
OUTONO DE 1981 I AUTUMN 1981

CONTENTS

Short Communications by:
A. Colmerauer, V. Dahl, M. Emden,
I. Fut6, D. Kibler, L. Moniz Pereira,
P. Morris, A. Porto, J. Sezeredi, D. Warren

Community News & Events
Published Logic Programming

References
Abstracts
Research Centres Addresses

EDITOR

Prof. Luis Moniz Pereira
Departamento de Informatica

Universidade Nova de Lisboa

PUBLISHED

UNIVERSIDADE NOVA DE LISBOA
Centro de Informatica
Faculdade de Ciencias e Tecnologia
Quinta do Cabe90 - Oliva is
1899 Lisboa Codex
Portugal
Tels. 251 25 26 • 251 26 60 • 251 25 55

ACKNOWLEDGEMENT

This publication has been fully subsidized
by Junta Nacional de lnvestiga9ao Cientifica
e Tecnol6gica (JNICT), Av. D. Carlos I, 126,
Lisboa, Portugal.

COLABORATION

The editor thanks Antonio Porto, Eugenio
Oliveira, Luis Monteiro and Miguel Filgueiras
for their help.

CONTRIBUTIONS

Send to the editor, typed or printed, if possible
double spaced, one side of the paper only and
a maximum width of 15 cm.

EDITOR'S VIEWPOINT

Logic Programming has been picking up speed in the USA. Within
four months two workshops took place in the States. The first, in April,
at Syracuse University, NY. The second, in August, aboard the R. M. S.
Queen Mary, Long Beach, CA, brought together a motley crew of
veteran logic programmers and sympathetic onlookers, some of which
may be seen in the photograph. (Yours truly is the one shutting his
eyes back at the shutter). It may have not escaped your attention
the deliberate metaphor of a transatlantic vessel bringing in logic
programming from Europe to the USA.

I
1111
111 1
111 1

DESIGN, TYPESETTING AND PRINTING

Servi9os Graficos da Universidade
Nova de Lisboa
Av. Miguel Bombarda, 20-1. 0

1000 Lisboa

short communications

A SOLUTION TO THE MISTER P AND THE MISTER S
PROBLEM IN PURE PROLOG

Alain Colmerauer

Groupe d'lntelligence Artificielle
Faculte des Sciences de Luminy
13288 Marseille cedex 2, France

The program is written without any use of "cuts" or "negations by failure".
The arithmetic is done by the predefined predicate:

val(plus(x,y),z) iff x+y = z
val(moins(x,y),z) iff x-y = z
val(mult(x,y),z) iff x*y = z
val(div(x,y),z) iff x modulo y = z
val(inf(x,y), 1) iff X < y
val(inf(x,y,),0) jff not x < y

It runs with a minor change (to avoid a stack overflow) on our Apple II system and takes 11 hours
and 39 minutes to find the solution (13,4)!
The system was designed by H. Kanoui, M. Van Caneghem and myself.
It uses a virtual memory on small floppy disks and works even in August without any fan.

"Problem of Mister P and Mister S"

Solution(x) -> Pair(x) Property4(p) TrueThat(x,p);

"The four unary properties"

Property1 (Not(p)) - >
ls(p,lf(OneKnowslts(Product),OneKnowsltlsTheOnlyOneSuchThat(ltExists)));

Property2(And(p21,Not(p22))) - >
Property1 (p 1)
ls(p21,lf(OneKnowslts(Sum),OneKnows(p1)))

I s(p22, lf(OneKnows lts(Sum), One Knows It! s TheOnlyOneSuch That(ltExists)));

Property3(p3) - >
Property2(p2)

ls(p3,lf(OneKnowslts(product),OneKnowsltlsTheOnlyOneSuchThat(p2)));

Property4(p4) - >
Property3(p3)

ls(p4,lf(OneKnowslts(Sum),OneKnowsltlsThe0nly0neSuchThat(p3)));

"Some equivalences between unary properties"

Is(p1, lf(OneKnowslts(O),OneKnows(p2))) ->
ldentical(p1 ,And(p2,Any0therPairWithSame(O,p2)));

Is(p 1, lf(OneKnowslts(O), OneKnowsltlsTheOnlyOneSuch That(p2))) - >
ldentical(p 1 ,And(p2,AnyOtherPai rWithSame(0, Not(p2))));

ls(if(HasAsA(Al11JostProduct,u),p1),p1) - >
ldentical(p1 ,lf(HasAsA(Product,u),p2));

ls(p1 ,p1) -> ldentical(p1, lf(HasAsA(Sum,u),p2));

ldentical(p,p) -> ;

2

short communications

"ft is true that a pair x has a given property p"

TrueThat(x,ForAnyPairBeyondlt(d,lf(p1 ,p2))) ->
NextPseudoPair(x',x,d,p1)
NoPairleftStartingFrom(x',d,v)
Or(v, For(x' ,And(p2, ForAnyPairBeyondlt(d, lf(p1 ,p2)))));

True That(x,And(p 1 , p2)) - > True That(x, p 1) True That(x, p2);
TrueThat(x,lf(p1 ,p2)) -> FalseThatPair(x,p1);
TrueThat(x,lf(p1 ,p2)) - > TrueThatPair(x,p1) TrueThat(x,p2);
True That(x, ltExists) - >;
TrueThat(x,Not(p)) -> FalseThat(x,p);
True That(x,AnyOtherPairWithSame(O, p 1)) - >

TrueThatPair(x,HasAsA(O,u))
ls(p2,lf(HasAsA(O,u),p1))
True That(x, ForAnyPairBeyondlt(Down,p2))

. True That(x, ForAnyPairBeyondlt(Up,p2));

TrueThatPair(<i,j>,HasAsA(Product,u)) -> val(mult(i,j),u);
True ThatPair(<i,j>, HasAsA(Sum,u)) - > val(plus(i,j), u);

Or(True,q) ->;
Or(False,For(x,p)) -> TrueThat(x,p);

,, It is false that a pair x has a given property p"

FalseThat(x,ForAnyPairBeyondlt(d,lf(p1 ,p2))) ->
NextPseudoPair(x' ,x,d,p 1)
No Pai rleftSta rtingF rom(x', d, False)
False That(x' ,And(p2, ForAnyPai rBeyondlt(d, lf(p 1,p2))));

False That(x,And(p 1, p2)) - > False That(x, p 1) ;
FalseThat(x,And(p1,p2)) -> FalseThat(x,p2);
False That(x, lf(p 1, p2)) - > True That Pai r(x, p1) False That(x, p2);
FalseThat(x,Not(p)) -> TrueThat(x,p);
FalseThat(x,AnyOtherPairWithSame(O,p1)) ->

TrueThatPair(x,HasAsA(O,u))
ls(p2,lf(HasAsA(O,u),p1))
False That(x, ForAnyPairBeyondlt(d, p2));

FalseThatPair(<i,j>,HasAsA(Product,u)) -> val(eq(mult(i,j),u),0);

"Domain of the pairs"

Pair(<i,j>) -> ln(i,<2,99>) ln(j, <2,i>);

ln(i,<i,j>) ->;
ln(i,<i1,j>) -> val(inf(i1,j),1) val(plus(i1,1),i2) ln(i,<i2,j>);

"Limits of the domain after ordering it"

NoPairleftStartingFrom(<i,j>, Down, False) - > val(inf(i,j), 0);
NoPairleftStartingFrom (<i,j>,Up,False) ->

val(inf(i, 100), 1)
val(inf(1,j), 1); •

NoPairleftStartingFrom(<i,j>,Down,True) -> val(inf(i,j). 1);
NoPairleftStartingFrom(<i,j>,Up,True) -> val(inf(i, 100),0);
NoPairleftStartingFrom(<i,j>,Up,True) -> val(inf(1,j),0);

"From one (pseudo)pair to another"

NextPseudoPair(<i' ,j'>, <i,j>,d,p) ->
Nextlnteger(i',i;d)
True ThatPseudoPair(<i' ,j'> ,p);

True ThatPseudoPair(<i,j> ,HasAsA(Sum,u)) - > val(moins(u,i).j);

True ThatPseudoPair(<i,j>, HasAsA(AlmostProduct,u)) - > val(~iv(u,i),j);

Nextlnteger(i', i, Down) - > val(moins(i, 1).i');
Next1 nteger(i', i, Up) - > val(plus(i, 1),i');;

3

short communications

AVL-TREE INSERTION: A BENCHMARK PROGRAMM BIASED TOWARDS PROLOG

Maarten van Emden

University of Waterloo, Canada

I surmise that Prolog compares favourably in terms of efficiency with conventional high-level languages for tasks
that do not require arrays or iteration. AVL-tree (height-balanced-tree) insertion is such a task. A Pascal program for it
appears in "Program = Algorithm + Data Structure" by N. Wirth.

I was attracted to the idea of comparing a Prolog program with Wirth's for AVL-tree insertion. The most important
aspect is readability, but that is hard to compare objectively. Nevertheless, do make the comparison! The Prolog program
ran about 3 times faster (using our IBM Prolog) than the Pascal version on "Waterloo Pascal" (an interpreter) and 7 times
slower than code compiled by Pascal-VS, an optimizing compiler. This comparison is invalidated by the fact that out IBM
Prolog is based on the original Marseille design and therefore quite wasteful of storage.

I therefore look forward to the result of the comparison Ken Bowen is going to make on the DEC-10 using Warren's
compiler because there is every reason to believe that its storage management is about as efficient (space-wise) as
Pascal's. A listing of my program follows. It is shown the way it was run in Waterloo. On the DEC10 pragmatics may have
to be added to achieve the desired level of efficiency.

INSERT(NIL, *ELT, AVL(NIL, *ELT,-,NIL),YES).
/* . .. (5) */

INSERT(AVL(*LST, *ROOT, *Bl, *RSTI, *ELT, *NT, *HTISCHANGED)
<- .LE(*ELT, *ROOD & INSERT(*LST, *ELT, *LST1, *LSTISCHANGED)

& ADJUST(AVL(*LST1, *ROOT, *Bl, *RST); *LSTISCHANGED,LEFT, *NT, *HTISCHANGED).
/* ... (6) */

INSERT(AVL(*LST, *ROOT, *Bl, *RSTI, *ELT, *NT, *HTISCHANGED)
<- GE(*ELT, *ROOT) & INSERT(*RST, *ELT, *RST1, *RSTISCHANGED)

& ADJUST(AVL(*LST, *ROOT, *Bl, *RST1), *RSTISCHANGED,RIGHT, *NT, *HTISCHANGED).
/* ... (7) */

ADJUST(*OLDTREE,NO, *, *OLDTREE,NO). /* ... (8) */

ADJUST(AVL(*LST, *ROOT, *Bl, *RST),YES, *LOR, *NT, *HTISCHANGED)
<- TABLE(*BI, *LOR, *Bl1, *HTISCHANGED, *TOBEREBALANCED)

& REBALANCE(AVL(*LST, *ROOT, *Bl, *RST, *Bl1, *TOBEREBALANCED, *NT).

/* BALANCE WHERE BALANCE WHOLE TREE TO BE
BEFORE INSERTED AFTER INCREASED REBALANCED */

TABLE(LEFT <
TABLE(RIGHT >
TABLE(< LEFT
TABLE(< RIGHT
TABLE(> LEFT
TABLE(> RIGHT

REBALANCE(AVL(*LST, *ROOT, *Bl, *RST)
, *Bl1,NO,AVL(*LST, *ROOT, *Bl1, *RST)).

REBALANCE(*OLDTREE, *,YES, *NEWTREE)

<- (*OLDTREE => *NEWTREE).

AVL(*ALPHA, *A,>,AVL(*BETA, *B,>, *GAMMA)) =>
AVL(AVL(*ALPHA, *A,-, *BETA), *B,-, *GAMMA).

AVL(AVL(*ALPHA, *A,<, *BETA), *B,<, *GAMMA) =>
AVL(*AlPHA, *A,-,AVL(*BETA, *B,-, *GAMMA)).

YES NO
YES NO

NO YES
NO NO
NO NO
NO YES

AVL(*ALPHA, *A,>,AVL(AVL(*BETA, *X, *Bl1, *GAMMA), *B,<, *DELTA))=>
AVL(AVL(*ALPHA, *A, *Bl2, *BETA), *X,-,AVL(*GAMMA, *B, *Bl3, *DELTA))
<- TABLE2(*Bl1,*Bl2,*Bl3).

AVL(AVL(*ALPHA, *A,>,AVL(*BETA, *X, *Bl1, *GAMMA)), *B,<, *DELTA) =>
AVL(AVL(*ALPHA, *A, *Bl2, *BETA), *X,-,AVL(*GAMMA, *B, *Bl3, *DELTA))

<- TABLE2(*Bl1, *Bl2, *Bl3).

/* Bl1 Bl2
TABLE2(<
TABLE2(> <

4

Bl3

>
*/
).

).

).
).
). /* ... (9)*/
).
).
).

I
.;

short communications

THE "S-P PROBLEM" REVISITED

David Warren
SRI, USA

David Warren (Depart. of Al, Univ. of Edinburgh, now moving to
SRI) has modified the solution to the "S-P problem" by Antonio Porto
which appeared in the previous issue of the Newsletter, in an effort to
produce a clearer version.

These are David's notes on his program in a letter to Antonio,
followed by its listing:

1) The first four statements correspond exactly to the four statements
of the dialogue.
2) 'retract' etc. is dispensed with in favour of 'setof', which is really
what is needed.
3) My version actualy solves the problem in very much the same way
as Max Bramer outlined in AISB-37. It takes approximately 9 seconds. (*)

4) The quantifiers "one", "several", "every" are very close to the
treatment of determiners in the natural language question-answering
system Chat, which Fernando Pereira and I have implemented.

(*) Antonio Porto comments that his version also runs in the same way
and takes approximately 4 seconds, basically because his implementa
tion of the quantifiers is more efficient by not using 'setof' - 'one_
and_only_one' fails as soon as a second solution is found, and 'every'
also checks that there are several of them.

% Mr S and Mr P Problem.
%
% There are two numbers M and N such that 1 < M & N < 100.
% Mr S is told their sum S and Mr P is told their product P. The
% following dialogue takes place:
%
% Statement-1 :
% Mr P: I don't know the numbers.
%
%

(There are several sum values S that are compatible with
the product value P) .

statement1 (P) :- several(S, compatible(S,P)).

% Statement-2:
% Mr S: I knew you didn't know them;
% I don't know them either.
% (For every product value P that is compatible with the
% sum value S, statement-1 is true of P; and
%
%

there are several product values P that are compatible
with the sum value S).

Statement2(S) : - every(P, compatible(S,P). statement1 (P)),
several(P, compatible(S,P)).

% Statement-3:
% Mr P: Now I know the numbers!
% (There is just one sum value S compatible with the product
% value P for which statement-2 is true of S, and that value
% is S1).

statement3(P,S1) :- one(S,

S1).

(sumvalue(S), statement2(S),
compatible(S,P)),

% Statement-4:
% Mr S: Now I know them too!
%
%
%

(There is just one product value P compatible with the
sum value S for which statement-3 is true of P and S,
and that value is P1).

statement4(S,P1) :- one(P, (statement3(P,S), compatible(S,P)l. Pl/.

% Question: What are the numbers?
%
%

(For which sum value S and product value. P is state
ment-4 true?)

answer(S,P) :- statement4(S,P).

% [The single solution S = 17, P = 52 is produced in about 9 seconds].

% Definitions of the quantifiers 'one', 'several' and 'every'.

one (X,P,X1) : - setof(X,P,[X1]).

several(X,P) : - setof(X,P,Xs), length(Xs,N), N > 1.

every(X,P,Q) :- \ + (P, \ +0).

% The remaining definitions are compiled:

: -compile(sandp1).

%------------------------------------ .
% Supporting definitions for the Mr S and Mr P Problem.

: -public compatible/2, sumvalue/1 .

% Sum values range from 4 to 198.

sumvalue(S) :- range(S,4, 198).

% The next two clauses are logicaly equivalent to the third clause,
% but are more efficient in the cases that S or P are already known.

compatible(S,P) :- nonvar(S), !,
Mmax is S/2, S99 is S-99, max(2,S99,Mmin),
range(M,Mmin,Mmax),
P is M*(S-M).

compatible(S,P) :- nonvar(P), !,
sqroot(P,Mmax), P99 is P /99, max(2,P99,Mmin),
range(M,Mmin,Mmax),
N is P/M, Pis M*N,
Sis M+N.

% Sum value S is compatible with product value P if there are
% numbers M and N in the range 2 to 99 such that S is the sum
% of M and N, and P is the product of M and N. (See above) .

compatible(S,P) :-
range(M,2,99),
range(N ,2,99).
Sis M+N,
P is M*N.

% Finally, definitions of the predicates 'range', 'max' and 'sqroot'.

range(l,L,M)
range(l,I,-) .
range(l ,L,M)

nonvar(I), !, L =< I, I =< M.

L < M, L1 is L+1, range(l,L1 ,M).

max(X,Y,X) : - X >= Y, !.
max(X,Y,Y) : - X < Y, !.

sqroot(N,RN) : - N < 181, !, N1 is N*4, N2 is N*2,
sqroot(N1 ,RN1 ,0,N2), RN is RN1 /2 .

5

short communications

sqroot(N,RN) :- N < 32768, !, N1 is N*4,
sqroot(N1,RN1,0,363), RN is RN1 /2.

sqroot(N,RN) :- sqroot(N,RN,0,363).

% 'sqroot' expanded to include upper and lower limits
sqroot(N,RN,RN,_) :- N =:= RN*RN, !.
sqroot(N,RN,RN;RN1) :- RN1-RN < 2, !.
sqroot(N,RN,LL,UL) :- ML is (LL+UL+1) /2, M is ML *ML,

sqrootn(N,RN,LL,UL,ML,M).

% 'sqrootn' sets up for next invocation of sqroot
sqrootn(N,RN,LL,UL,ML,M) :- M > N, !, sqroot(N,RN,LL,ML).
sqrootn(N,RN,LL,UL,ML,M) :- M =< N, sqroot(N,RN,ML,UL).

BOOLEAN SATISFIABILITY

Dennis Kibler
University of California, Irvine, USA

\
\

The following program solves the quintessential Np-complete
problem, that of boolean satisfiability. Such programs seem to require
exponential running time. An analysis of the average behavior of the
following program would be interesting, but is beyond my means.

To use the program merely type " sat(some boolean expression) " .
The program will determine if any assignment of t or f (for true and
false) to the variables will make the expression true.

% -op(100,fx, '-').
:-op(200,yfx, '&').
:-op(300,yfx,'I').

/* On input, separate & and I from - by a space. 4

sat(t):- !.
sat(XIY): -sat(X); sat(Y)
sat(X& Y): - sat(X), sat(Y).
sat(-X): -not(X).

not(f): - ! .
not(X& Y): - not(X); not(Y).
not(XIY): - not(X), not(Y).
not(- X)- sat(X).

A FORWARD CHAINING PROBLEM SOLVER

Paul Morris

University of California, Irvine, USA

This example indicates how an exhaustive forward chaining
problem solver may be written in PROLOG. Both breadth-first and
depth-first variants are given. The code is contained in three files:
PS, PSJ and PS2. Loading PS with PS1 gives the breadth-first variant;
PS with PS2 gives depth-first. Two sample domains are given. These
are the blocks world and the chimp and bananas world.

The following points are of special interest. States are represented
by a list of terms, each term denoting a relationship. Rather than
standard STRIPS operators, we have used relational productions a la
Stephen Vere. Each term in the left hand side of such a production
must match a distinct relationship in the current state. This require-

6

ment precludes the generation of impossible states which would then
have to be weeded out. Following Vere, we have factored out the
terms common to both sides of the production, and placed them
separately. A second point of interest is the use of the list of condi
tions that are always true. Terms in the !efi side of productions may
match these, rather than items in the current state. Terms in the right
side matching these are never added to the state. This allows us to
represent the blocks world, including movements to and from the
table, with but a single operator. Movements from the table to
the table are avoided by a feature of the program which prevents
duplication of previously reached states.

This program was first written in UC! LISP and then rewritten in
DEC-10 PROLOG. The compiled PROLOG version runs more than four
times faster than the compiled LISP version.

The file PS:

/* Forward-chaining problem solver */
/* PS+PS1 = breadth-first */
/* PS+PS2 = depth-first */

:-op(500, xfy, '&').
:-op(500, xfy, '=>').

: -public solve/1, access/3.

solve(Goals):- access(S,N,P), included(Goals,S), n1, write(P).

/* access, on backtracking, does a complete traversal of the state
space, without repetition. S is bound to each state, while P gives the
path (operator sequence) needed to reach it. N is the path length. */

/* access is defined in PS1 and (differently) in PS2 */

applic(Opr,S1 ,S) :-
action(Com, Pre => Post, Opr),
always(Als),

deletconds(S1 ,Als,Pre,S2,Al1),
deletconds(S2,Al1,Com,S3,Al2),
addconds(S3, Com,S4),
addconds(S4, Post,S).

deletconds(S,Als, [],S,Als).
deletconds(S,Als, [C, .. Z],S2,Al2) : -

deletconds(C,S,Als,S1 ,Al1),deletconds(S1 ,Al1,Z,S2,Al2).

addconds(S, [],S).
addconds(S,[X, .. Y],S2) :- addcond(X,S,S1), addconds(S1,Y,S2).

addcond(X,S,S) :- always(Y),member(X,Y), ! .
addcond(X,S,[X, .. SJ).

deletcond(C,S,Als,S1 ,Als) :- delete(C,S,S1).
deletcond(C,S,Als,S,A11) :- delete(C,Als,Al1).

delete(X,[X, .. Y],Y).
delete(X,[Y, .. Z],[Y, . .W] :- delete(X,Z,W).

included(G1 &G2,L) :- member(G 1,L),included(G2,L), ! .
included(G,L) :- member(G,L).

member(X,[X, .. Y]).
member(X,[Y, .. Z]) :- member(X,Z).

The file PS1:

/* Must also load PS */

access(State, N, Path):
abolish(reached,3),

short communications

reach(State,N,Path),
write(N), ttyflush, /* to see what's happening */
assertz(reached(State, N, Path).

reach(SS,0,start) :- initstate(S),sort(S,SS).
reach(SS,N,Path+Opr):-

reached(S1 ,N1 ,Path),
N is N1+1,
applic(Opr,S1 ,S),

sort(S,SS),
\ +(reached(SS,_,_)).

The file PS2:

/* Must also load PS */

access(State,N, Path):
abolish(seenstate, 1),
initstate(S0), sort(S0,SS0),
reachable (SS0,0,start,State,N, Path),
write(N),ttyflush, /* to see what's happening */
assert(seenstate(State)).

reachable(S,N,P,S,N,P).
reachable(S,N, P,Sf, Nf, Pf):

N 1 is N+1,
applic(Opr,S,S1),
sort(S1 ,SS1),
\+(seenstate(SS1)),
reachable(SS1 ,N1 ,P+ Opr,Sf,Nf,Pf).

/* Notice the six variables in reachable. The extra three are needed to
transport the answers back from the bottom of the loop. We could get
by without them by inverting the loop, but then backtracking would
occur, undesirably, at the other end. */

The blocks world:

action([clear(X)],
[on(X,Y),clear(Z)] => [on(X,Z),clear(Y)],
move(X,Z)).

always([clear(table)]).

initstate([on(a,b),on(c, table),on(b, table),
clear(a),clear(c)]).

The chimp and bananas world :

always([pos(a),pos(b),pos(c)]) .

action([pos(X),pos(Y),low(ch imp)],
[at(chimp,X)]= > [at(chimp,Y)],
gofrom(X,Y)).

action([pos(X),pos(Y),low(chimp)],
[at(chimp,X),at(box,X)] => [at(chimp,Y),at(box,Y)],
pushbox(X,Y)).

action([pos(X),at(box,X),at(chimp,X)] ,
[low(chimp)] => [high(chimp)],
climbox(X))

action([high(chimp),pos(X),at(chimp,X),at(bananas,X)],
[nobananas] => [hold(bananas)],
grabananas).

action([pos(X),at(box,X),at(chimp,X)],
[high{chimp)] => [low(chimp)],
climbdown).

inistate([at(chimp,a),at(box,b),at(bananas,c),
low(chimp),nobananas]).

A SHORT CUT TO MORE INFORMATIVE ANSWERS

Veronica Dahl

Buenos Aires University, Argentina

Most Prolog natural language (NL) data base systems implemented
to date, base retrieval upon the evaluation of a formula obtained by
parsing a user's NL query.

Typically, language coverage is far wider for input than for output,
given that much more attention has been dedicated to sentence ana
lysis than to generation. Output sentences are usually laconic answers
to yes-no, who or how much/many questions, constructed around a
few key words and phrases.

This is quite appropriate for straightforward, naive answers,
but hardly mimicks ordinary human communication, in which the
questioner's assumptions are detected, taken into consideration and
assuming no stonewalling intentions - corrected and supplemented
when felt necessary.

Some systems - cf. those implemented for Spanish, French, Por
tuguese and English from [Dahl 1977] - partially capture this ability by
detecting certain failed presuppositions (namely, those induced by NL
quantifiers or by certain kinds of plural}, with the aid of a third logical
value (e.g. "pointless"). Because of the lack of generating capabilities,
however, failed presuppositions are detected, but neither identified nor
corrected. This would involve restating at least the presupposition's
internal representation into NL terms.

The shortest short cut to avoid developing an output grammar
might be to store both representations (i.e., the NL and the formal one)
of each presupposition, as a side effect of parsing. This, however, -
besides too much nearing the unaesthetical brute force approach -
might mean redundant work in some cases (e.g. when for some
reason the system decides to overlook a given failure), and may lose
useful information that is explicity only in the internal formula (e.g.,
type constraints).
' I have recently implemented another Prolog short cut which

postpones decisions on when and what to output until all the informa
tion on the input sentence becomes available (i.e., at the evaluation
stage). Although also based upon some fixed NL expressions, it
acquires a fluent-like touch by incorporating the names of relations and
items named in the query or retrieved, plus the additional information it
can deduce from the question (e.g. semantic types, implicit meanings
of quantifiers, etc.).

Thus, an input sentence as :

"The salesman that lives in Temperley earns 4 million",

which used to get the fixed answer:

"There is some false presupposition in your statement"

now gets the answer:

"You are wrongly assuming that there is exactly one human that
is a salesman and that lives in Temperley".

7

short communications

In order for the system to make subtler decisions and provide
richer answer, extra non-traditional truth values may be added. This is
quite inexpensive in the kind of systems we are concerned with. For
instance, different values can be distinguished for a quantifier's failed
presupposition and for distributive plurals with mixed truth values (as in
"Al teachers like Philosophy" with respect to a world where some do
while others don't).

The system is then informed about the specific type of presupposi
tio_n that has failed, and this information can be easily carried on -
always via truth values - to higher levels of a sentence.

This approach has the two following advantages:

- Because multiple values are always handy for an overall view by
the system, decisions can either be local to the subformula
evaluated, or be taken after an analysis of the particular
presuppositions in a given query (for instance, a series of embe
dded false presuppositions might not be all reported; different
kinds of presuppositions might interact, etc). This seems a more
human-like behaviour than a standard, rigid treatment of all
presuppositions, irregardless of context.

- Since fixed expressions, besides formula-extracted basic infor
mation, are the basis of this approach, the extra power is gained
while maintaining transposal to various natural languages quite a
simple matter.

A more comprehensive approach, of course, would be to output
informative and linguistically rich messages through a generating
grammar. Ideally, the same one should serve both for parsing and
generation.

This, however, seems a difficult matter for the present state of the
art in Prolog grammars, and might require more evolved forms of MGs
[Colmerauer 1978]. In the meantime, the solution outlined here might
prove a good compromise yielding immediate, non-expensive results.

ACKNOWLEDGEMENT

Thanks are due to Lisbon's Laborat6rio Nacional de Engenharia
Civil, for having provided the computer facilities that lack at the Buenos
Aires University.

REFERENCES

COLMERAUER. A. (1978). Metamorphosis grammars. In: Natural language communication
with computers, vol. I. Springer-Verlag.

DAHL. V. (1977). Un systeme deductif d'interrogation de banque de donnees en espagnol.
These de Troisieme Cycle, Univ. d'Aix-Marseille. France.

T---PROLOG: A VERY HIGH LEVEL
SIMULATION SYSTEM

I. Fut6, J. Szeredi

Inst. for Coordination of Computer Techniques/ SZKI /
H-1368 Budapest, P.O.B. 224, Hungary

For modeling we found useful to combine the time concept of
discrete simulation languages and non-procedural programming
concepts of PROLOG. The result is a discrete simulation system called
by us T-PROLOG [2].

8

The basic elements of the system are:

1. The notion of process /in the sense of [3]/.
There can be several processes in the system running
conceptually in parallel. A PROLOG-like goal corresponds to
each of them. Each process is executed according to the
control mechanism of PROLOG, influenced by inter-process
communication.

2. The notion of resource.
Resources are model elements that can be used only by one
process at a time. The use of a resource can take time and
may be returned or deleted after use. Resources also may
be created at program initialisation or dynamically during
program execution.

3. The notion of internal time.
A duration time can be assigned to certain program elements
independently of their real execution time. An internal clock
is maintained by the system which is used for scheduling the
processes.

4. Messages and conditions.
Processes can wait for fulfilment of conditions or messages.
Conditions can be formulated using the full power of
PROLOG_.

5. Backtrack.
The whole system including the scheduler can backtrack into
a previous state and try an alternative path of control.
Backtrack is caused either by a failure in the execution of a
process or by a deadlock or when the prescribed termination
time of a process is passed.
Choice points are implicitly generated at resource allocation
to try all meaningful distributions of resources among pro
cesses.

To illustrate programming in T-PROLOG we give a definition of the
five philosophers problem.

Resource(Fork(A)).
Resource(Fork(B)).
Resouce(Fork(C)) .
Resource(Fork(D)) .
Resource(Fork(E)).
Satiated(n):

Eat:.

Good_fork(n,f1 ,f2), Seize(f1), Seize(f2),
Eat, Release(f1), Release(f2).

During(10).
GoocLfork(1,Fork(A),Fork(B)).
Good ... Jork(2,Fork(B),Fork(C)).
Good_fork(3,Fork(C),Fork(D)) .
Good_fork(4,Fork(D),Fork(E)).
GoocLfork(5,Fork(E),Fork(A)).

New(Satiated(1),Phil1,0,30), New(Satiated(2),Phil2,0,30),
New(Satiated(3),Phil3,0,30), New(Satiated(4),Phil4,0,30),
New(Satiated(5)1;'hil5,0,30).

Rt.. '1ning the goal (given at the end of the example) causes various
deadlock situations to occur, after which the system is able to find all
possible solutions.

The built-in procedures of T-PROLOG used in the example are:
- SEIZE and RELEASE for seizing and releasing resources,

short communications

- DURING for suspending a process unconditionally for a given . backtracking into 'all' will produce another instance of T1 and another
time duration, corresponding list L, until no more solutions to G1 exist and 'all' finally

- NEW for creating a process with a given goal, identifier, start fails.
time and termination time. All this is best seen with an example. Suppose we have the

The current implementation of T-PROLOG is based on the
MPROLOG system [7], and uses special built-in procedures for
handling several pseudo parallel threads of control.

REFERENCES

[1] J. BENDL. P. KOVES. P. SZEREDI: The MPROLOG system. Preprints of Logic Pro
gramming Workshop, Debrecen (Hungary), 1980, pp. 201 -210.

(2] I. FUTO, J. SZEREDI: T-PROLOG: general information manual. Institute for Co-ordination
of Computer Techniques, Budapest, 1980.

[3] R. E. NANCE, V. TECH : The t ime and state relationship in simulation modelling. Comm.
ACM. Vol. 24. No. 4. Apr. 1981, pp. 173-180.

ALL SOLUTIONS

Luis Moniz Pereira
Antonio Porto

Departamento de Informatica

Universidade Nova de Lisboa
1899 Lisboa, Portugal

Any Prolog programmer sooner or later feels the need for a predicate
capable of producing the set of all solutions to a given problem.

Those not fortunate enough to have a Prolog system offering such
a predicate as a built-in feature usually resort to ad-hoc techniques
for achieving its effect in a particular setting. We show a compact,
reasonably efficient and sound implementation of such a predicate, that
anybody can use since it is written in Prolog itself.

The predicate is

all (T, G, L)

and it reads "all instances of the term T for which the goal G is satisfied
are the members of list L ". L is required to be non-empty, so 'all' fails
if G has no solution.

The term T is just a template for building L, so free variables within
will not be bound upon execution of 'all'.

G can be any valid goal expression in Prolog, including 'cut's (which
only affect the evaluation of G within the evaluation of 'all') and
'all's (whose nesting is very useful for structuring sets of solutions).
Furthermore, G can be of the special form

G1 same T1

where G 1 is any goal expression and T1 is any term. This variant allows
the distinction between two roles of the free variables appearing in G
but not in T:

If G is not of the 'same' type, the different solutions of G for which
instances of T are put in L can correspond to different instantiations
of any free variable in G, and 'al l' acts as a deterministic predicate.

If, however, G is of the form 'G 1 same T1 ', the different solutions

of G 1 for which instances of T are put in L must correspond to the same
instance of T1, which remains enforced within the execution of 'all';

following micro data base:

d ri nks(john, tea, hot) .
drinks(john,milk,hot).
drinks(john,milk,cold).
drinks(john,milk,warm) .
drinks(john,beer,cold).
drinks(john,wine,cold) .

drinks(bill,milk,cold).
drinks(bill,beer,cold).
drinks(bill,beer,warm).

drinks(joe,beer,cold).
drinks(joe,wine,cold).
drinks(joe,wine,warm).
drinks(joe, tea.hot).
drinks(joe,tea,warm).
drinks(joe,tea,cold).

Some natural language questions follow, along with the corres
ponding formulation in terms of the 'all' predicate, and its solution(s).

Who drinks?

Who drinks the same drink?

all(P, drinks(P,- ,-l, X).

X = [john, bill, joe].

all(P, drinks(P,D,_) same D, X).

X = [john, joe]
X = [john, bill]

D = tea
D = milk

Who drinks each drink? all(D-Ps, all(P, drinks(P,D,_) same D, Ps), X).

X = [tea-uohn,joe], milk-[john,bill], ..].

Who drinks (and at which temperatures) each drink?

all(D-PT, all(P:Ts, all(T, drinks(P,D,T) same (D,P). Ts) same D, PT), X).

X = [tea-[john: [hot], joe: [hot,warm,cold]], milk-[john: [hot, ...], ...], ..].

The Prolog definition of 'all' now follows:

?- op(50,xfx,same).

all(T,G same X,S) :- !, all(T same X,G,Sx). produce(Sx,S,X).

all(T,G,S) :- asserta(one(end)), solve(G), asserta(one(T)), fail.

allCf,G,S) :- set(S).

solve(G) : - G.

set(S) :- build(S,[]), (S=[], !, fail;
asserta(set(S)), fail).

9

short communications
set(S) : - retract(set(S)) .

build(NS,S) : - retract(one(X)), (nonvar(X), X=end, NS=S ;
join(S,X,XS), build(NS,XS)), !.

join(S,X,S) : :... in(S,X).

join(S,X, [XIS]).

in([Xi_],X).

in([_IS],X) :- in(S,X).

produce([T1 same X1 ITn],S,X) :- split(Tn,T1 ,X1 ,S1 ,S2),
(S=[T1IS1], X=X1 ;

!, produce(S2,S,X)).

split([],-,-,[],[]).

split([T same XITn],T,X,S1 ,S2) :- split(Tn,T,X,S1 ,S2).

split([Tl same XITn],T,X,[Tl IS1],S2) :- split(Tn,T,X,S1,S2).

split([Tl ITn],T,X,Sl ,[Tl IS2]) :- split(fo,T,X,S1 ,S2).

Some remarks should be made:

1) The non-logical predicates 'asserta' and 'retract' are called from 'all'
and 'build' just to implement a stack where solutions are kept during
backtracking within G.

2) The predicate 'get' is defined so as to recover the space used by the
recursive execution of 'build', instead of calling 'build' directly from 'all' .

3) 'solve' is necessary, so that any 'cut's within G do not affect the
clauses for 'all' .

4) There is some time lost in keeping L free of repeated elements. For
applications where this feature is not necessary one can define a faster
'all' by changing the clauses for 'build', 'produce' and 'split' as follows:

build(NS,S) :- retract(one(X), (nonvar(X), X=end, NS=S ;
build(NS,[XIS])), !.

produce([T1 same Xl ITn],S,X) :- split(Tn,X1 ,S1,S2),
(S=[T1IS1], X=Xl

!, produce(S2,S,X)).

split([],-,[],[]) .

split([T1 same XiTn],X,[T1IS1],S2) :- split(Tn,X,S1,S2).

split([T1ITn],X,S1 ,[T1 IS2]) :- split(Tn,X,S1 ,S2).

5) Where, using DECsystem-JO Prolog's predicate 'setof', one would
write

setof(X, p(X,Y), S) and setof(X, y·p(X,Y), S) ,

we would write, respectively,

all(X, p(X,Y) same Y, S) and all(X, p(X,Y), S) ,

with the difference that we do not sort S.
For natural language processing we prefer our version, since hidden

variables do not have to be existentially quantified explicitly.

6) This 'all' has been tested and used extensively.

community news & events
FIRST INTERNATIONAL

LOGIC PROGRAMMING CONFERENCE

September 1982
Marseille, France

CALL FOR PAPERS

The intention of this conference is to iden
tify and encourage research into the theory,
implementation and applications of logic as a
programming language. Papers are sought in
the following areas:

1) The use of logic as a computational for
malism for program development, database

10

description and query, natural language
processing, knowledge based systems,
and other applications.

2) The design and implementation of logic
programming systems, both on conven
tional von Neumann machines and on
parallel computer architectures; improved
control methods.

3) Language extensions such as the use of
metalanguage and set theoretic data struc
tures and operations.

Submission of papers :

Papers should be written in English, include
an abstract (of approximately 100 words) and

not exceed 20 double-spaced pages (5000
words). Send four copies of each paper to the
programme committee chairman by March 1,
1982:

Alain Colmerauer

Groupe d'lntelligence Artificielle
Universite d'Aix-Marseille II
70 route Leon Lachamps, Case 901
13288 Marseille Cedex 2
FRANCE

Authors will be notified by May 15. Final
version due June 15.

Conference location:

The conference will take place at the

I

community news & events

Luminy campus of the University of Aix-Mar
seille 11, on the southern outskirts of Marseille,
probably on the second week (6 - 1 O) of
September.

Programme Committee:

K. Bowen, Syracuse, USA
M. Bruynooghe, Leuven, Belgium
K. Clark, London, England
A. Colmerauer, Marseille, France
M. van Emden, Waterloo, Canada
H. Gallaire, Marcoussis, France
R. Kowalski, London, England
L. M. Pereira, Lisbon, Portugal
A. Robinson, Syracuse, USA
P. Roussel, Marseille, France
P. Szeredi, Budapest, Hungary
S. Tarnlund, Uppsala, Sweden

MPROLOG
A MODULAR
LOGIC PROGRAMMING LANGUAGE
FOR REAL LIFE APPLICATIONS

Szki
What is PROLOG7

PROLOG is a very high level programming
language based on mathematical logic. It
represents a really new direction in program
ming by supporting both descriptive, non-algo
rithmic and imperative, procedural approaches.
PROLOG is especially useful for solving com
plex probrems with relatively small human
effort. The language is very simple and human
-oriented; it can be learnt in a very short time
by people without previous computing practice.

The main application areas of PROLOG are

- computer aided design (e.g . pharmacology,
architecture)

- artificial intelligence
- symbol manipulation
- question answer systems
- very high level simulation (T-PROLOG).

What is MPROLOG7

MPROLOG is an efficient, modular PRO
LOG system supporting both the development
phase of programming and efficiency tuning
for production programs.

Its components are:

- the pretranslator, for converting MPROLOG
modules into an efficiently executable inter
nal form

- the consolidator, for linking separately pre
translated modules into a program

- the interpreter, for interpretation of a con
solidated program

- the Program Development Subsystem
(POSS)

The main component of the system is the
MPROLOG interpreter. It applies advanced
implementation techniques which result in a
high speed of execution and relatively low
storage requirements. There are about 200
~uilt-in procedures incorporated in the inter
preter; they provide e.g. arithmetic, input
-output, data base handling and search space
control functions. There is a convenient inter
face for including new user-defined "built-in"
procedures for tuning purposes.

The component of the system the user first
meets is the Program Development Subsys
tem. POSS provides a user-friendly envir
onment for interactive development of
MPROLOG modules. It contains a dedicated
editor, supplies various testing aids, also
supports tuning by providing facilities for pro
gram measurement. POSS itself is written
in MPROLOG and runs under control of the
interpreter.

Technical conditions

The MPROLOG system is implemented on
assembly level using CDL2 (Compiler Develop
ment Language) as a production tool. The
system is available at present on SIEMENS
7.755, IBM 3031 and VAX-11/780. The mini
mal storage requirement is 512 Kbyte. The
installation of the system in a new computer
environment takes 2-6 months depending on
availability of CDL2 for the given architecture.

Szki
INSTITUTE FOR CO-ORDINATION
OF COMPUTER TECHNIQUES HUNGARY
1054-BUDAPEST, Akademia u. 17.
Tel.: 129-600
Telex: 22-5381

A PROPOSAL

Maarten van Emden

There is widespread confusion about the
role of the "slash". I agree with Warren, who
maintains it is just a control message to the
interpreter which does not affect the logic of
any program in which it appears.

To avoid confusion I propose to use two
varieties of slash, say, green and red. To the

interpreter they mean the same. When a green
slash is removed from a clause, and no slashes
remain in the partition for that clause, th_e
logical reading of the partition is intended to
be true of the relation the programmer wants
computed. When a red slash is removed, this
is not necessarily the case.

An example of a green slash:
max(x,y,y) <- x~y &/
max(x,y,x) <- x?i<y

An example of a red slash:
max(x,y,y) <- x~y &/
max(x,y,x)

To say that a slash "changes the meaning"
of a Prolog program only adds to the confu
sion. Slashes do no such thing, not even red
ones. Only programs without any slash are
within the language of logic and, hence, only
these have meaning.

A PROLOG INTERPRETER

Grant Roberts's Prolog interpreter for IBM
370, 3031, 4341, and similar machines is now
finally being distributed by the University of
Waterloo. Note that this interpreter runs only
under the VM /CMS operating system. A li
cense for educational · institutions costs Can
$500 a year. Address enquiries to Sandra
Ward, Department of Computing Services,
University of Waterloo, Waterloo, Ontario, N2L
3G1 Canada.

NEW PROLOG DEVELOPMENTS IN HUNGARY

Peter Szeredi

Institute for Co-ordination of Computer
Techniques /SzKI /

H-1368 Budapest, P.O.B. 224, Hungary

The work on implementation and application
of PROLOG in Hungary till middle 1980 was
presented on the Logic Programming Works
hop in Debrecen in [Bendl 89] and [Santane 80].

Some interesting new PROLOG applications
started after that time are the following:

1. Dataflow modelling ([Doman 81])
An implementation of PARAFLOG, a higher
level applicative dataflow language has
been developed using PROLOG. It consists
of two programs: the translator converts
PARAFLOG programs into a /universal/
dataflow graph which is then interpreted by
the dataflow simulator.

11

community news & events

2. Documentation ([Fidrich 80))
The program helps in production of pro
gram documentation or other textual
objects according to some standards.
It provides means for handling various
forms of requirements /e.g . on the form or
contents of text/ and for stepwise refine
ment of the structure of a document in
accordance with the requirements.

3. CAD in mechanical engeneering
([Markus 81], [Molnar 81))
PROLOG is used in the area of production
control for the following purposes:

- modelling machine parts with the aim of
helping in computer aided classification
of machine parts;

- supporting design of production control
systems: scheduling a shop-floor level
production control of an integrated
manufacturing system;

- designing fixtures from a bounded set of
elements.

4. CAD in electronic engeneering
([Pasztome 81))
Two programs are being developed:
- supporting the design and checking of

printed circuit boards;
- synthesis of circuits for given Boolean

functions.

There is also much work is progress on the
new Hungarian PROLOG implementation, the
MPROLOG system (see [Bend! 80) and for
[Koves 81) an overview). After the first phase
of tuning the interpreter turned to be slightly
faster than our old PROLOG, but the process
of tuning is still continuing. A lot of built-in
procedures have been introduced, e.g. for for
matted output of terms, breakpoint handling
etc. The Program Development Subsystem
has been extended with means for program
measurement to allow tuning of PROLOG
programs. New versions of the other two
system components, the pre-translator and
consolidator have also beeen produced on
the basis of experience of one year in use.
Preparations are being made to include an
MPROLOG compiler into the system planned
for 1982. The whole system has been recently
ported to the Viv< 11 computer and runs under
VMS.

Most of new application projects are now
being realized in MPROLOG, furthermore there
is an activity to convert "old-PROLOG"
programs to MPROLOG in order to increase
their efficiency. Means have been developed
to support this conversion process.

Two of the converted programs, a drug

12

design application and the T-PROLOG inter
preter (see short communications) underwent
also a tuning phase with very promising resulte
[Szeredi 81 I.

REFERENCES

[Bendt 80)
J. Bend!, P. Koves, P. Szeredi : The
MPROLOG system . Preprints of the Logic
Programming Workshop (ed . S-A. Tiirn
lund), Debrecen, Hungary, 1980, pp. 201-
-209.

[Doman 81)
Andras Doman: An applicative language for
highly parallel programming, SzKI Technical
Report, Budapest, 1981.

[Fidrich 80)
Ilona Fidrich: User's guide to program
documentation system DOKSI (Hungarian)
SzKI, Technical Report, Budapest, 1980.

[Koves 81)
Peter Koves, Peter Szeredi: A programming
support environment for PROLOG program
development . Paper presented on the
Workshop "Logic Programming for Inte
lligent Systems".
Aug 1981, Los Angeles, Ca li fornia, USA.

[Markus 81)
A. Markus, B. E. Molnar, E. Szelke·: Logic
programming in the design of production
control systems. To appear in the Procee
dings of Compcontrol '81 , Nov 1981, Varna,
Bulgaria.

[Molnar 81)
B. E. Molnar, A. Markus: Logic programm
ing in the modelling of machine parts. To
appear in the Proceedings of Compcontrol
'81, Nov 1981, Varna, Bulgaria.

[Pasztorne 81]
Katalin Pasztorne-Varga: A solution of a
CAD problem in PROLOG. Paper presented
on the Workshop "Logic Programming for
Intelligent Systems"
Aug 1981, Los Angeles, Cal ifornia, USA.

[Santane 80]
E. Santane-T6th, P Szeredi: PROLOG
applications in Hungary. Preprints of the
Logic Programming Workshop (ed. S-A.
Tiirnlund), Debrecen, Hungary, 1980,
pp. 177-189.

[Szeredi 81)
Peter Szeredi: Mixed language programm
ing- a method for producing efficient
PROLOG programs.
Paper presented on the Workshop "Logic

programming for Intelligent Systems"
Aug 1981, Los Angeles, California, USA.

INDUSTRIAL REALIZATION IN PROLOG

Ch. Giraud, J. F. Pique and P. Sabatier

In one month, realized for the trench com
pany Cap Sogeti a natural language consult9ole
database. Written in Prolog, this database
system describes a trench public administra
tion consisting in different types of dependent
organisms with their staffs (names, functions,
ranks and titles), addresses and telephone
numbers.

CONSULTANCY SERVICE IN EXPERT
SYSTEMS AND PROLOG

Expert Systems Ltd has formed a pool
of associated consultants who are actively
involved in work on expert systems, Prolog,
and related areas such as knowledge aquisi
tion. These are all qualified, experienced people
who could help your organisation take its first
step in the field of knowledge engineering.

Specialist experience in any subject is nearly
always in short supply even more so in a new
subject in which interest is growing rapidly.

If you wish to take advantage of our consul
tancy service, please contact us directly and
we will do our best to accomodate you.

Alternatively, if you have practical experience
in the techniques of expert systems, know
ledge engineering, knowledge acquisition 9r

programming in Prolog, we would be pleased
to include you in our pool of associated
consultants.

Over the next year we expect an increasing
number of companies will require consultants
to advise them on where and how expert sys
tems and related techniques would be of
benefit to them. Expert Systems Ltd aims
to fulfil this need through its associated
consultants.

If you wish to add your particular expertise
to the pool of resources already available
through Expert Systems Ltd, please complete
the form below and return this sheet in
the enclosed envelope. Please also include
a single-sided sheet containing details of
qualifications and a brief curriculum vitae,
including availability, percentage of time avai
lable, and approximate consultancy rates
required .

Write to:

Knowledge Engineers & Designers
of Expert Systems

34 Alexandra Road, Oxford OX2 0DB
Telephone (0865) 42206

To help make published work by the Logic Programming Community
more easily accessible, references to that work should be made to
papers published in journals or conference proceedings where possible,
rather than to internal reports. To this end, a first list is printed here
that will be successively updated. Please help by sending references to
your own work.

BELOVARI, G. & CAMPBELL, J. A.
- "Generating contours of integration: an application of PROLOG

in simbolic computing"
5th Conference on Automated Deduction, Les Arcs
Lecture Notes in Computer Science, vol. 87
Springer Verlag, 1980.

BOWEN, K. A.
- "Prolog"

ACM 1979 Annual Conference, Detroit M. I., USA.

BRUYNOOGHE, M.
- "Analysis of dependencies to improve the behavion of Logic

programs"~

5th Conference on Automated Deduction, Les Arcs
Lecture Notes in Computer Science, Vol 87
Springer Verlag, 1980

- "Intelligent backtracking for an interpreter of Horn Clause logic
programs"
Proceedings, Colloquia Mathematica Societatis Janos Bolyai, 26
Mathematical Logic in Computer Science
Salg6tarjan (Hungary) 1978
North-Holland, 1981

- "Solving combinatorial search problems by intelligent backtra
cking"
Information Processing letters, no. 1, 1981

BUNDY, A. & BIRD & LUGER & MELLISH & PALMER
- "Solving mechanic problems using meta-level inference"

Proceedings IJCAl-6, Tokyo, 1979

BUNDY, A. & WELHAM, B.
- "Using meta-level inference for selective application of multiple

rewrite rules in algebraic manipulation"
5th Conference on AutomJted Deduction, Les Arcs
Lecture Notes in Computer Science, vol. 87
Springer-Verlag, 1980

CLARK, C. L. & McCABE, F. G.
- "IC PROLOG: Language features"

Proceedings of the Logic Pr.ogramming Workshop

Debrecen, Hungary, 1980

CLARK, C. L. & TARNLUND, S.-A.
- "A first order theory of data and programs"

IFIP '77
North-Holand, 1977

COLMERAUER, A.
- "Metamorphosis Grammars"

Natural Language Communication with Computers
Lecture Notes in Computer Science, Vol. 63
Springer-Verlag, 1978

- "Sur les bases theoriques de PROLOG"
AFCET Groplan Bulletin, no. 9, 1979.

DARVAS, F. & FUTO, I. & SZEREDI, P.
- "Logic based program system for predicting drug interactions"

Int. J. Bio-Medical Computing, no. 9, 1978 -

DELIYANI, A. & KOWALSKY, R.
- "Logic and semantic networks"

CACM, vol. 22, no. 3

DINCBAS, M.

- "A Knowledge-based expert system for automatic analysis and

synthesis in CAD"

Proc. IFIP Congress '80

Tokyo, 1980.

FUTO, I. & DARVAS, F. & CHOLNOKY, E.

- "Pratical application of an Al language"

Proc. of the Hungarian Conference on Computing

Budapest, 1977

FUTO, I. & SZEREDI, P.

~ "Some implemented and planned PROLOG applications"

Logic and Data Bases, ed. by Gallaire and Minker

Plenum Press, 1978

GALAIRE, H. & LASSERRE, C.

- "Controlling knowledge deduction in a declarative approach"

Proc. IJCAl-6, Tokyo, 1979

HOGGER, C. J.

- "Goal-oriented derivation of logic programs"

Mathematical Foundations of Computer Science 1978

Proceedings, 7th Symposium Zakopane, Poland 78

Lectures Notes in Computer Science, Vol. 64

Springer-Verlag, 1978

KOWALSKY, R.

- "Predicate Logic as a Programming Language"

Proc. IFIP Congress '74

North-Holland, 197 4

- "Algorithm= Logic+ Control"

CACM, vol. 22, no. 7, 1979

- Logic for problem solving

Artificial Intelligence Series

The Computer Science Library

North-Holland, 1979

MARKUSZ, Z.

- "How to design variants of flats using the programming language

PROLOG based on mathematical logic"

Proc. IFIP 1977 ·

North-Holland, 1977

McDERMOTT, D.

- "The PROLOG phenomenon"

Sigart Newsletter, July 1980

MONTEIRO, L.

- "An extension to Horn clause logic allowing the definition of

concurrent processes"

International Colloquium on Formalization of Programming

concepts, Peniscola

Lecture Notes in Computer Science, Vol. 108

Springer-Verlag, 1981

PEREIRA, E. & WARREN, D.

- "Definite clause grammars for language analysis - A survey of the

formalism and a comparison with augmented transition networks"

Artificial Intelligence Journal, vol. 13, no. 3, 1980

13

PEREIRA, L. M. & PORTO, A. TARNLUND, S.-A.

- "Selective Backtracking for Logic Programs" - "An interpreter for the programming language predicate logic"

Proc. IJCAI, Tiblisi, 1975 5th Conference on Automated Deduction, Les Arcs

Lecture Notes in Computer Science, vol. 87

Springer-Verlag, 1980
- "Horn clause computability"

BIT, vol. 17, no. 2, 1977

PEREIRA, L. M. & MONTEIRO, L. F. van EMDEN

- "The semantics of parallelism and co-routining in Logic

Programming"

- "Programming in resolution logic"

Machine Intelligence, no. 8, 1977

Proceedings, Colloquia Mathematica Societatis Janos Bolyai, 26

Mathematical Logic in Computer Science
van EMDEN, . M. H. & KOWALSKY, R.

- "The semantics of predicate logic as a programming language"

JACM, vol. 23, no. 4, 1976 Salg6tarjan (Hungary) 1978

North-Holland, 1981

ROBINSON, J. A.
- Logic: form and function

Edinburgh University Press, 1979

from Ames, Iowa:

The Recursion-Theoretic Complexity
of the Semantics of Predicate Logic

as a Programming Language

Howard A. Blair

Each set of definite clauses has associated
with it an operator T mapping Herbrand stru
ctures to Herbrand structures. The set of
definite clauses P is regarded as an abbrevia
tion of its "if and only if" version, CDB(P).
The fixed points of T are the Herbrand models
of CDB(P). The ascending (j) and descending
(!) ordinal powers of T are defined. The
descending ordinal powers of T reach a fixed
point that is the maximal Herbrand model
of CDB(P). The set -A of formulas provable
by the negation-as-failure rule corresponds to
IN - Tlw . However, the maximal Herbrand
model corresponds to IN - T /· for "A. usually
larger than w. Thus the negation-as-failure rule
is often incomplete for various sets of definite
clauses.

Two main results are reported here: 1) For
some sets of definite clauses P, "A. = w1, ("A. is
always,;;; w1) where w1 is the least non
constructible ordinal. 2) For· some sets of
definite clauses P, IN - Tl h is TTJ-complete,
from which it ,follows that the problem of
deciding Herbrand validity is TTJ-complete.

14

WARREN, D. H. & PEREIRA, L. M. & PEREIRA, F.

- "Prolog- the language and its implementation compared with LISP"

Sigplan Notices, vol. 12, no. 8 and Sigart Newsletter, no. 64,

August 1977.

abstracts
from Budapest:

A Very High Level Discrete
Simulation System

T-PROLOG

/ .. Fut6
J. Szeredi

T-PROLOG a very high level simulation
language is presented. It has the following
properties.

- the system takes over part of the problem
solving effort from the user.

- a built-in backtrack mechanism permits
backtracking in time in case of a deadlock.

- it changes automatically and dynamically
the simulation model on the basis of
logical consequences.

- a more advanced process communication
mechanism is presented for the user.

The processes are synchronized by a built-in
scheduler.

Mixed language programming - a method
for producing efficient PROLOG programs

Peter Szeredi

There are several PROLOG applications

where the speed of present implementations
is insufficient. A solution for this problem is
proposed in the framework of MPROLOG, the
new Hungarian PROLOG implementation.
Methods are presented for separating the cri
tical parts of a program and introducing them
as extra built-in procedures written in a lower
level language. This way flexibility and very
high level of PROLOG is still preserved for the
application programmer, while program speed
can be increased considerably. Experience
gained in applying these methods tO two pro
grams in drug design and simulation is also
presented.

A programming support environment
for PROLOG program development

Peter Koves
Peter Szeredi

The Program Development Subsystem
(POSS) of the MPROLOG system is intro
duced. POSS, which is itself written in
PROLOG, supports the whole development
process of a PROLOG module, featuring
syntax driven input-output and editing func~
tions and also sophisticated tools for running

· and testing the program including tracing,
breakpoint and error handling. Plans for further
development of POSS are outlined.

from Buenos Aires:

Towards Constructive Data Bases

Veronica Dahl

We discuss data bases that can be viewed
as sets of specifications for combining diffe
rent components into desired configurations or
structures. These are constructed on demand,
according to the combination rules stored and
the particular requirements in a user's query.
We emphasize intelligent synchronization of
constructive processes, and relate our proposal
to recen·t development on concurrent logic
programming.

On Data Base Systems Development
Through Logic

Veronica Dahl

We discuss the use of logic as a single tool
for formalizing and implementing different
aspects of data base systems in a uniform
manner. The discussion focusses on relational
data bases with deductive capabilities and very
high level querying and defining features. The
computational interpretation of logic is briefly
reviewed, and then we examine several pros
and cons concerning the description of data,
programs, queries and language parser in
terms of logic programs. While discussing the
inadequacies, we show how to overcome
them by introducing convenient extensions
into logic programming. Finally, we present an
experimental data base query system with a
natural language front end, implemented in
Prolog, as an illustration of these concepts. We
include a description of the latter from the
user's point of view and a sample consultation
session in Spanish.

Translating Spanish Into Logic
Through Logic

Veronica Dahl

We discuss the use of logic for natural la
nguage (NL) processing, both as an internal
query language and as the programming tool.
Some extensions to standard predicate cal
culus are motivated within the first of these
roles. A logical system including them is infor
mally described. It incorporates semantic as
well- as syntactic NL features, and its seman-

abstracts

tics in a given interpretation (or data base)
determine the answer-extraction process. We
also present a logic-programmed analyser that
translates Spanish into this system. It equates
semantic agreement with syntactic well-for
medness, and can detect certain presupposi
tions, solve certain ambiguities and reflect rela
tions amon_g sets.

from Buffalo:

SNePSLOG
A "Higher Order" Logic Programming

Language

Stuart C. Shapiro, Donald P. McKay,
Joao Martins, Ernesto Morgado

SNePSLOG is a logic programming interface
to SNePS, the Semantic Network Processing
System, and SNIP, the SNePS Inference
Package. Assert ions and rules written in
SNePSLOG are · stored as structures in a se
mantic network. SNePSLOG queries are trans
lated into top-down deduction requests to
SNIP. Assertions can also be stated in a
way that triggers bottom-up SNIP deductions.
Output from SNIP is translated into SNePSLOG
formulas for printing to the user.

Since SNePSLOg predicates and formulas
are represented as nodes in the semantic net
work, and since SNIP allows variables to range
over any nodes, SNePSLOG expressions are
not limited to first order predicate calculus.
Examples in this paper will show SNePSLOG
rules · that quantify over predicates, and a
SNePSLOG rule that has a rule in antecedent
position which is treated like an atomic asser
tion during deduction.

Since SNIP supports several non-standard
logical constants, the SNePSLOG syntax also
allows them. Some of these are used below
and will be explained where they first occur.

The examples in this paper refer to naval
information.

from College Park, Maryland:

On Indefinite Databases
and the

Closed World Assumption

Jack Minker

A database is said to be indefinite if there
is an answer to a query of the form Pa V Pb
where neither Pa nor Pb can be derived from

the database. Indefinite databases arise where,
in general, the data consists of non-Horn clau
ses. A clause is non-Horn if it is a disjunction of
literals in which more than one literal in the
clause is positive.

Horn databases, which comprise most data
bases in existence, do not admit answers of
the form Pa V Pb where neither Pa nor Pb are
derivable from the database. It has been
shown by Reiter that in such databases one
can make an assumption, termed the Closed
World Assumption (CWA). that to prove that
Pa is tru~. one can try to prove Pa, and if the
proof for Pa fails, one can assume Pa is true.

When a database consists of Horn and non
-Horn clauses, Reiter has shown that it is not
possible to make the CWA. In this paper we
investigate databases that consist of Horn and
non-Horn clauses. We extend the definition of
CWA to apply to such databases. The assu
mption needed for such databases is termed
the Generalized Closed World Assumption
(GCWA). Syntactic and semantic definitions of
generalized closed worlds are given. It is
shown that the two definitions are equivalent.
In · addition, given a class of null values it is
shown that the GCWA gives a correct inter
_pretation for null values.

from Edinburgh:

Logic Programming:
A Computing Tool

for the Architect of the Future

Peter S. G. Swinson

(department of Architecture)

Computer Aided Architectural Design is
reviewed with particular reference to new soft-

. ware techniques that are becoming available.
The needs of the designer are examined lea
ding to a specification for the computing tools
that may serve architects in the future. The
paper concludes by reporting on the results of
early studies into one radically new tecnique -
logic programming.

from London, England:

An Introduction to Logic Programming

K. L. Clark

In this paper we introduce the use of the
Horn clause subset of predicate logic as a

15

programming language. We do this mainly
through example programs. These highlight
the novel aspects of logic programming, such
as the ability to use the same program to
compute a relation and its inverse, and the fact
that it is suitable both for symbolic manipula
tion and deductive retrieval of information. The
computation of a logic program is an inference.
We briefly describe the inference procedure
used by the PROLOG logic programming lan
guage. We also describe some of the extra
logical features pf PROLOG and indicate how it
might be used to implement. expert systems.

Logic as a Database Language

Robert Kowalski

This paper investigates the application of
logic to databases in the restricted sense
which regards a database as a collection of
assumptions expressed in symbolic logic. A
database query is regarded as a theorem to be
proved from the assumptions.

This approach contrasts with the interpreta
tion of a database as a relational structure.
Queries are expressed in logic but are
answered by evaluating them in the structure.
This is the approach which is employed in the
relational database model.

The difference between the two approaches
has been characterised by Nicolas and Gal!aire
as the difference between regarding a data
base as a theory and regarding it as an inter
pretation. When a database is regarded as a
theory it is natural to describe data both by
means of explicit assertions and by means
of general rules. The inclusion of recursive
definitions can be accomodated without
leaving first-order logic. Such a database can
have many models, i.e. interpretations which
satisfy the theory. tn this case the database
can be regarded as describing incomplete
information, since it does not distinguish a
unique interpretation from among its many
models. Although the logic itself is only two
-valued, a yes-no query can be answered in
one of three different ways : "Yes" if it can be
proved, "No" if its negation can be proved, and
"Don't know" if neither it nor its negation can
be proved.

When a database is regarded as an interpreta
tion it is natural to restrict database description
to the explict enumeration of the tuples which
belong to the relations in the database. Althou
gh general rules defining virtual relations can
be incorporated into queries, recursive defini
tions cannot be included without leaving first
-order logic. Since every yes-no query can only

16

abstracts

be answered only "yes" or "no", incomplete
information cannot be dealt with without
leaving two-valued logic.

Prolog as a Logic Programming Language

R. A. Kowalski

This paper is concerned with the relationship
between logic programming and Prolog - and
with the bearing this has on Pro log pro
wamming methodology. It is motivated in part
by McDermott's advocacy of Prolog as a pro
gramming language for Artificial Intelligence
and by his complaint that claims for its close
relationship with logic are unjustified: Our posi
tion is in accordance with vc:m Emden_'s reply to
McDermott.

Although Prolog is best thought of as based
on Horn clause logic, it incorporates only a
simple backtracking proof procedure. Because
of this limitation and, for other reasons, it
provides various extralogic primitives to
compensate. These can be used to simulate,
rather awkwardly, programming styles more
appropriate to conventional programming
languages.

Our thesis is that the extralogical features
of Prolog ought to be used in a disciplined
fashion . Whenever possible, their use should
be encapsulated in the definition of higher
-level features which extend either the logical
primitives of the language or its control facili
ties. Used in this way, the otherwise dange
rous extralogic features of Prolog provide a
useful safety valve which can be used to
extend the power of the language while
retaining its logical foundations.

from London, Ontario:

Logic and Programming Methodology

E. W. Elcock

(No abstract provided) .

from Lexington, Kentucky:

Focalizers, the Scoping Problem, and
Semantic Interpretation Rules in Logic

Grammars

Michael C. McCord

This paper deals with a system of semantic
interpretation for natural language within the

framework of logic programming. Of special
interest are a class of grammatical items called
focalizers, and the problem of determining
their scopes in logical form. Focalizers include
quantificational determiners, certain adverbs,
and abstract items relating to discourse
structure.

Prolog as a Relationally Complete Database
Query Language which Can Handle

Least Fixed Point Operators

Derek J. Wright

The purpose of this paper is to bring
together two fields: work done · towards the
design of "universal" relational database query
languages and the, as yet, unrelated work
done on the programming language PROLOG.
· Classical, relationally complete query lan

guages (the abstract relational algebra, rela
tional calculus and the implemented "more
than" relationally complete languages such
as Sequel, Query by Example) are unable to
handle the class of queries that involve least
fixed points (LFP). Typical queries in this class
are the "lowest common ancestor problem"
and the "airline connecting flights problem".

PROLOG (PROgramming language based on
LOGic), used mostly for Al applications,
handles these queries in a natural, recursive
manner wheFe relations are manipulated as
built-in datatypes.

PROLOG is shown to be a data independet,
more than relationally complete query lan
guage that can handle LFP operations. The
future of PROLOG as a possible "universal"
query language is also discussed.

from Lisbon:

Selective Backtracking

Lufs Moniz Pereira
Antonio Porto

In this paper we review selective backtrac
king and address general implementation
issues.

from Lisbon and Leuven :

Revision of Top-Down Logical Reasoning
Through Intelligent Backtracking

Maurice Bruynooghe
Lufs Moniz Pereira

First, we develop a theory for a more intel-

ligent form of backtracking, in sequential or
parallel to-down executions of Horn clause
logic programs, which exploits the relationships
among states of the search. The theory allows
more flexible and efficient backtracking stra
tegies, showing how to avoid backtracking to
alternatives which, a priori, cannot possibly
prevent subsequent repetition of the same
failures. The theory also shows which parts of
the derivation state may be· kept on back
tracking . It thus provides a powerful method
for revision of top-down logical reasoning.

Second, we introduce simplifying assump
tions which have lead to a practical application
of the theory, in the form of an intelligently
backtracking interpreter of Prolog programs.

from Lyngby, Denmark:

A Notion of Grammatical Unification
Applicable to

Logic Programming Languages

Jan Ma/1.Jszynski
&

Jefrgen Fischer Nilsson

This paper presents an extension of the
notion of unification applied in theorem proving
and logic programming. Potential use of the
extended unification in logic programming is
surveyed. A theorem relating to the construc
tion of a most general extended unifier is
formulated• and proved. Finally, a unification
algorithm is suggested.

from Marcoussis, France:

Impacts of Logic on Data Bases

H. Gal/aire

This paper deals with the relationships
between logic and ·relational data bases. A goal
of the paper [s to show, through many results
published in the literature, how logic can
provide a formal support to study classical
database problems, and in some cases, how
logic can go further, helping first in their
comprehension; and then in their solution. The
main points discussed are: query evaluation
and data base schema analysis.

Key words : relational data bases, logic,
query languages, integrity constraints, dedu
ctive data bases, query evaluation, depen
dencies, data base schema analysis.

abstracts

Metalevel Control for Logic Programs

Herve Gallaire
Claudine Lasserre

This paper deals with means of incorporating
metaknowledge capabilities to a PROLOG-like
Horn clauses interpreter, be they general
control strategies or specific ones. The paper
gives an overview of current approaches and
introduces new means of control. A solution
is investigated, consisting of a metalevel
expression of control of a standard interpreter.
Actions allowed by the metarules are descri
bed and an interpreter for the extended lan
guage is sketched.

from Marseille:

Prolog and Infinite Trees

A. Colmerauer

The paper deals with the manipulation of
infinite trees in the context of the program
ming language Prolog. With this purpose a
novel and concise model of Prolog is pre
sented. The model does not explicitly involve
the first order logic. The problem of unifying
two terms is replaced by that of determining
whether or not a system of equations has at
least one solution. Several examples of the use
of infinite trees are also given.

from Prague:

Hom Clause Programs and Recursive
Functions Defined by Systems

of Equations

Jan Sebelik

Every recursive function can be defined by
a system of equations. At the first Logic
Programming Wor.kshop, Debrecen, Hungary,
July 1980, R. Kowalski raised the question of
interpretting these systems by means of Horn
Logic.

In the paper, there is described an algorithm
which transforms every such a system of
equations into a Horn clause program compu
ting the same function. On the other hand,
every Horn clause program the predicate
symbols of which are all at least unary can
be transformed into a system of equations
defining the same function.

In the end of the paper, there are discussed
certain syntactic properties of Horn clause

programs obtained from systems of equations.
Finally, a syntactic condition for Horn clause
programs computing primitive recursive
functions is formulated.

from Santa Monica:

Logic Programming in DADM

Charles Kellog

The DADM (Deductively Augmented Data
Management) system (see Kellog and Travis
[1981]) has been developed over the past
few years as a system for providing deductive
access to large external DMS's and their
stores of extensional data. The DADM dedu
ctive processor, therefore, has beeen specifi
cally designed to support deductive question
answering rather than logic programming.

However, DADM is a complete first order
logic system and it has· certain features in its
Logic and Control components that can be
used to advantage for logic programming
purposes. We discuss and illustrate several
of these features after briefly reviewing some
of the salient general characteristics of the
system.

from SRI:

Problems in Logical Form

Robert C. Moore

Most current theories of natural-language
processing propose that the assimilation of an
utterance involves producing an expression or
structure that in some sense represents the
literal meaning of the utterance. It is often
maintained that understanding what an
utterance literaly means consists in being able
to recover such a representation . In philosophy
and linguistics this sort of representation is
usually said to display the logical form of an
utterance.

This paper surveys some of the key pro
blems that arise in defining a system of
representation for the logical forms of English
sentences and suggests possible approaches
to their solution. We first look at some general
issues relating to the notion of logical form,
explaining why it makes sense to definbe such
a notion only for sentences in context, not in
isolation, and we discuss the relationship
between research on logical form and work on
knowledge representation in artificial inte-

17

lligence. The rest of the paper is devoted to
examining specific problems in logical form.
These include the following : quantifiers;
events, actions and processes; time and
space; collective entities and substances;
propositional attitudes and modalities; ques
tions and imperatives.

Automatic Reduction for Commonsense
Reasoning: An Overview

Robert C. Moore

How to enable computers to draw conclu
sions automatically from bodies of facts has
long been recognized as a central problem in
artificial-intelligence (Al) research. Any attempt
to address this problem requires choosing an
application (or type of application), a repre
sentation for bodies of facts, and methods
for deriving conclusions. This article provides
an overview of the issues involved in drawing
conclusions by means of deductive inference
from bodies of commonsense knowledge
represented by logical formulas. We first
briefly review the history of this enterprise:

_ its origins, its fall into disfavor, and its recent
revival. We show why applications involving
certain types of incomplete information resist
solution by other techniques, and how
supplying domain-specific control information
seems to offer a solution to the difficulties that
previously led to disillusionment with automa
tic deduction. Finally, we discuss the rela
tionship of automatic deduction to the new
field of "logic programming", and we survey
some of the issues that arise in extending
automatic-aeduction techniques to nonstandard
logics.

from Syracuse:

Amalgamating Language and Metalanguage
in Logic Programming

Kenneth A. Bowen
Robert A. Kowalski

It is argued that present-day logic program
ming systems exhibit shortcomings which can
be overcome by extending the original object
language to include that portion of the meta
language which deals with the object language
provability relation. Such a system is sketched,
and some of its applications and properties are
presented.

18

abstracts

Logic programming systems have proven to
be a powerful tool for computer science.
These systems have been especially congenial
for work in artificial in'telligence and database
management (cf. Gallaire and Minker [1978].
and Kowalski [1979]). Inevitably, as with
al.most any system, shortcomings have been
discovered. Central among these is the
problem of managing the system's database of
clauses. Simply put, it is this: The conceptual
basis of logic programming is deduction from a
single fixed theory, while many applications
must deal with deduction from varying or alter-

, native theories. Thus in maintenance over time
of a simple relational database, tuples are
added, deleted, or modified. Addition of a tuple
to a relation corresponds to assertion of a
simple unit clause. Here only one theory at a
time is involved, but it changes over time.
Moreover, the problem of maintaining integrity
constraints amounts to testing the consistency
of the proposed addition with the theory
constituting the database.

The need in this example is for an ability to
explicitly refer to theories (i.e., collections of
clauses) and to discuss derivability from these
theories. Our approach is to construct a
system which amalgamates an object-level
logic system with a portion of a metalanguage
suitable for formalizing the derivability relation
of the original object language system. We
shall argue that the resulting system will have
greater expressive and problem-solving power
than the original object language system alone.
However, we will carry out this amalgamation
in such a way as to preserve the standard
semantics of logic: Our purpose in this enter
prise is primarily practical. However, in the
resulting system it is possible to carry through
rather direct proofs of incompleteness
phenomena of the sort first discovered by
Godel [1931]. Our use of metalanguage is
similar to that of Weyhrauch [1980]. the main
difference being that he does not consider
systems, such as ours, which completely
amalgamate object and metalanguage.

from Uppsala:

Uniform - A Language based upon
Unification which unifies (much of)

Lisp, Prolog, and Act 1

Kenneth M. -Kahn

Uniform is an Al programming language
under development based upon augmented
unification. It is an attempt to combine, in a

simple coherent framework, the most impor
tant features of Lisp, actor languages such
as Act I and SmallTalk, and logic programming
languages such as Prolog. Among_ the unusual
abilities of the language is its ability to use
the same program as a function, an inverse .
function, a predicate, a pattern. or a generator.
All of these uses can be performed upon
concrete, symbolic, and partially instantiated
data. Uniform features automatic inheritance
from multiple super classes, facilities for
manipulation of programs, a limited ability to
determine program equivalence, and a unifica
tion-oriented database.

A Programming Language Based
on a Natural Deduction System

Sten-Ake Tarnlund

We shall take up a programming language
based on natural deduction. Our presentation
starts with the subset of Horn clause logic
on which Prolog is based but continues with
inference rules that provides a programming
language on full predicate logic. We can treat
negation at the object level, virtual classes,
identity that gives the notion of functions
which helps us .to prove termination on infinite
data structures (streams). Moreover, we have
several computation rules, e.g., a demand
driven rule, an instantiation rule.

from Yale:

Inductive Inference of Theories From Facts

Ehud Y. Shapiro

This paper is concerned with model
inference problems and algorithms. A model
inference problem is an abstraction of the
problem faced by a scientist, working in some
domain under some fixed conceptual frame
work, performing experiments and trying to
find a theory capable of explaining their results.
In this abstraction the domain of inquiry is the
domain of some unknown model M for a given
first order language L, experiments are tests of
the truth of sentences of L in M. and .the goal
is to find a set of true hypotheses that imply all
true testable sentences.

The main result of this paper is a general,
incremental algorithm for solving model
inference problems, which is based on the
Popperian methodology of conjectures and

»

I

refutations [Popper 59, Popper 68] . The
algorithm can be shown to identify in the limit
[Gold 67] any model in a family of complexity
classes of models, it is the most powerful of
its kind, and, is flexible enough to have been
successfully implemented for several concrete
domains.

This model inference algorithm has two
tunable parameters: one determines how
complicated the structure of hypotheses is;
the other, how complex derivations from the
hypotheses can be. Together they determine
the class of models that can be inductively
inferred in the limit by the algorithm. On the
one hand they can be set so that the model
inference algorithm can identify in the limit any
model with complexity bounded by any fixed
recursive function. On the other hand they can
be set so that the algorithm, appropriately
implemented, can infer axiomatizations of
concrete models from a small number of facts
in a practical amount of time. The performance
of the Model Inference System demonstrates
this.

The Model Inference System is based on
this model inference algorithm, specialized
to infer theories in Horn form. It has been
implemented in the programming language

I= I-

abstracts

Prolog [Pereira et al. 78]. As an exr.1mple, in the
domain of arithmetic, the system inferred the
1;,et of axioms described in Figure 1-1 below
from 36 facts in 27 seconds CPU time. The
system has discovered an axiomatization for
dense partial order with end points. It has
successfully synthesized logic programs
[Kowalski 79a] for simple list-processing tasks
such as .. append, reverse and most of the
examples described in Summers' thesis
[Summers 76). It has also synthesized logic
programs for satisfiability of boolean formulas,
binary tree inclusion, binary tree isomorphism
and others.

As part of the general algorithm, an algorithm
for backtracing contradictions was discovered.
This algorithm is applicable whenever a contradi
ction occurs between some conjectured theory
and the facts. By testing a finite number of
ground atoms for their truth in the model the
algorithm can trace back a source for this
contradiction, namely a false hypothesis, and
can demonstrate its falsity by constructing a
counterexample to it. The existence of such
an algorithm seems to be relevant to the
philosophical discussion on the refutability of
scientific theories [Harding 76], and specialized
to Horn theories may be a practical aid for the
debugging of logic programs.

I= I-

An Algorithm that Infers Theories from Facts

Ehud Y. Shapiro

This paper is an informal summary of the
results described in the report mentioned
above.

Algorithmic Program Debugging

Ehud Y. Shapiro

The notion of program correctness with
respect to an interpretation is defined for a
class of programming languages. Under this
definition, if a program terminates with an
incorrect output then it contains an incorrect
procedure. Algorithms for detecting incorrect
procedures are developed.

A logic program implementation of these
algorithms is described. Its performance
suggests that the algorithms can be the
backbone of debugging aids that go far beyond
what is offered by current programming
environments.

Applications of algorithmic debugging to
automatic program construction are explored.

I-
19

research centres addresses

Here are some more:

Department of Computer Science
Building 344 and 343
Technical University of Denmark
DK-2800 Lyngby Denmark

UPMAIL
Compter Science dept.
Uppsala University
Sturegaten 4A
S-75223 Uppsala Sweden

Department of Computer Science
Yale University
New Haven, CT 06520 USA

EdCAAD Studies
University of Edinburgh
20 Chambers St.
Edinburgh EH1 16Z UK

Centro de Informatica
Laborat6rio Nacional de Engenharia Civil
1799 Lisboa Portugal

Dept. of Computer Science
University of Western Ontario
London, Ontario N6A 5B9 Canada

Dept. of Computer Science
University 0f Maryland
College Park, MD 20742 USA

Dept. of Cybernetics and O.R.
Charles University
Malostransk Namesti 25
Praha 1 - 11800 Czechoslovakia

Dept. of Computer Science
State University of New York at Buffalo
Amherst, NY 14226 USA

Artificial Intelligence Center
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025 USA

System Development Corporation
2500 Colorado Ave.
Santa Monica, CA 90406 USA

Depto. de Matematica
Faculdad de Ciencias Exactas
Ciudad Univ. Nunez, Pab. I
1428 Buenos Aires Argentina

Dept. of Computer Science
Yale University
P.O.Bc:ix 2158
10 Milhouse Ave.
New Haven, CT 6520 USA

Laboratoires de Marcoussis - C. G. E.
Route de Nozay
91460 Marcoussis France

CORRECTIONS TO No. 1

Iowa State University
Dept. of Computer Science
Ames, IA 50011 USA

Dept. of Computer Science
University of Kentucky
Lexington, KY 40506 USA

PERSONAL CHANGES OF ADDRESS

1 . David Warren is now with SRI Interna
tional, 333 Ravenswood Ave., Menlo
Park CA 94025, USA.

2. Chris Mellish is now with Cognitive
Studies Programme, Arts f3uilding,
University of Sussex, Brighton BN1
90N, UK.

3. William C/ocksin is now with the Robot
Welding Project, Dept. of Engineering
Science, University of Oxford, Parks
Rd, Oxford OX1 3PJ, UK.

4. Bob We/ham is now with Dept. of
Computer Science, University of Strath
clyde, Livingstone Tower, 26 Richmond
St., Glasgow G1 1XH, UK.

5. Derek Wright is now with Dept. of
Computer Science, University of San
Francisco, San Francisco, CA 94117,
USA.

1 . We apologize to John S. Conery for having his name mispelled as John S. Coery.

20

2. "Programming in Prolog", the primer by W. F. Clocksin and C. Mellish, has been
published in September by Springer Verlag, and not by Edinburgh University Press
as advertised. A paperback, it has 296 pages and costs approximately US $16.00
or D.M. 35,00.

