nested expressions.

Finally, the quote-hash operator ‘# causes the function symbol of an
expression to be quoted while each of the arguments is unquoted. So the
expression ‘#(X+Y < Z-W) is equivalent to ‘(#(X+Y) < #(Z-W)), where only
the expressions X+Y and Z-W are evaluated.

2.4 Special L&O calls

2.4.1 self and super

The self keyword A call in the body of a clause in an object can have
the form

self:Call

In order to see how the call is evaluated, consider an example:

person:{

child :- self:age(X),

X < 18.

}.

tom:{

age(14).

}.

tom <= person.

6

Consider now the call

tom:child

This call cannot succeed using any clause in tom. Because tom inherits
person, the call is transformed to person:child. This call is now tried
in the object person using the clause for child. In the body of the clause,
self:age(X) has to be solved. This call is tranformed to tom:age(X) be-
cause self refers to the original object that the call originated before the
inheritance. The last call succeeds binding X to 14 and the original call
succeeds as expected.

More generally, self is a keyword which evaluates to the object to which
the call originated before inheritance transformations and can be used not
only as a label but in any place in a call.

When a call is transformed to another one through inheritance, self

does not change, it evaluates to the same value as before the transformation.
On the other hand, when a call like tom:child is made, self during the
evaluation of this call becomes tom, no matter what it was before.

The super label super can be use as a label to transfer the evaluation of
a call from the current object to one which it inherits. super cannot be used
but as a label.

2.4.2 Broadcasting

A call can be broadcasted to more than one objects and the results can be
combined in different ways to evaluate the result to the broadcasted call.

filter broadcasting A call of the form

&^(L,C,M).

returns a binding for M which is a sublist of L, namely those elements
O of the list for which O:C is true. A functional notation can also be
used, i.e.

&^(L,C)

7

evaluates to the filtered list.

and-casting A call of the form

L&:C.

succeeds iff for all O on the list L, O:C is true.

or-casting A call of the form

L\:C.

succeeds iff for some O on the list L, O:C is true.

2.4.3 Variable assignment

A mutable variable (defined by an initialization in the definition of an object)
can be assigned a new value using a call of the form:

Variable := Expression

where Variable is the variable and Expression evaluates to its new value.
Expression can contain the variable itself (as in an imperative language)
allowing thus assignments like

c := c+1

2.5 An example L&O program

Consider the following program which describes an animal-world.

person(Ag) : {

age(Ag).

likes(X) :- X:age(A),A<Ag.

likes(X) :- X:likes(self).

no_of_legs=2.

foible := 34

}.

person(Ag)<<animal.

8

In this object, person(Ag) is the label. The label is parametrized (Ag is
interpreted here as the age of the person). Notice that the label arguments
are global variables with respect to the program defining the object. So the
clauses age(Ag). and likes(X) :- X:age(A),A¡Ag. can access this variable.

age/1 and likes/1 are relations for the object, while no of legs=2.

defines a function (which happens to take no arguments, i.e.it is a constant).
On the other hand foible := 34 initializes a mutable variable.

A person (of any age) is also defined to inherit the object animal (defined
later) using overriding inheritance. Thus, although an animal (as we will see)
has 4 legs, a person has only 2 because no of legs is defined in person(Ag)

and therefore the definition is not inherited from animal.

tom <= person(32).

frank <= person(37).

tom and frank are defined to inherit one instance of person each. Their age
is automatically defined through this inheritance.

animal:{

mode(walk) :- self:no_of_legs>=2.

mode(run) :- self:no_of_legs=2.

mode(gallop) :- self:no_of_legs=4.

mode(slither) :- self:no_of_legs=0.

no_of_legs=4.

}.

For the object animal, the relation mode/1 is defined. Its definition uses the
function no of legs/0. Notice that the calls to the function use the keyword
self and threfore are executed using the definition of the particular animal
we are refering to, not animal in general. So mode(X) for a horse will use
the definition of no of legs in horse while if the expression to be evaluated
is animal:no of legs then no of legs=4 is used (as in animal.

mammal : {

mode(walk) :- self:no_of_legs>=2

}.

mammal <= animal.

9

reptile <= animal.

horse <= mammal.

horse : {

no_of_legs=4

}.

beauty <= horse.

beauty : {

mode(fly).

}.

bird : {

mode(fly).

no_of_legs=2

}.

bird <= animal.

penguin <= bird-[mode(fly)].

penguin : {

mode(swim).

}.

Here, we define penguin to inherit bird. The inheritance is differential, so
although for bird it is defined that mode(fly), penguin does not inherit it.
mode(swim) is defined for penguin.

3 The L&O system

3.1 Starting L&O in IC-PROLOG][

Once ICP is has started, L&O can be loaded using the command

[lo].

or

ensure_loaded(lo).

L&O files are now recognized and consulted/compiled.

10

3.2 L&O file handling

L&O programs should be included in files which have the extension .lo. At
this stage, L&O and ordinary Prolog code should not be mixed in the same
file. The IC PROLOG][compiler can invoke a user-defined preprocessor to
read the source file and produce Prolog code which the compiler itself takes
as input. The L&O preprocessor is hooked to the compiler in this way. The
file extension is an indication to the compiler that the file to be compiled is
a special one and the .lo extension is reserved for L&O for this purpose4.

L&O files are compiled using the same Prolog commands as with ordinary
Prolog files. For example, the file called animals.lo (which contains the
example program presented in the previous section) can be consulted using:

| ?- consult(animals).

Prolog will add the missing ending to the filename. Notice here that if
a animals.pl file exists, it will be consulted instead of animals.lo because
.pl files have priority. In order to avoid conflict, full filename should be used
in such cases, i.e.

| ?- consult(’animals.lo’).

All conventions that hold for standard Prolog files also hold here, e.g.
filenames contaning . or / should be quoted, absolute filenames (i.e. the
ones that include the path) should contain the .lo extension etc.

A file can also be consulted using square brackets, i.e. as follows:

| ?- [animals].

Once a file has been consulted and subsequently modified, it should be
reconsulted using reconsult/1 as in

| ?- reconsult(animals).

or using

| ?- [-animals].

4In this way, IC PROLOG][provides the facility to write any preprocessor and redirect
its output to the standard Prolog compiler.

11

(square brackets with a - preceding the filename).
Alternatively, compile/1 and load/1 should be used if optimized com-

pilation is preferred. These primitives behave as in standard Prolog, but the
comments made above for consult/1 and reconsult/1 also hold here.

The differences between ordinary and optimized compilation hold here
exactly as with ordinary Prolog files.

3.3 L&O query evaluation

L&O queries have the form

Label:Call

where Label is an object label and Call is a call to a predicate defined in
Label.

L&O queries behave as usual Prolog queries (returning bindings, multiple
solutions etc).

In the simplest case, Label is ground and Call is a non-variable. It can
also be the case that Label is not ground. In this case, L&O replies with
bindings on variables occuring in Label, so that Label is an object for which
Call holds.

It is not allowed though that Call be a variable, it should be a predicate
call.

For example,

| ?- horse:mode(X).

X = walk ;

X = walk ;

X = gallop ;

no

and

| ?- X:mode(gallop).

12

X = animal ;

X = beauty ;

X = horse ;

X = mammal ;

no

are valid L&O queries and give the corresponding solutions while

| ?- horse:X.

is not valid.
L&O queries can also be ones that evaluate expressions5. In particular,

they can have the form

Expression =? Value.

The above query, evaluates Expression and unifies it with Value. The query
can also be given in a different form:

Expression =? .

It is important that in the last case =? and . are separated by a space
character. Otherwise a syntax error occurs.

The first form (using =? as infix) is necessary when the query is given in
a context where Value is a variable shared with other subqueries.

For example, in the animals’ program we can ask:

| ?- beauty:no_of_legs =? .

4

yes

because beauty is a horse which has 4 legs and

5How expressions are evaluated is discussed later.

13

| ?- penguin:no_of_legs =? .

2

yes

because penguin is a bird (except for its mode) and therefore has 2 legs.
because

3.4 Dynamic code in L&O programs

As in ordinary Prolog programs, programs can be modified dynamically in
L&O . There are though some restrictions to what can be modified dynami-
cally. This will be explained in this section.

3.4.1 Adding new programs

Objects, programs or rules can be asserted using the assert object primi-
tive. The primitive can be used as following:

• An object can be asserted by a call assert object(L:B) where L is
the label of the object and B is a program included in {}, that is, using
the same syntax as with static objects. The only difference is that the
last clause in the program B should not be followed by ’. ’ as in
static programs. The object asserted should not already exist.

• One or more clauses can be asserted to an already existing dynamic

object, using the call assert object(L:B). Again, L is the label and
B is either a single clause or a set of clauses Included in {}.

• A new inheritance rule can be asserted using the call
assert object(L<=R) or assert object(L<<R). The objects need not
be dynamic.

The restrictions in the kind of programs asserted are:

• No expressions are allowed in the objects.

• No equations are allowed.

• self can only be used as a label in explicitly labelled calls in the body
of a clause.

14

3.4.2 Retracting programs

Clauses or rules (not complete objects) can be retracted using the
retract object primitive. The primitive can be used as following:

• A clause can be retracted from an already existing dynamic object,
using the call retract object(L:B). Again, L is the label of the object
and B is the clause to be retracted.

• An inheritance rule can be retracted using the call
retract object(L<=R) or retract object(L<<R). but the rule re-
tracted should have been asserted dynamically.

3.5 Debugging L&O programs

L&O in ICP, provides a debugging facility for tracing queries.

3.5.1 How the L&O tracer works

The Prolog tracer might be used for L&O programs since the L&O pre-
processor produces Prolog code. The problem is that the output from the
preprocessor is not in a form easy to understand from the L&O programmer’s
point of view.

The L&O tracer is not implemented as an ordinary metainterpreter on
programs. Instead, at the preprocessing/compilation phase, information re-
lated to tracing is introduced to the program in the form of hooks.

Different kinds of hooks exist corresponding to different kinds of events
that might happen during the execution of an L&O query. In particular,
the hooks introduced in the Prolog code that is output by L&O , uses the
following hooks:

• #r# The initial entry to a relation in a class body.

• #e# The entry to a clause for a call.

• #s# The successful exit from a clause.

• #f# The initial entry to a function in a class body.

• #q# The entry to an equation or function.

15

• #v# The completion of an equation.

• #i# The use of an inheritance rule.

• #d# The initialization of a dynamic variable.

• #a# The reassignment of such a variable.

• #u# A user specified print statement. This hook is compiled in

• #l# The entry to a labelled variable call.

• #k# Evaluation of a labelled expression. when the programmer has in-
serted a trace (message) subgoal into the body of a clause or equation.
The message is printed out in the trace of the execution whenever this
hook is activated.

In this way, the programmer can activate some of the hooks only. More-
over, a different interface for the tracer can be adapted to it (by redefining
the hooks only), as the one provided in this version is relatively low level.

In order for a hook to be invoked during the execution of a query, it has
to:

• be compiled in the code

• be activated at the time of execution.

This means that the user can compile as many hooks as needed in the pro-
gram and then temporarily activate/deactivate any of them.

3.5.2 Using the L&O tracer

Setting the tracing mode Which of the hooks are compiled by the pre-
processor depends on a set of flags being set. The flags are the following:

• entry

• user

• exit

• fail

16

• redo

• clauses

• equations

• inheritance

• dynamic code

• percentfs (restricted use - only for low-level programming)

Notice that the flags do not correspond one-to-one to the hooks. For
example, in order to trace a clause, the clause flag should be on and some
of entry, exit, fail, redo depending on which points the user needs to
trace it (normally all of them).

The flags can be set on/off using the following primitives:

• lo trace sets all tracing flags (except percentfs) on.

• lo notrace sets all tracing flags (except percentfs) off.

• tracing(X,Y) sets all the flags on X and Y and the rest of them off. X
should be a sublist of
[entry,exit,fail,redo] and Y a sublist of
[clauses,equations,inheritance,dynamic code,percentfs,

user].

• tracing(X) has the same effect as
tracing([entry,exit,fail,redo],X).

Once the flags have been set, the program should be compiled/consulted.
If at some stage the user wants to deactivate/reactivate some of the tracing
hooks, the corresponding flags should be set on/off. This can be done using
the tracing/1 or tracing/2 primitives.

Notice here that only hooks that have been compiled can be activated or
deactivated. Flags can be set on or off but the corresponding hooks are only
modified at compilation.

For example, if before compiling a file the query tracing([clauses])

has been given, only clauses (at all points: entry, redo, exit, fail) will be
traced.

17

If after compilation the user gives tracing([clauses, equations]), it
will have no immediate effect, as clauses is already set on and equations

related hooks have not been compiled.
Though, the flag equations will be set on and if the program is com-

piled again, it will cause the equations related hooks to be activated (unless
equations is set off before this compilation).

If on the other hand the user gives tracing(off) (which is the same
as tracing([],[])) or tracing([]), then clauses will be set off and, al-
though the hook is compiled, the clauses will not be traced.

A subsequent call tracing([clauses]) will set clauses on again and,
because the related hook is compiled, clauses will be traced.

Tracing a query When the tracing mode has been set, a query can be
traced. The query is given as usually and the system traces any activated
hooks in the code and reports them. The reporting information includes:

• the object currently active (and self if it is different from the object)

• the type of the traced point (entering a relation/clause/equation etc,
redoing, exiting successfully, failing, reporting and inheritance rule)

• the traced point (clause, relation etc.)

At every step, the system waits until a command is given. A command
can be one of the following:

• ‘c’ or return to continue with the next step.

• ‘s’ to skip the tracing of the current goal (allowed only when entering
a call/clause/etc).

• ‘f’ to fail the current goal.

• ‘q’ to abort the top level query.

• ‘h’ for help (display these options)

If an illegal command is given then the tracer insists until a legal one is given.

18

3.5.3 An example using the tracer

We now present and explain an L&O session using the tracer.

laotzu(22)% icp

IC-Prolog][version 0.93 - 05 Nov 1992

(c) Imperial College 1992, Imagine Project

{consulting system.pl ...}

| ?- ensure_loaded(lo).

{consulting lo.pl ...}

{consulting looperators.pl ...}

loading loenv.icp ... ok

loading lolow_level.icp ... ok

loading lodynamic.icp ... ok

loading lotranslator.icp ... ok

loading lotracing.icp ... ok

loading loexpressions.icp ... ok

loading lotop.icp ... ok

yes

| ?- [animals].

{consulting animals.lo ...}

yes

| ?- lo_trace.

yes

| ?- beauty:mode(X).

X = fly ;

X = walk ;

X = walk ;

19

X = gallop ;

no

Here, although the tracing mode has been set, the source file has been con-
sulted before, so the compiled code contains no calls to the hooks. So we
need to reconsult (the lo trace call should have preceded the [animals]

call).

| ?- [-animals].

{consulting animals.lo ...}

yes

| ?- beauty:mode(X).

enter(relation) beauty:(mode _45) ?

enter(clause) beauty:(mode fly) ?

exit(clause) beauty:(mode fly) ?

X = fly ;

redo(clause) beauty:(mode fly) ?

report(inherit) beauty:(beauty << horse) ?

report(inherit) horse/beauty:(horse << mammal) ?

enter(relation) mammal/beauty:(mode _45) ?

enter(clause) mammal/beauty:(mode walk) ?

report(inherit) beauty:(beauty << horse) ?

enter(function) horse/beauty:no_of_legs ?

enter(equation) horse/beauty:no_of_legs ?

exit(equation) horse/beauty:(no_of_legs = 4) ?

exit(clause) mammal/beauty:(mode walk) ?

X = walk ;

redo(clause) mammal/beauty:(mode walk) ?

report(inherit) mammal/beauty:(mammal << animal) ?

enter(relation) animal/beauty:(mode _45) ?

enter(clause) animal/beauty:(mode walk) ?

report(inherit) beauty:(beauty << horse) ?

enter(function) horse/beauty:no_of_legs ?

20

enter(equation) horse/beauty:no_of_legs ?

exit(equation) horse/beauty:(no_of_legs = 4) ?

exit(clause) animal/beauty:(mode walk) ?

X = walk ;

redo(clause) animal/beauty:(mode walk) ?

enter(clause) animal/beauty:(mode run) ?

report(inherit) beauty:(beauty << horse) ?

enter(function) horse/beauty:no_of_legs ?

redo(clause) animal/beauty:(mode run) ?

enter(clause) animal/beauty:(mode gallop) ?

report(inherit) beauty:(beauty << horse) ?

enter(function) horse/beauty:no_of_legs ?

enter(equation) horse/beauty:no_of_legs ?

exit(equation) horse/beauty:(no_of_legs = 4) ?

exit(clause) animal/beauty:(mode gallop) ?

X = gallop ;

redo(clause) animal/beauty:(mode gallop) ?

enter(clause) animal/beauty:(mode slither) ?

report(inherit) beauty:(beauty << horse) ?

enter(function) horse/beauty:no_of_legs ?

redo(clause) animal/beauty:(mode slither) ?

fail(relation) animal/beauty:(mode _45) ?

fail(relation) mammal/beauty:(mode _45) ?

fail(relation) beauty:(mode _45) ?

no

Now the hook calls have been compiled in the code, so the tracer works. The
example above is the full tracing of the query beauty:mode(X). Since every-
thing is traced (lo trace call sets all flags on), all ports are reported (enter,
report, redo, exit, fail) in all the cases (clauses, equations, inheritance
etc). If we now change the tracing mode to trace only clauses, we have:

| ?- tracing([clauses]).

yes

21

| ?- beauty:mode(X).

enter(relation) beauty:(mode _45) ?

enter(clause) beauty:(mode fly) ?

exit(clause) beauty:(mode fly) ?

X = fly ;

redo(clause) beauty:(mode fly) ?

enter(relation) mammal/beauty:(mode _45) ?

enter(clause) mammal/beauty:(mode walk) ?

exit(clause) mammal/beauty:(mode walk) ?

X = walk

which causes clauses only to be traced (not equations, inheritance etc). This
is obvious if we compare the traces of the query for the first two solutions.
Although the calls to the hooks are still in the compiled code, they are
deactivated (except for the ones related to clauses).

| ?- [-animals].

{consulting animals.lo ...}

yes

| ?- tracing([equations]).

yes

After the above queries, the only hook calls compiled are the ones for clauses
(they were set on at the consultation time) but the only flags set on are the
ones for clauses. As a result, we should expect that nothing will be traced.

| ?- beauty:mode(X).

X = fly ;

X = walk

| ?- [-animals].

{consulting animals.lo ...}

22

yes

| ?- beauty:mode(X).

X = fly ;

enter(function) horse/beauty:no_of_legs ?

enter(equation) horse/beauty:no_of_legs ?

exit(equation) horse/beauty:(no_of_legs = 4) ?

X = walk

After reconsulting, equations-related hook calls are compiled (and the corre-
sponding flags are set on) so the above query shows (as expected) that only
equations are traced.

| ?- tracing(all).

yes

| ?- penguin:no_of_legs=? .

enter(function) bird/penguin:no_of_legs ?

enter(equation) bird/penguin:no_of_legs ?

exit(equation) bird/penguin:(no_of_legs = 2) ?

2

yes

Now, although although all flags are set on, only equations-related hooks
calls are compiled so only equations are traced.

Finally, we will see the effect of possible responses to the tracer (in the
example above <return> was always the response which caused tracing to
proceed step-by-step.

| ?- [-animals].

{consulting animals.lo ...}

yes

| ?- beauty:mode(X).

enter(relation) beauty:(mode _45) ?

enter(clause) beauty:(mode fly) ?

23

exit(clause) beauty:(mode fly) ?

X = fly ;

redo(clause) beauty:(mode fly) ? s

Options :

<CR> - continue

c - continue

s - skip goal (only at entry)

f - fail goal

q - abort query

h - display this list

redo(clause) beauty:(mode fly) ?

report(inherit) beauty:(beauty << horse) ?

report(inherit) horse/beauty:(horse << mammal) ?

enter(relation) mammal/beauty:(mode _45) ? s

exit(clause) mammal/beauty:(mode walk) ?

X = walk ;

report(inherit) mammal/beauty:(mammal << animal) ? f

fail(relation) mammal/beauty:(mode _45) ?

fail(relation) beauty:(mode _45) ?

no

Notice that when s (for skip) was given at an inappropriate call, the system
insisted with the same call (and displayed the options). Skipping at a later
call (an enter call) caused the evaluation of the query to be skipped until
exiting this call. One solution was given but after more solutions were
required, the user gave f which caused the evaluation to fail.

Finally, aborting (q) is also an option:

| ?- beauty:mode(X).

enter(relation) beauty:(mode _45) ?

enter(clause) beauty:(mode fly) ?

exit(clause) beauty:(mode fly) ?

24

X = fly ;

redo(clause) beauty:(mode fly) ?

report(inherit) beauty:(beauty << horse) ?

report(inherit) horse/beauty:(horse << mammal) ?

enter(relation) mammal/beauty:(mode _45) ?

enter(clause) mammal/beauty:(mode walk) ?

report(inherit) beauty:(beauty << horse) ? q

--- ABORTED ---

Unbound variable : X

which causes the whole evaluation to stop.

3.6 L&O built-in primitives

3.6.1 Keywords

self and super are L&O keywords and therefore they should not be used
for other purposes.

3.6.2 Functions

The following functions (with trhe corresponding arity) are built-in in L&O :

Mathematical functions • +/2 for addition (integer or floating point)

• -/2 for subtraction (integer or floating point)

• -/2 for multiplication (integer or floating point)

• / /2 for division (integer or floating point)

• mod/2 for the remainder of integer division

• \ /1 for bitwise negation

• /\ /2 for bitwise and

• \/ /2 for bitwise or

• ++ /2 for integer addition

25

• -- /2 for integer subtraction

• ** /2 for integer multiplication

• // /2 for integer division

• sqrt/1 for square root of a number

• abs/1 for absolute value of a number

• int/1 for integer part of a number

• ln/1 for logarithm (base e)

• pwr/2 or ^/2 for power (pwr(N,M) is the Mth power of N)

• sin/1

• cos/1

• tan/1

• atan/1 for arctan

• exp/1 for exponential function

Other functions Several primitive functions have the form F/A and return
what F/A+1 would return in Prolog in the last argument. The following
built-in functions are provided:

• concat/2 returns the concatenation of two strings

• name/1 and pname/1 (see ICP built-in primitives)

• length/1 returns the length of a list

• nint/1 returns the nearest integer of a number

• -/1 returns the opposite of a number

• &^/1 (see definition of filter casting)

• max/2 for maximum

• min/2 for minimum

3.6.3 Reserved operators

L&O reserves some operators for special purposes, either for the language
itself or for the internal representation. The operators with special interpre-
tation are defined as follows:

26

• op(1198,xf,’=?’), op(1198,xfx,’=?’), op(698,fx,‘),
op(698,fx,#) and op(698,fx,‘#) are used for expression evaluation.

• op(699,xfx,&^), op(700,xfx,’&:’) and op(700,xfx,\:) are used
for broadcasting.

• op(700,xfx,’:=’) is the assignment operator (assigns a mutable L&O
variable to a value).

• op(1198,xfx,’<=’) and op(1198,xfx,’<<’) are used for inheritance
declarations.

• op(1200,yfy,’. ’) and op(1200,xfy,’..’) are used as clause
separators in a class body.

• op(699,fx,’:’) is also reserved for internal representation.

27

A Implementation of the tracer hooks

Here we present in brief the way the tracer hooks are implemented. For the
method by which the tracer is built, see the discussion in the corresponding
section above.

Depending on the environment used, the tracer may be implemented in
a different way, by changing only the definitions of the hooks.

For each hook call that is introduced in the Prolog code produced by
L&O , it is initially checked (using the is traced/1 calls to flags) whether
the related flags are set on (i.e. whether the hook is active or not) and, if
they are, a dialogue is invoked with parameters depending on the type of
the hook. The dialogue is invoked using the trace dialogue/5 call. The
arguments passed to the trace dialogue/5 predicate are the following (as
they are ordered):

• The type of hook, in fact the information displayed to the user, e.g.
enter(relation).

• Information about the position in the source code in the form
’@x’(Id,P,IX,C) where Id is the name of the source file, P is the
position of the current object in the file (as the position of the first
character of the label), IX is the order of the clause within the object
and C is the order of the Prolog clause for the Prolog predicate output
from the preprocessor. This is not always possible since some hooks
do not correspond to a particular clause in the source code (e.g.when
entering a relation call) and in this case true is the value passed in this
argument. All this information can be used for a source-level debugging
interface (which is not provided now).

• The self of the current object.

• The label of the current object.

• The call traced (also displayed to the user).

A.1 Code for the tracer hooks

• #r# The initial entry to a relation in a class body.

28

’#r#’(A,L,S):-

is_traced(clauses),is_traced(entry),!,

(trace_dialog(enter(relation),true,S,L,A);

trace_dialog(fail(relation),true,S,L,A),fail).

’#r#’(_,_,_).

• #e# The entry to a clause for a call.

’#e#’(A,L,S,C):-

is_traced(clauses),is_traced(entry),!,

(trace_dialog(enter(clause),C,S,L,A);

trace_dialog(redo(clause),C,S,L,A),fail).

’#e#’(_,_,_,_).

• #s# The successful exit from a clause.

’#s#’(A,L,S,C):-

is_traced(clauses),is_traced(exit),!,

trace_dialog(exit(clause),C,S,L,A).

’#s#’(A,L,S,C):-

skip_trace(S,L,A),!,

’#s#’(A,L,S,C).

’#s#’(_,_,_,_).

• #f# The initial entry to a function in a class body.

’#f#’(E,L,S):-

is_traced(equations),is_traced(entry),!,

trace_dialog(enter(function),true,S,L,E).

’#f#’(_,_,_).

• #q# The entry to an equation or function.

’#q#’(E,L,S,C):-

is_traced(equations),is_traced(entry),!,

trace_dialog(enter(equation),C,S,L,E).

’#q#’(_,_,_,_).

29

• #v# The completion of an equation.

’#v#’(EX,R,L,S,C):-

is_traced(equations),is_traced(exit),!,

trace_dialog(exit(equation),C,S,L,EX=R).

’#v#’(EX,R,L,S,C):-

skip_trace(S,L,EX),!,

’#v#’(EX,R,L,S,C).

’#v#’(_,_,_,_,_).

• #i# The use of an inheritance rule.

’#i#’(L,M,_,C,S):-

is_traced(inheritance),is_traced(entry),!,

trace_dialog(report(inherit),C,S,L,(L<<M)).

’#i#’(_,_,_,_,_).

• #d# The initialization of a dynamic variable.

’#d#’(V,R,L,S,C):-

is_traced(dynamic_code),is_traced(entry),!,

trace_dialog(report(declare),C,L,S,V:=R).

’#d#’(_,_,_,_,_).

• #a# The reassignment of such a variable.

’#a#’(L,V,R,C):-

is_traced(dynamic_code),is_traced(entry),!,

trace_dialog(report(assign),C,L,L,V:=R).

’#a#’(_,_,_,_).

• #l# The entry to a labelled variable call.

’#l#’(A,L,S):-

is_traced(clauses),is_traced(entry),!,

(trace_dialog(entry(relation),true,S,L,A);

trace_dialog(fail(relation),true,S,L,A),fail).

’#l#’(_,_,_).

30

• #k# Evaluation of a labelled expression.

’#k#’(E,L,S):-

is_traced(equations),is_traced(entry),!,

trace_dialog(entry(function),true,S,L,E).

’#k#’(_,_,_).

• #u# A user specified print statement.

’#u#’(M,L,C,S):-

is_traced(user),is_traced(entry),!,

trace_dialog(report(user),C,S,L,M).

’#u#’(_,_,_,_).

A.2 The tracing dialogue

trace dialogue is implemented as explained here. The possible responses
of the user are:

• Help in a non-standard response (none of the below).

• Quit in which case the query is aborted (using abort/0).

• Continue in which case the call succeeds.

• Fail in which case the call is enforced to fail (using fail/0).

• Skip which is more complicated. It is important here that any imple-
mentation of the reaction to a Skip response be compatible with the
implementation of the hooks. Skip is only valid when entering a call
and trace dialogue should check that (reject an invalid Skip message
and, either insist or react in a default manner, e.g.Continue). If the
Skip response is valid, it should deactivate the hooks, save the tracing
mode (i.e.which flags are set on/off) and succeed. Saving the tracing
mode is done using the calls

is_tracing(T),

set_prop(’#tracing#’,’#mode#’,trace(Sf,LbL,Call,T)),

31

which checks which flags are set on and uses the IC PROLOG][prop-
erties database to save the state. (Sf is the self of the current object,
LbL is its label, Call is the current call and T is the tracing mode. Of
course, the tracing mode should be recovered later on, when the call
skipped has succeeded. The implementation of the hooks should ensure
that this is done (that is what we meant by ‘compatibility’ a few lines
above. Only the #s# and #v# hooks need to recover the tracing mode.
In our implementation, this is done through the skip trace(S,L,A)

call which is defined as:

skip_trace(S,L,A):-

get_prop(’#tracing#’,’#mode#’,trace(S,L,A,T)),!,

tracing(T),

del_prop(’#tracing#’,’#mode#’).

This call, checks whether the call that it currently exits was skipped,
finds the previous tracing mode, resets it and removes any saved tracing
mode related info. Notice here that these two actions (tracing mode
saving and skip-checking while exiting) should be implemented in any
tracer interface, although not necessarily in this way.

32

