
VERAO DE 1982 SUMMER 1982

CONTENTS

Short Communications by:

ANT6NIO PORTO, DAVID H. D. WARREN, FELIKS
KLUZNIAK, JOHN GALLAGHER, LIBOR A. SPACEK,
Luis MONTEIRO, Luis MONIZ PEREIRA, PHILIP
VASEY, STANISLAW SZPAKOWICZ,

Abstracts
Research Centres Addresses
Stop Press

EDITOR

Prof. Luis MONIZ PEREIRA

Departamento de Informatica
Universidade Nova de Lisboa

PUBLISHED

UNIVERSIDADE NOVA DE LISBOA
Centro de Informatica
Faculdade de Ciencias e Tecnologia
2825 Monte da Caparica - Portugal
g 245 4214 · 245 4987 · 245 4464 · 245 5299

245 5642 · 245 5643 · 245 5644 · 245 5645

ACKNOWLEDGEMENT

This publication has been fully subsidized
by Junta Nacional de lnvestigai;:ao Cientffica
e Tecnol6gica (JNICT), Av. D. Carlos I, 126,
Lisboa, Portugal.

COLABORATION

The editor thanks ANT6N10 PORTO for his help.

CONTRIBUTIONS

Send to the editor, typed or printed, if possible
double spaced, one side of the paper only and
a maximum width of 15 cm.

DESIGN, TYPESETTING AND PRINTING

Servii;:os Graficos da Universidade
Nova de Lisboa
Av. Miguel Bombarda, 20-1 .0

1000 Lisboa

EDITOR'S FOREWORD

• Next September, 14-17, takes place at the University of Mar
seilles the First International Logic Programming Conference, for which
35 papers have been accepted, from all over the world. Great expecta
tion surrounds this event, where important contributions to the field
will be presented. People interested in participating or in the
proceedings should contact:

Prof. ALAIN COLMERAUER

Groupe d'lntelligence Artificielle
Universite d'Aix-Marseille II, case 901
route Leon Lachamp 70
13288 Marseille 9 cedex
France ff (91) 413 428

• It has been this newsletters's policy to publish new numbers as
soon as there are enough contributions. If you wish to receive it more
often simply contribute more often! And please note the change
of address. In consequence of the inevitable confusion during this
change, many newsletters were sent by surface mail, taking some
three months to reach California (an average of 3 km per day!).
We regret the inconvenience and apoligise for the delay.

• A special issue devoted to the comparison of Prolog and other
logic programming languages implementations, capabilities and perfor
mances, seems to be timely. The editor would like to receive
suggestions on this matter.

• The newsletter has received another Government subsidy, which
should guarantee another two numbers. This subsidy is attributed to
scientific publications in the launching stage, but cannot become the
regular support of all the expenses after that. To help ensure the
uninterrupted continuation of this publication, we propose that, on a
voluntary basis, all those who can contribute do so, by sending a least
$6. 00 US or equivalent, per number received, to the editor, payable to
the Centro de Informatica da Universidade Nova de Lisboa. This way
we hope to continue sending the newsletter air mail to everyone,
whether or not they have been able to contribute.

short communications

PERPETUAL PROCESSES -AN UNEXPLOITED
PROLOG TECHNIQUE

David H. D. Warren

Artificial Intelligence Center
SRI International, USA

\

\

In current Prolog programming practice, processes run for as short
a time as possible, "output" the desired results, and then die. Terms
created during program execution are normally regarded as "temporary"
information. To keep some information "permanently", it is generally
felt that it has to be stored as clauses. Thus one of Prolog's great
attractions - its powerful handling of structured data - is dimmed
somewhat by the fact that these structures exist only transiently.

However, recent improvements in Prolog implementation, namely
tail recursion optimisation together with garbage collection, make
possible a new style of Prolog programming in which processes can
continue running indefinitely, building up large structures and maintai
ning them over an extended period of time. Given that the system
provides· a means of saving and restoring Prolog states, there is
now no reason why terms should not be used for storing permanent
information.

The purpose of this note is to stimulate people to try out the
"perpetual processes" style of programming, and to take advantage of
it in developing new applications. The technique seems to operi up
new possibilities for building programs which provide the user with
completely self-contained environments. Examples would be systems
for program development, and for text processing. It even appears
plausible to build the equivalent of a conventional operating system
using this technique, given a sufficiently large virtual memory.

To illustrate the use of "perpetual processes", and to help convince
the reader that it is entirely practical, I will briefly describe a simple
text editor I have implemented using the technique. Being only a fine
oriented editor, it is relatively pedestrian compared with the latest
screen editors. Nevertheless, it has proved quite handy for editing
Pro/og source files from within Prolog.

The text of a file is stored as two lists of lists, representing the
lines . of the file above and below a certain point that is the focus of
attention. The fines above the focus point are listed in reverse order.
Each line is just a list of characters. Moving up and down the file
is accomplished simply by transferring lines from one list to the
other. Most editing commands that actually change the file affect only
the line immediately above the focus point, ie. the first tine in the
"above" list.

Because the editor is writen in "pure" Prolog, all the editing
operations actually result in the creation of new copies of the structure
representing the file. However the way the file is represented, and the
nature of the editing commands, mean that the amount of copying is
generally quite small compared with the overall size of the file. The
pure Prolog approach makes it potentially easy to "undo" changes,
although in the present editor this feature is only used to a limited
extent: commands which fail, such as a search for a tine that does not
exist, produce no effect.

The heart of the editor is a determinate, (indirectly) tail recursive
procedure called 'edit', which repetitively displays the line immediately

2

above the current focus point, gets the next editing command from the
user, and then obeys it:

edit(Above, Below) : -
show _ lasLline(Above),
geLstring(Command),
obey(Command,Above, Below).

A typical editing command is:

>too(__) :-

which means: search forward for a line beginning with "foo("
and ending with ") : - ". The clause responsible for obeying this
command is : ·

obey ([62IString],A,B) :- seek(String,A,B,A1,B1), !, edit(A1,B1).

where 62 is just the ASCII code for ">". The procedure 'seek' is
defined by:

seek(S,A,B,A,B) lasLline_matches(A,S), ! .
seek(S,A,(LIBJ,A1,B1) :- seek(S,[LIAJ,B,A1,B1).

Because the 'edit' cycle is determinate, tail recursion optimisation
ensures that the recursion stack does not grow in size, and that
storage representing previous versions of the file is eventually
reclaimed by garbage collection. Thus there is nothing to prevent the
user from carrying on editing indefinitely.

With the editor running compiled on the DEC-1 0, most editing
commands are performed apparently instantaneously, even commands
which require searching through a substantial volume of text. About
the only operation that is not instantaneous is reading the file into
memory in the first place. This, plus the relatively small virtual memory
on the DEC-10, limit the size of file that can comfortably be handled,
but for a normal-sized Prolog source file (of between 1 and 5 pages,
say) there is no problem.

The way text is represented in this editor suggests an interesting
possibility for extension, which might be called a "document-oriented"
editor. The text of the document would be represented as a tree
structure, with the title and main headings at the top level, and with
ordinary text and further subsections at deeper levels. With this kind of
organisation, it would be easier to find one's way around the document
without unnecessary searching, and operations to do text formatting
could readily be included.

. This note is an extended abstract of a talk presented at the Prolog Programming
Environments Workshop, Linkoping, Sweden, March 1982.

short communications

A SMALL INTERPRETER FOR DISTRIBUTED LOGIC

INTRODUCTION

Luis Monteiro

Departamento de Informatica
Universidade Nova de Lisboa

2825 Monte da Caparica, Portugal

This communication presents an interpreter for Distributed Logic
[Mon 81a] [Mon 81b] [Mon 82] (DL for short), written in the Edinburgh
Prolog version for the RT-11 [Clo 80]. Our main concern in writing this
interpreter was "to see the theory work", so we sacrificed to a large
extent the efficiency of the interpreter to its readability. In the sections
that follow we introduce the language in which DL programs are
written, make some comments on the interpreter, present its listing,
and show two example programs.

THE LANGUAGE

(1) The interpreter is called 'DTLOG'. It is based on the most recent
version of DL, referred to in the squel as 'DL.1' [Mon 82].

(2) DL.1 enriches HCL (Horn Clause Logic) with the following concepts:

(2. 1) computing agents;
(2.2) configurations;
(2.3) transition rules;
(2.4) transitions;
(2.5) an extension of the resolution principle to deal with the above

notions.

We now comment on each of these notions in turn.

(3) (3.1) COMPUTING AGENTS : These are ordinary HCL terms.

(3.2) CONFIGURATIONS: Computing agents are organized into
configurations, which are special terms. They are built up with
computing agents and the operators '/\' (nullary) and '+ ',
'.' (binary). These operators are called respectively the "null
configuration" and the "concurrent" and "sequential"
compositions; '+' and '.' are associative and have 'II' as
neutral element. In writing DL programs for DTLOG we use
'skip', '<>' and '&' instead of '/\', '+' and '.' respectively.

(3.3) TRANSITION RULES: Expressions of the form

a1, .. . ,an-> c1, ... ,en

where n>0, the a's are agents and the e's are configurations.
In DTLOG we restrict n to n=1 or n=2, and call the transition
rules unary or binary respectively. They are written

a-> C

or
(a1,a1) --> (c1,c2)

where a longer arrow is employed in binary transition rules
merely to increase the efficiency of the interpreter. The logical
status of a transition rule is that of an atomic formula. The user
is expected to use them normally (but not necessarily) in the
heads of clauses. ·

(3.4) TRANSITIONS : Expressions of the form

c => d

where e, d are configurations; We allow

e

as an abbreviation for e= >skip . In writing c=>d, DTLOG
assumes that d contains no occurrence of 'skip' if d = / = skip.
The logical status of a trarrsition is that of an atomic formula.
The user . is expected to use them normally (but not ne
cessarily) in the bodies of clauses. The operational interpreta
tion of e=>d is "execute c until it has the form d, applying
suitable transition rules to c".

(3.5) RESOLUTION PRINCIPLE: DL programs are, like HCL
programs, sets of Horn clauses. To deal with the extra notions,
the resolution principle has been suitably extended. We are
only interested in linear top-down refutation strategies. The
resolution of a negative clause and a definite clause to yield
a new negative clause is as in Prolog, with the exception ~f
goals of the form c=>d, as explained below.

COMMENTS ON THE INTERPRETER

The interpreter has been written employing techniques developed
mainly by L. Moniz Pereira [Per 82].

(1) When presented with a user program, DTLOG expects to solve
(execute) goals of the form X= >Z, where X and Z are configurat
ions. (A goal of the form x· is transformed into X=>skip; any other
goal is immediately transferred to the Prolog interpreter.) If X and Z
are unifiable then the task terminates successfully. Otherwise it
performs a transition step on X to obtain Y and tries to solve Y=>Z.
The transition step is accomplished by the predicate step(X,Y).

(2) A transition step is subdivided in our stages:

(2.1) In the first stage, configuration Xis split up into its "top"T and
the ''context" C in which T occurs in X (see example below).
The context C, however, has distinct variables in the place of
holes. As a first approach, T is the list of all agents which occur
in the top of X. As a second approach, each element in the
list T is in fact a pair, written A->V, formed by an agent A
occurring in the top of X and a variable V which ocupies in C
the same position as ocupied by A in X. This stage is acco
mplished by the predicate top(X,T-[],C). (Note the use
of difference lists, to avoid the explicit definition of the
concatenation of two lists.) As an example, if we start with

X = (a<>b)&c <> d&e

then we obtain

T = [a->U, b->V, d->W] C = (U<>V)&c <> W&e

where U,V,W are distinct variables.

(2.2) In the second stage, the list T is picked up from the difference
list T-[l produced by top and executed, as specified by pre
dicate exec(T). To execute T means to execute every member
of T. To execute the pair A->V means one of the three

3

short communications -

following things:

(i} to execute the predicate A- >V;
(ii) to find some other member B->W in T and to execute

one of the predicates (A,B)-->(V,W) or (B,A)-->(W,V);
(iii} to unify A and V (this corresponds to postponing the

execution of A}.

The strategy followed by DTLOG is to execute the members of
T from left to right and try the execution alternatives (i-iii} in
this order. Notice that after the execution of T the variables
occurring in the top of C are instantiated to configurations.
Continuing with the previous example, suppose the only
clauses involving the agents a, b, d where

b->c1. (b,d)-->(c2,c3). (a, b)--> (skip, skip).

The outlined execution strategy would give us the following
instance of C :

C = (skip< >skip)&c < > d&e

(2.3) The simplification stage eliminates from C all occurrences of
'skip' (unless C is itself 'skip'}, the result being Y (remember
skip is the neutral element for < > and &}. In the previous
example we would obtain

Y = c <> d&e

(2.4) The final stage checks whether the system specified by the
DL program is in a deadlock situation or not. Deadlock occurs
iff the only possibility for executing the members of T is
(2.2-iii} (assuming there are no agents for which a->a or
(a, b)--> (a, b))_ This is true iffX and Y are identical. Hence the
final stage in the execution of step(X, Y) consists in verifying
that X and Y are not identical.

(3) The system automatically recovers from a deadlock situation by
backtracking. If for some reason this is not desired, the cut symbol
'!' should be inserted after the call 'exec(D'.

(4) As a further facility, ordinary predicates can be turned into agents
and inserted in configurations by writing a predicate P in the form
agt(P) . The following clause should then be added to the interpreter
below: ·

exec([agt(P)->skiplTJ) :- !, P, exec(T).

THE INTERPRETER

/* OTLOG: an interpreter for distributed logic */

,.,). ?-op(24O, xf,
?-op(23O,xfx,
?-op(23O,xfx,
?-op(23O,xfx,
?-op(215,xfy,
?-op(2OO,xfy,

'->')_
' - ->').

x· :- X=>skip.
X= >X.

'=>').
'<>').

'&').

/* x· is equivalent to X=>skip ·
/* unary transition rule predicate
/* binary transition rule predicate
/* transition predicate
/* concurrent composition
/* sequential composition

X=>Z :- step(X,Y), Y=>Z.

4

*/
*/
*/
*/
*/
*/

step(X, Y) : - top(X, T-[],C), exec(T), simplify(C, Y), compare(X, Y).

top(X1<>X2, T-T2, C1<>C2) :- !, top(X1, T-T1, C1), top(X2, T1-T2, C2).
top(X&Y, T-T1, C&Y) :- !, top(X, T-T1, C).
top(X, [X->CJT]-T, C).

exec([]).
exec([X->CIT])
exec([X->CIT])

X->C, exec(T).
delete(Y->D, T, T1),
((X, Y)-->(C, D); (Y,X)-->(D, C)),

exec(T1).
exec([X->XIT]) :- exec(T).

simplify(skip< > X, Y) :- ! , simplify(X, Y) _
simplify(X<>skip,Y) :- !, simplify(X,Y).
simplify(X<>V,Z) :-,- simplify(X,Y), simplify(V,W),

(W=skip, Z=Y; Z=(Y<>W)), ! .
simplify(skip&X,X) :- ! .
simplify(X&W,Z) :- simplify(X,Y), (Y=skip, Z=W; Z=(Y&W)), !.
simplify(X, X) .

compare(X,Y) :- X\==Y. /* avoids looping */

delete(X, [XI L], L).

delete(X, [YI L], [YIM]) delete(X, L, M).

EXAMPLES

(1) Our first example is a simplified version of the five philosophers
problem. We only consider two philosophers (and two forks}, since
our main purpose is to specify a system with a deadlock. Each fork
(O or 1) is either up or down. Each philosopher (O or 1) repeats for a
specified number of life-cycles the actions of picking up a fork,
picking up the other fork, putting down the first fork and putting
down the second fork. The program follows :

philosophers(Lifespan) :-
phil(O, Lifespan)<> phi1(1,Lifespan) <> forkdown(O)

< > forkdown (1)
=>

forkdown(O) < > forkdown(1)_
phil(l,O) -> skip.
phil(l,N) -> getfork(I) & getfork(J) & putfork(I) & putfork(J)

& phil(l,M)
:- N>O, M is N-1, J is (1+1) mod 2.

(getfork(I), forkdown(I)) --> (skip, forkup(I)).

(putfork(I), forkup(I)) --> (skip, forkdown(I))_

(2) We are given two nonempty finite disjoint sets of integers, SO
and TO, and are required to produce two sets S and T such that:

(i} S u T = SO u TO;
(ii} #S = #SO, #T = #TO ('#' stands for cardinality};
(iii} every element of S is smaller than any element of T.

We assume there are an S-process and a Tcprocess responsible for
the S-sets and T-sets respectively. The S- and T-processes start by
finding respectively the maximum value X and the minimum value Y of
their input sets. These values are then exchanged and a check is made

short communications .

whether X < Y. If so, both processes stop and the exchange is not
accepted. Otherwise the exchange is accepted and the processes
repeat the actions already described.

partition(S0, TO, S, T) : - procS(S0) < > procT(T0) =>
endS(S) <> endT(T)

procS(S0) -> exchgS(X,Y) & contS(X,Y,S) :- max(S0,X,S).

procT(T0) -> exchangT(X,Y) & contT(X,Y,T) :- min(T0,Y,T).

(exchgS(X, Y), exchgT(X, Y)) --> (skip, skip).

contS(X,Y,S) -> endS([XISJ) :-X<Y.
contS(X,Y,S) -> procS([YISJ) :-Y<X.

contT(X,Y,T) -> endT([YITJ) :- X<Y.
contT(X;Y,T) -> procT([XITJ) :-Y<X .

max([WISJ.X,[WIOJ) :- max(S,X,O), W<X, !.
max([XISJ.X.S).

min([VITJ.Y,[VIRJ) :- min(T,Y,R), Y<V, !.
min([YITJ. Y, T).

REFERENCES

[Clo 80] CLOCKSIN. W. F .. MELLISH, C. S.: "The RT-11 Prolog System", Dept. of A. I.,
University of Edinburgh, 1980.

[Mon 81a] MONTEIRO, L.: "A new proposal for concurrent programming in logic", Logic
Programming Newsletter 1, Universidade Nova de Lisboa, Spring 1981.

[Mon 81b] MONTEIRO, L.: "Distributed logic: a logical system for specifying concurrency",
CIUNL-5/81, Universidade Nova de Lisboa, 1981 .

[Mon 82] MONTEIRO, L.: "A new presentation of distributed logic", CIUNL-7 /82, Univer
sidade Nova de Lisboa, 1982.

[Per 82] PEREIRA, L. Moniz: "Logic control with logic", First International Conference
on Logic Programming, Marseilles 1982.

PROLOG FOR PROGRAMMERS
(AN OUTLINE OF A TEACHING METHOD) (1)

Feliks Kluzniak, Stanishlw Szpakowicz

Institute of Informatics, Warsaw University
P.O.B. 1210, 00-901 Warszawa, Poland

ABSTRACT

Professional programmers often consider Prolog too eccentric for
their tastes. It may be easier for them to appreciate the language if we
present it in terms of conventional programming notions. We must
also demonstrate that it is competitive with other languages on their

. own terms. The ·usual presentation, · stressing the programming-in-logic
oFigin of Prqlog an.d its problem solving explanation, is inadequate in
this respect. A new teaching approach must be developed. This paper
is a brief outline of the rationale for and the main features of such an
approach.

INTRODUCTION

Prolog is usually presented as an exemplification of logic pro
gramming. The procedural interpretation has always been given as
a secondary, i.e. somehow less important, way of viewing Prolog
programs. Moreover, it has been strongly tinged with a problem
solving flavour. This is hardly surprising, as a large part of the logic
programming community has a marked artificial intelligence back
ground.

After several years of experience with learning and teaching Prolog
we have come to the conclusion that the usual presentation is often
inappropriate for programmers who lack this background. The purely
"logical" approach (cf. [4]) might well be the best method of
introducing programming to non-programmers. It is less suitable for
practising programmers, who find it hard to believe that Prolog is a
convenient tool for solving practical problems.

Of course, one of the reasons is the relative inefficiency of many
available implementations. The main difficulty, though, is to teach the
programmer how to incorporate techniques specific to the language
into his familiar patterns of thought. Prolog does not easily fit the
established patterns, and nobody can be asked simply to throw them
away and start learning his trade all over again.

Consequently, if Prolog is to be accepted as a general-purpose
programming language rather than as a very special tool for some
artificial intelligence tasks (2), a serious effort must be made to facilitate
the programmer's transition to a different style of thinking about
programming. Prolog ought to be made fully comprehensible within the
"normal" (algorithmic, operational) conceptual framework (3). Naturally,
one cannot .conceal the fact that the language is somewhat unusual,
but its peculiarities must be made plausible within this framework
(as syntactic innovations designed to increase program clarity, slight
generalisations of conventional mechanisms which enhance expressive
power, etc.). In short, the aim is to shown that Prolog is a normal
programming language, and is different inasmuch as it is better.

Once this is accepted, the logic programming interpretation of
Prolog will become increasingly more important while the language
is being used. It will have been introduced simply as a useful
programming tool (e.g. the declarative interpretation of clauses helps
to understand them in spite of the inherent complexity of their execu
tion) but its repeated use will make the user accept it as his own way
of thinking (4). The transition will then be complete, the conceptual
framework painlessly enlarged and the initial, "normal" explanation
obsolete.

This rather long introduction is intended to justify a new way of
presenting Prolog fundamentals in the first chapter of our text book

(1) This paper is based on our presentation at the Logic Programing Workshop, Debrecen
1980; the editors of the proceedings deemed it "too insubstantial" without "more sophisti
cated examples of Prolog programs".

(') The situation of Prolog today is comparable to that of Lisp in the days when it was

generally treated only as a string processing language.
(3) Warren's programmer-oriented presentation (e.g. [5]), though commendable, is not

comprehensive enough. In many respects our approach is in the same spirit as that of van

Emden [2].
(•) Look how the concept of type in Pascal has gained acceptance with programmers who

started with Fortran.

5

short communications

prepared for a Polish publisher [3]. We do not claim that our attempt is
completely satisfactory, but we think it is sufficiently novel to make it
worth presenting to the logic programming community.

Our introductory course of Prolog fundamentals lasts about ten
hours, the book version occupies over 60 typewritten pages. We shall,
therefore, limit ourselves to a brief outline of the way we try to answer
the four principal questions posed by a programmer who attempts to
learn Prolog, viz.

- how to deal with terms and what to make of unification,
- how to interpret the multiclause form of procedures,
- what is backtracking and how to use it,
- how to interpret and use the cut procedure (the slash).

TERMS AND UNIFICATION

Our treatment of this subject is based on the idea of treating terms
as descriptions of data types. It stems from the observation that a
term with variables represents not only a concrete object but also the
class of objects into which it may be transformed through instantiation
of variables. Thus, a variable denotes the "universal type", a ground
term - a class of only one object.

A variable per se presents no difficulties. It may be likened to the
const formal parameter of original Pascal [6], i.e. an object whose
exact nature is unknown until it becomes (permanently) instantiated.
According to a more technical interpretation, variables are always
automatically dereferenced. The dereferencing makes it impossible to
distinguish between a pointer and the object pointed at. There is,
therefore, no question of "resetting" a variable.

Functional notation is a simple way of describing the nature of
composite objects. The intended meaning of a composite object -
such as (14,20) - is unclear unless it is accompanied by a type
description consisting of a mnemonically suggestive name, such as
HOUR (14,20) or PRICE (14,20).

"Fix" functors (5) are introduced to simplify the written form of
terms with nested parentheses. It is also this concern for program
readability that makes us name objects by terms that directly describe
the relevant aspects of their structure.

The expressive power of Prolog's notation is easily illustrated by
the following type specifications (we use the Marseilles convention
of prefixing variable names with an asterisk):

*A. *B. *C.NIL (a list of exactly three elements),
*A. *B. *C (a list of at least two elements),
*A. *A. *C (a list which has the same objects as its first two

elements (6), etc.

In one respect Pascal is more powerful: apart from providing a
conventional name, its type definition describes the component types
of a composite object. In Prolog we cannot define eg. a proper list that
ends with a NIL, without using a checking procedure which excludes
improper data. However, this is a small price to pay for generality
exceeding - in some respects - even that of the generic program
units of Ada [7] .

All these points are rather spectacularly illustrated by an unsophi
sticated example. Consider a procedure which is supposed to compute

6

the head and tail of a list. Obviously, its heading will be something like
+CARCDR (???, ???, ???) (7). One of the parameters must be a list, so
we place an appropriate type description in the only natural position,
namely in the heading, e.g.

+CARCDR (*CAR *CDR, ???, ???) .

It now becomes clear that a complete specification of the procedure
may be written as

Applying the same arguments to a procedure which CONStructs
a list, we see that

is about the most concise and clear complete specification of both
procedures we can hope to obtain. Its elegance is not a trick: it simply
reflects our knowledge that the procedures are complementary.

In principle, such specifications are executable only if we can invent
a parameter-passing mechanism which accesses the type description
of the formal and actual parameters and performs all the necessary
actions. Unification is such a mechanism and its simplicity seems
miraculous in this context

MUL T/CLAUSE PROCEDURES

Whenever a procedure is exeCJ.Jted, the choice between its possible
control paths is determined by the external environment. It is widely
accepted that ihe influence of the environment should always be made
as explicit as possible: the execution of an ideal procedure depends
only on the properties of its actual parameters. The nature of
this dependency, however, is still largely obscured in conventional
programming languages by the piecemeal and indirect fashion in which
these properties are used to determine a control path.

Not so in Prolog. Here we have precisely as many control paths as
there are clauses in the procedure. The choice between them can
often be made explicitly dependent on parameter properties, thanks
to the generality of terms as type descriptions. We can even take
advantage of it to specify the properties of the whole set of
parameters, as in the following example:

+ELEMENT (*X, *X.*Z).
+ELEMENT (*X, N*Z) - ELEMENT (*X, *Z)

Here, the choice is determined by mutual relations between both
parameters.

BACKTRACKING

The clause headings in a procedure do not always contain descri
ptions of disjoint classes of parameter sets, and these descriptions

(5) The name is, perhaps, awkward, but it helps to avoid the confusion that arises from
calling them "operators"

(6) There is also the dual interpretation: different objects can share components
(no wonder, if variables are regarded as pointers).

(7) We have chosen the original Marseilles syntax because it permits the perspicuous
notation for procedure "declaration" (a plus) and "calf" (a minus).

short communications -

might not cover every case. A call with a set of parameters that does
not fall into any class, e.g.

-'ELEMENT (ELEM, NOTALIST) .

is obviously erroneous in our model. The procedure cannot be
activated because of a type conflict between the actual and formal
parameters.

In the majority of modern programming languages an exception is
raised when a runtime error is encountered. It can be intercepted by
an error-handler specified by the programmer. It is therefore quite
natural to interpret backtracking as an error propagation process: the
"superfluous" clauses of some procedures are the error-handlers. The
method of error propagation (not up the dynamic activation chain) is
unusual, but it presents no conceptual difficulties. One might even
argue that it is easier to visualise undoing a computation than undoing
the current state of the control stack. '

We use this error-handling mechanism to provide "extended type
checking": a procedure can be executed in order to examine pro
perties of parameters that cannot be expressed in term notation. The
failure of LESS in the clause

+INSERT (*NODE, TREE (*ROOT, *LEFT, *RIGHD)
-LESS (*NODE, *ROOT) -INSERT (*NODE, *LEFT).

has exactly the same effect as a mismatch of the actual and formal
parameters.

Backtracking can also be "misused" to implement generators such
as the first call of ELEMENT in

The elegance of this example makes it highly desirable to regard such
"illicit" use of the error propagation mechanism as, a legitimate,
powerful programming technique. In other words, backtracking is
shown to be more than just error-handling.

This example also serves as an introduction to the declarative
interpretation of clauses. It may be difficult to understand INTERSECT
in operational terms (try to trace its execution even with simple data 1),

but the correctness of "two sets intersect if some 'object belongs
to both of them" is obvious (8).

THE CUT PROCEDURE

Some generators can run indefinitely, producing more and more
output. There should be a way of stopping them once we are satisfied
with the results obtained so far. Invocation of the cut procedure (the
slash) means that we accept the results produced till now, and we
do not want any others (9). .

The cut should be used sparingly, as it makes declarative inter
pretation difficult. However, one of its uses significantly increases the

(8) Strictly speaking, more is needed to describe this procedure in detail. We must, for
instance, take care to mention and justify reservations about lists that contain non-ground
terms which can be· different but unifiable.

(9) The cut is similar to the COMMIT operation in data-base programming. Notice also that
its form in the Marseilles syntax is a slight variation of the acceptance mark (\I) used by
teachers grading examination papers, in checklists, etc.

expressive power of Prolog: a cut combined with backtracking gives
the effect of negation. The procedure

+NOT (*X) -*X -/ -FAIL.
+NOT (*X).

enables us to camouflage this trick; and the extreme simplicity and
power of the variable literal go a long way toward making the language
even more attractive.

FINAL REMARK

A coherent and complete programmer-oriented introduction to
Prolog following the ideas presented in this paper was given in
1980/81 at Warsaw University. Although the course does not seem
perfect, the main ideas have proven entirely satisfactory.

ACKNOWLEDGEMENT

We are grateful toRobert Kowalski, for suggesting considerable
improvements to our style and for directing our attention to refe
rence [2].

REFERENCES

[1] Preliminary ADA reference Manual. SIGPLAN Notices. 14, 6, 1979.
[2] M . H. van EMDEN: "Programming in Resolution Logic". Machine Intelligence 8,

pp. 266-299, 1977.
[3] F. KLU2NIAK, S. SZPAKOWICZ: "Prolog" Wydawnictwa Naukowo-Tehniczne, Warszawa

(in preparation).
[4] R. KOWALSKI: "Logic for Problem Solving". North-Holland, 1979.
[5] D. H. D. WARREN· "Logic Programming and Compiler Writing". DAI Memo 44, University

of Edinburgh, 1977.
[6] N. WIRTH: "The Programming Language PASCAL" Acta lnfonmatica 7, pp. 35-63, 1971.

A PORTABLE PROLOG TRACING PACKAGE

Libor A, S~acek

Department of Computer Science
University of Essex, Colchester, England

The nature of Prolog's procedural semantics makes imperative the
need for a tracing facility fully capable of describing the backtracking
behaviour.

We are aware of only one such package to date, namely the one
incorporated into the DEC-10 Prolog-10, version 3.3 (1981) by Byrd,
Pereira and Warren and distributed by Edinburgh University. However,
there are now many more Prolog implementations and new ones are
appearing almost daily. In our experience with teaching Prolog, this
language is better understood if a good tracing facility is _available right
from the beginning.

Prolog's control mechanism, making use of unification and pattern
directed invocation, is ideally suited to writing such a package in Prolog

7

short communications

itself. The package can then be loaded and interpreted together with
the user's program. This has obvious advantages of portability and
savings of store when the package is not needed. Both of these are
important considerations for the latest microprocessor based
implementations.

In order to ensure portability we have tried to use only standard
Prolog predicates which are likely to be available in most implementa
tions, even though not necessarily under the same name. For instance,
we avoid using "depth(O)" which unifies O with the number of direct
ancestors of the current goal. This Prolog-10 predicate would have
been convenient for our purpose but it is not generally available.

Tracing package

trace(X) :-

(traceon;assert(traceon)), % Switch on the tracing if not on.

% Now trace(X) asserts two short clauses for the term X.
% They ensure that a call is made to the tracing diagnostics clause
% for X and from there to the user's clause(s) for X every time that
% X is invoked.

% The following clause switches the tracing on just before the user's
% clauses for X are entered. This enables the tracing of recursive calls.

asserta((X :- assert(traceon).fail)),

% The diagnostics clause itself will be inserted at the top:

asserta((X : -

)).

traceon, ! , % and used only when traceon is present.
retract(traceon), % So that call(X) will not come back here.
enterex(X,O2), ! ,

(
call(X),
forwardx(X,O2),
backwardx(X,O2);

failx(X,O2),
! ,fail
)

% The rest of this package can be put into a separate file and compiled.

% The following is done before each new call on X :

enterx(X,O2) :-

(stack(O1 ,_); 01 is 0,asserta(stack(0, 1))), % Initialise stack.
02 is 01 + 1, % Increment depth of recursion and
asserta(stack(O2, 1)), % set solutions counter to one.
writeit(O2, '-' ,X, 'call', 1).

% The following is done for all exits from X:

forwardx(X, 02): -

8

retract(stack(O2, 8)),
stack(O1 ,Blast),
writeit(O2, '+' ,X, 'solution' ,8),
82 is B + 1,

asserta(stack(O2,82)), % Increment the solutions counter.
asserta(stack(O1 ,Blast)), % Decrement depth of recursion.
! . % Do not backtrack into this clause.

% The following is used when backtracking to X :

backwardx(X,O2) :-

(true; % When going toward do nothing.

stack(O2,B), % Do this when backtracking.
asserta(stack(O2,B)), % Retrieve and put at the top the record
writeit(O2, ' - ',X, 'backtracking' ,8), % for the backtracking goal.
! ,fail % But do not disturb the flow of control.

).

% The following is done when X fails:

failx(X,O2) :-
stack(O2,N),
clearstack(O2,N),
writeit(O2, '?' ,X, 'failed',' ').

clearstack(Ogiven,N) :-

).

stack(O,B), ! ,
(

0 >= Ogiven,
retract(stack(O,B)), ! ,
clearstack(Ogiven, N);
(

% The cuts in this clause are there only to
% allow optimisation of tail recursion.

% Clear all successors of the failed goal

N > 1, % as many times as it has been
retract(stack(_,_)), % backtracked into.
Nm1 is N - 1,
clearstack(Ogiven,Nm1);

true
)

writeit(O,Sign,X,Message,Number): -

Tabn is D - 1,
n1,
tab(Tabn),
write(Sign),
write(O),
write(' '),write(X),
write(' '), write(Message),
write(' '),write(Number).

untrace(X) : -

clause(X, Q 1),
retract(: -(X,01)),
clause(X,02),
retract(:-(X,02)),
abolish(stack,2),
!.

% retract all instances of stack.

short communications ·

% An example program to illustrate top-down and bottom-up
% search of a tree hierarchy formed by transitive relations.

parent(john,eve).
parent(john,steve).
parent(jane,eve).
parent(jane,steve).
parent(steve,phil).
parent(ada,phil) .
parent(phil,gill).

ancestor(X,Z) :- parent(X,Z).
ancestor(X,Z) : - var(Z), ! ,

parent(X,Y),
ancestor(Y,Z) .

ancestor(X,Z) :- parent(Y,Z), % If Z is known search for ancestors
ancestor(X,Y). % in bottom up direction.

Now follows a session with the tracing package and the above
example program:

Prolog-10 version 3.3
Copyright (C) 1981 by D. Warren, F. Pereira and L. Byrd

I ?- ['trace.pr1 ', 'exampl.pr1 '].

trace.pr1 consulted 668 words 0.21 sec.

exampl.pr1 consulted 146 words 0.05 sec.

yes
I ?- trace(ancestor(_,_)).

yes
I ?-(ancestor(jane,P).

-1 ancestor(jane,_31) call 1
+ 1 ancestor(jane,eve) solution 1
P=eve;

-1 ancestor(jane,eve) backtracking 2
+ 1 ancestor(jane,steve) solution 2
P = steve;

-1 ancestor(jane,steve) backtracking 3
-2 ancestor(eve,_31) call 1
?2 ancestor(eve,_31) failed
-2 ancestor(steve,_31) call 1
+ 2 ancestor(steve,phil) solution 1

+ 1 ancestor(jane,phil) solution 3
P =phi!;

-1 ancestor(jane,phil) backtracking 4
-2 ancestor(steve,phil) backtracking 2

-3 ancestor(phif,_31) call 1
+3 ancestor(phil,gill) solution 1

+ 2 ancestor(steve,gill) solution 2
+ 1 ancestor(jane,gill) solution 4
P =gill;

-1 ancestor(jane,gill) backtracking 5
-2 ancestor(steve,gill) backtracking 3

-3 ancestor(phil,gill) backtracking 1
-:4 ancestor(gill,_31) call 1
?4 ancestor(gill,_31) failled

?3 ancestor(phif,._31) failed
?2 ancestor(steve,_31) failed

?1 ancestor(jane, ,....31) failed

no

I ?- ancestor (P,gill).

-1 ancestor(_24,gill) call 1

+ 1 ancestor(phil,gill) solution 1

P = phil;

-1 ancestor(phil,gill) backtracking 2

-2 ancestor(_24,phil) call 1

+2 ancestor(steve,phil) solution 1
+ 1 ancestor(steve,gill) solution 2

P = steve;

-1 ancestor(steve,gill) backtracking 3

- 2 ancestor(steve,phil) backtracking 2

+2 ancestor(ada,phil) solution 2

+ 1 ancestor(ada,gill) solution 3

P=ada;

-1 ancestor(ada,gill) backtracking 4

-2 ancestor(ada,phil) backtracking 3

-3 ancestor(_24,steve) call 1

+3 ancestor(john,steve) solution 1

+ 2 ancestor(john,phil) solution 3

+ 1 ancestor(john,gill) solution 4

P =john;

-1 ancestor(john,gill) backtracking 5

-2 ancestor(john,phil) backtracking 4

-3 ancestor(john,steve) backtracking 2
+3 ancestor(jane,steve) solution 2

+2 ancestor(jane,phil) solution 4
+ 1 ancestor(jane,gill) solution 5

P = jane;

-1 ancestor(jane,gill) backtracking 6
-2 ancestor(jane,phil) backtracking 5

-3 ancestor(jane,steve) backtracking 3
-4 ancestor(_24,john) call 1

?4 ancestor(_24,john) failed

-4 ancestor(_24,jane) call 1

74 ancestor(_24,jane) failed

?3 ancestor(_24,steve) failed
-2 ancestor(_24,ada) call 1

?2 ancestor(_24,ada) failed

?2 ancestor(_24,phil) failed

?1 ancestor(_24,gill) failed

no

9

short communications

,

SIMULATING- COROUTINING
FOR THE 8 QUEENS PROBLEM

John Gallagher

Department of ·computer Science,
Trinity College·:. Dublin, Ireland

1.1 SUMMARY

Logic programs to solve the- eight queens problem have been
discussed by several authors [1, 2, 3]. In (7], the problem is used to
illustrate a coroutining method, while in [2] and [3] an intelligent back
tracking mechanism is described. In both these approaches, the
performance of a program, which is inefficient when run using the
standard Prolog search strategy, is improved by extra control in the
interpreter. The approach here is to take the same program as a
starting point, and derive from it a new program which is run efficiently
by the usual interpreter. The new program simulates a coroutining
behaviour in the original program, but. a more complicated coroutining
than that provided by the interpreter in [7].

A systematic transformation of an inefficient program into an
efficient' one is an alternative to extra run-time control, allowing one to
keep the advantages of the simplicity of the usual search strategy,
which can be compiled into an even more efficient torn.

1.2. A LOGIC PROGRAM FOR THE PROBLEM

The eight queens problem is to place eight queens on a chessboard
so that none attacks any other. If one takes into account that all the
queens must lie on separate rows and columns, a solution to the
problem can be represented by some permutation of the numbers 1
to 8, giving the column numbers of the queen in each of the eight
rows. The permutation [1,2,3,4,5,6,7,8], for instance, is the one in
which the queens all lie along a diagonal.

The predicate permutation(L,M) means that Mis some permutation
of L.

As answer is then a permutation in which no two queens lie on the
same dia9onal; this property is called safe(Perm).

Thus the program at the top level is

solution(Perm) <-
permutation([1,2,3,4,5,6,7,8],Perm),
safe(Perm).

The procedures for permutation and safe are defined as follows.
(The notation [X, .. L] for lists means that X is the first item in the list,
and L is the rest of the list.)

permutation (L, [O, .. M]) <-
remove(O,L,L 1),
permutation(L 1,M).

permutation([],[]) <-.

remove(X, [X, .. L], L) <- .
remove(X, [Y, .. L], [Y, .. M]) <-

remove(X,L,M).

10

safe([Queen, .. List]) <
nodiagonal(Queen,List, 1), .
safe(List) .

safe([]) <-.

nodiagonal(Ql, [02, .. list] ,N) -~

noattack(Ql ,02,NI),
Nl is N+l,
nodiagonal(Ol ,List,N 1).

nodiagonal(Ql, [],l'J) <- ·.'

noattack(Ol ,02,N) <-
01 >02,
Diff is 01-02,
Diff =\ = N.

noattack(Ql ,02,N) <-
02>01,
Diff is 02-01,
Diff =\ = N.

1.3. TWO PROBLEMS WITH THIS PROGRAM

(1) The standard interpreter for logic programs gives a depth first
search. Therefore, given the query solution(Perm)?, the interpreter
must solve permutation([l, ... 8].Perm) completely, before passing on to
check safe(Perm). In other words, this strategy places all the queens
on the board before checking whether any of them is attacked.

(2) The inefficiency is compounded by the backtracking mechanism.
When two queens are found on the same diagonal, safe(Perm) fails,
and a new permutation is generated. However, the new permutation
may well leave the conflicting queens where they were, thus ensuring
another failure in safe(Perm).

Coroutining alleviates the first problem. The programmer notes that
the variable Perm occurs in both top level goals, and so annotates
the program . to indicate that the interpreter is to solve these goals
cooperatively. Whenever the predicate permutation([1, ... 8],Perm)
produces a new partial permutation, the predicate safe(Perm)
consumes it, checking that it is consistent.

The procedure safe(Perm) is expanded depth first until it "needs"
the next queen, that is, until just before a variable within Perm is
unified with a non-variable. Unfortunately, this method, which is used .
in [7], only checks the safety of the first queen during coroutining,
as the authors point out. This is because safe(Perm) checks the safety
of each queen in turn, starting with the first. The program remains
inefficient; · either the definition of safe must be changed, or a more
powerful coroutining mechanism must be used.

The intelligent backtracking method described in [2, 3] analyses the
causes of failure when t\lyo queens are found to be in conflict, and
responds by backtracting to a goal which has caused the failure. This
means that one of the queens which was conflicting will be moved.
A much better performance follows, but it is still necessary to generate
a complete permutation before any safety checks are done.

1.4. A TRANSFORMATION OF THE PROGRAM

The program below simulates coroutining by dealing explicitly with

1
I

short communications

two fists of goals, one generated by permutation((1, ... 8],Perm), and the
other by safe(Perm). ·

A list of goals is represented

G l : G2: ... : Gn (An infix function

A -predicate

solve(Goals 1, Goals2)

may be defined.)

means that the two lists of goals, Goals1 and Goals2, are waiting to ·
be solved. Goals1 results from permutation, and Goals2 from satEl.t. \
During the computation, it is required to switch between goals in the'
two lists.

It must be decided at what point to suspend computation of the.
permutation and transfer to the list of goals generated by safe. This
depends on finding the points in the program at which the shared ·
variable, Perm, is given a new value. Whenever Perm or .a variable
within Perm is unified with a non-variable, control must pass to the
procedure safe, so that the compatibility of the new value can be
tested.

An analysis of the program shows that there are two such transfer
points. Whenever the permutation procedure is called, a variable L
is unified with either [X, .. L1] or with[]. Secondly, the clause
remove(X, [X, .. L],L). unifies X, (which is a variable within Perm), with
a constant.

Whenever either of these points is reached, therefore, control
might pass to safe. However, it may be detected that the consumption
of the terms [X, .. L] or [] by safe is guaranteed, and does not result
in the solution of any new goals. Therefore it is only necessary to
coroutine after the clause remove(X, [X, .. L],L) is used.

What happens to the second list of goals at this point? Whenever
safe([X, .. L]) is expanded, two goals arise, nodiagonal(X,L, 1) and safe(L).

Since both of these contain the shared variable L, it is desirable to
continue the coroutining on both these goals. When nodiagonal(X,
[X1, .. L],N) is expanded, three goals, noattack(X,X1,N), N1 is N+1, and
nodiagonal(X,L,N1) arise. Of these, the first two may be executed
immediately, since X, X1 and N are all known. After a number
of expansions of safe(Perm), a list of goals of the following form
has arisen.

nodiagonal(X1,L,N1) :nodiagonal(X2,L,N2) : ... :safe(L).

Each time control passes to this list of goals, it is transformed
by expanding out each goal and,, solving all the noattack goals. The
predicate

transform(Goals, Newgoals)

represents the state of the fist before and after the transformation.
The top level of the program is

solution(Perm) <-
solve(permutation([1, ... 8], Perm), safe(Perm)).

The definitions of solve and transform are as follows.

solve(permutation(L, [O, .. M]), Goals) <
remove(O,L,L 1),

transform(Goals, Newgoals),
solve(permutation(L 1,M), Newgoals).

solve(permutation([], []), Goals).

transform(safe([O, .. List]), nodiagonal(O,List, 1) :safe(List)).
transform(nodiagonal (0, (Q 1, .. L], N) : G, nodiagonal(O,L, N 1): H) <

noattack(O,01 ,N),

N1 is N+1,
transform(G,H).

The definitions of remove and noattack are as above.

. 1.5. REMARKS

The above program effectively places each queen and then checks
· whether it conflicts with any queen which is already on the board.

Intelligent backtracking might further improve it, but the need for it has
diminished because failures are detected at a much earlier stage.

The program resembles the original program. The definitions of
permutation, safe and nodiagonal are incorporated into the new defini
tions solve and transform.

The analysis of the original program, sketched above, bears a
resemblance to the dataflow approach to logic programs [4], in that
it concerns the propagation of values through .the program.

Logic programs, because of their simple syntax and the flexibility
of their control component, are much more suited to this kind of
manipulation, than programs in other languages.

REFERENCES

[1] CLARK, K. and McCABE, F.: ''The control facilities of IC-Prolog", in Expert Systems in the.
Microelectronic Age, Edinburgh Univ. Press 1979.

[2) BRUYNOOGHE, M.: " Analysis of dependencies to improve the behaviour of logic
programs". Proc. 5th Cont. Automated Deduction, Springer-Verlag 1980.

[3] PEREIRA, L. M. and PORTO, A: "Selective backtracking for logic programs". Proc. 5th
Cont. Automated Deduction Springer-Verlag, 1980.

[4) MORRIS, P.: "A dataflow interpreter for logic programs". Logic Programming Workshop,
Hungary 1980.

AVL-TREE INSERTION RE-VISITED

Philip Vasey

Department of Computing

Imperial College, London, England

An investigation of Maarten van Emden's logic program for
AVL-tree insertion (LOGIC PROGRAMMING NEWSLETTER 2), shows
that it fails to find a solution to the query

INSERT(avl(avl(NIL, 1, -, NIL) , 3 , < , NIL) , 2 , *t , ~)

even though there should be a valid instance, namely

*t=avl(avl(NIL,1,-,NIL), 2, - , avl(Nil,3, -, NIL))

*c = NO

. A closer analysis of the program reveals that a third assertion for
the TABLE2 relation is required_,

TABLE2(- , - , -) .

MORAL : even logic programs should be verified, or better still they
should be derived from an intuitively correct axiomatisation.

11

short communications

PURE LISP IN PURE PROLOG

Luis Moniz Pereira
Antonio Porto

Departamento de Informatica
Universidade Nova de Lisboa

2825 Monte da Caparica, Portugal

An evaluator for pure Lisp in pure Prolog is presented below:

1) eval(E, U, R) takes an S-expression and evaluates it to R, in the
context of association list U comprising two element lists pairing
atoms to their associated values

2) It features the Prolog system predicates:

X unifies with Y
A is an atom
I is an integer

X~Y
atom(A)
integer(!)
atomic(A) A is an atom or integer

3) Prolog syntax is used for lists. As usual in Lisp 'false' is represented
by the empty list, in this case '[]'

4) Examples of calls are:

?- eval([ff,XJ, [[X, [[1,2],3]] J, R).

2- lisp.
[alt, '[1,2,3A,5]].

gives R=1

gives [1,3;5]

5) 'equal' is made primitive rather than the implementation oriented
concept 'eq'

6) numeric functions and predicates are left out

7) space may be recovered by garbage collecting each cycle:

lisp :- repeat, solve((read(E), eval(E,0,R), write(R), nl,nl)), fail.

solve(G) : - G, ! .

where 'repeat' is a system predicate that always solves again

8) 'assert' is used as an optional convenience for storing functions
interactively

7- op(10,fx,l

lisp : - read(E), eval(E, 0, R), write(R), nl, nl, lisp.

eval(A, U, R) : - atomic(A),
((integer(A) ; A=O ; A=true), R=A ; ·

assoc(A, U, [_,RJ) ;
error).

eval([quote,XJ, -, X).

eval(X -, X).

eval([cond,[T,B] IL], U, R) :- eval(T, U, ET),
(ET =true, eval(B, U, R) ;

eval([condl L], U, R)).

eval([cond], -, □).

eval([list,[XILJJ, U, [EXIEL]) :- eval(X, U, EX), eval([list,LJ, U, EL).

eval([list], -, □).

eval([car,X], U, Y) :- eval(X, U, EX) (EX=fYl-1 ; error).

eval([cdr,X], U, Y) :- eval(X, U, EX) (EX=(-IYJ ; error).

eval([cons,X,Y], U, [EXI EY]) : - eval(X, u: EX), eval(Y, U, EY).

12

eval([atom,XJ, U, R) :- eval(X, U, EX). (atomic(EX), R=true ; R=O).

eval([equal,X,Y], U, R) :- X=Y ;
eval(X, U, EX),
eval(Y, U, EY),
(EX=EY, R=true ; R= □).

eval([Fill. U, R) :- assoc(F, U, P),
(P=[-,EF], eval([EFI L], U, R) ; error). ·

eval([[lambda,V,E]IAJ. U, R) :- evalist(A, U, EA),
pair(V, EA, P),
append(P, U, W),
eval(E, W, R).

eval([not,X], U, R) :- eval(X, U, EX), (EX=true, R=O ; R=true).

eval([and, X,Y], U, R) :- eval(X, U, EX), (EX= □, R=O ; eval(Y, U, R)).

eval([or, X,Y], U, R) :- eval(X, U, EX), (EX= □, eval(Y, U, R) ; R=EX).

eval([defun,N,A,E], -, N) :- assert(definition(N, [lambda,A,E])).

eval([eval,X], U, R) :- eval(X, U, EX), eval(EX, U, R).

/* extra notation * I

eval([null,X], U, R) :- eval([equal,X, □], U, R).

eval([if,C,A,BJ, U, R) :- eval([cond,[C,A],[true,B]], U, R).

/* association list * I

assoc(X, -, (_,R]) :- definition(X, R).

assoc X, [[Y,VY] I UJ, R) :- X=Y, R=[Y,VY] ; assoc(X, U, R).

/* examples of defined functions*/

definition(ff, [lambda,[x],[if,
[atom,x],
x,
[ff, [car, x]]]]).

definition(alt, [lambda,[u],[if,
[null,u],

□.
[if,

[null,[cdr,u]],
U,

[cons, [car,u], [alt, [cdr, [cdr, u]ll]ll]
).

/* utilities * I

error : - write(error), tab(2), abort.

evalist([H ITJ,U,[EH! ET]) :- eval(H, U, EH), evalist(T,U,ET).
evalist(O ,-, O).

pair([XIYJ,[UIVJ.[[X,UJIP]) :- pair(Y,V,P).
pair([] , O , O).

append([HITJ,L,[H!R]) :- append(T,L,R).
append([] ,L, L).

REFERENCE: JOHN McCARTHY and CAROLYN TALCOTT: "Lisp Programming and
Proving" (draft), Stanford University 1981.

A Note on Garbage Collection
in Prolog Interpreters

Maurice Bruynooghe

Department Computerwetenschappen
K. U. Leuven, Hevertee, Belgium

The principal runtime structures needed to
execute Prolog programs are the environment
stack and, depending on the method, either a
global or a copy stack. Methods have been
developed to remove all unnecessary informa
tion from the environment stack. The global
copy stack, however, can contain very large
data structures. Some of them can become
inaccessible. Although bactracking always
releases them, this can be insufficient for
large programs and garbage collection can be
necessary. Marking of the global copy stack
normally starts from all references to it, i.e.
from the environment stack. The paper des
cribes a method which reduces the number
of starting points by considering the state
of the computation. Some data structures are
recognized as garbage, although accessible,
because they are not needed to complete the
computation.

Adding Redundancy to Obtain More Reliable
and More Readable Prolog Programs

Maurice Bruynooghe

Department Computerwetenschappen
K. U. Leuven, Heverlee, Belgium

Prolog programs are very error-prone, small
typographical errors do not result in compile
time errors but in programs with different
unintended meanings. The paper contains a
proposal to improve the situation. It suggests
to add redundant information about the
flow of data through clauses and about the
possible values of arguments and gives a
method to analyse the consistency between
this additional information and the text of the
Prolog clauses.

An Algorithm for Interpreting
Prolog Programs

M. H. van Emden

Department of Computer Science
University of Waterloo, Waterloo, Canada

We describe in pseudocode the main
routine of a Prolog interpreter. The algorithm

abstracts

is developed in several steps. Initially a search
algorithm for trees is described. After a
review of the Prolog theorem prover, the tree
search algorithm is applied to the search
space of the theorem prover. Several ineffi
ciencies of the result are then eliminated by
the introduction of proof trees and structure
sharing.

An Applicative Language for Highly Parallel
Programming

Andras Doman

Institute for Co-ordination
of Computer Techniques

1054, Budapest, Akademia u. 16. Hungary

Applicative languages based on functional
semantics, examplify the perhaps unsurprising
fact that mathematics, with its considerable
power and history, may also be a programming
language - in a quite natural way. An obvious
consequence of this is that our /programming/
problems should be formulated as mathema
tical problems by means of an appropriate
procedural from.

The aim of our paper is twofold. First, through
the presentation of a functional language
/PARAFLOC/ developed and implemented by
us, we intend to illustrate the possibility of a
simple mathematical description suitable for
high-level programming. Second, we show
that functional languages represent a very
natural way of algorithm description not only
for sequential, but also parallel execution
without the user ·having to consider parallelism
as a specific feature either on the algorithmic
or the programming level.

Logic Programming in the Modelling
of Machine Parts

8 . E Molnar, A. Markus

Computer and Automation Institute
Hungarian Academy of Sciences,

Budapest, Hungary

The representation of the professional know
ledge of the mechanical engineer has to cope
with two problems : the representation of the
procedural knowledge and that of the expe
rience gained from objects designed earlier.
Logical programming gives a means to inte
grate the efforts towards solving the problem.

As an application of the above mentioned
ideas experiments are presented with a
program written in PROLOG for modelling
machine parts with the aim of generating a
computer aided classification of machine parts.

Fixture Design by Prolog

J. Farkas, J. Filemon

Technical University Budapest,
Budapest, Hungary

A. Markus, Zs. Markusz

Computer and Automation Institute,
Hungarian Academy of Sciences

Budapest, Hungary

This paper describes a program for designing
fixtures built out of a set of given elements.
Its input is a description of the shape of the
workpiece, the machining, and the co-ordinates
of the supports and of the clamps to be realized.
It generates a sequence of drafts of fixtures
automatically. The program has been written in
Prolog, the favourite language of logic pro
gramming. Since this system is meant to be a
prototype of some future developments, even
the methodological points have been explained
in detail. Finally some estimates of the limits of
this approach are given.

Applicative Communicating Processes
in First Order Logic

Marco Bellia, Pierpaolo Degano and Giorgio Levi

lstituto di Scienze dell'lnformazione
Universita di Pisa, Pisa, Italy

Enrico Dameri

Systems & Management SpA,
Area T ecnologie Software

Pisa, Italy

Maurizio Martelli

lstituto CNUCe - C.N.R., Pisa, Italy

We· describe a first - order applicative lan
guage for the specification of deterministic
systems of communicating computing agents
a la Kahn-MacOueen. Both the sequential and
parallel interpreter we give are based on lazy
evaluation, are demand driven and can handle
infinite streams and non-terminating proce-

13

dures. An equivalent least fixed-point sema
ntics is then presented which neatly copes
with the above features of the language. It is
worth noting that computations in our logical
based model can be considered as formal
proofs, thus making formal reasoning about
programs easier.

From Term Rewriting Systems
to Distributed Programs Specifications

M. Bellia, E. Dameri, P. Degano,
G. Levi and M. Martelli

lstituto di Elaborazione dell'lnformazione -
C.N.R., via S. Maria, 46, 56100 Pisa, Italy

The paper presents a formal model for distri
buted systems of computing agents, which is
based on extended term rewriting systems. An
operational semantics is given, which neatly
mirrors both the non-deterministic and the
parallel features of systems of computing
agents. The formalism we introduce has an
immediate interpretation in terms of first order
logic. Thus, we provide it with a fixed-point
semantics, closely related to the model theore
tic semantics of first order theories.

Epilog:
a Language for Extended Programming

in Logic

Antonio Porto

Departamento de Informatica
Universidade Nova de Lisboa

2825 Monte da Caparica, Portugal

Epilog is a Prolog-based language for logic
programming with extensions for powerful
control of the execution. The extensions are
based on having several (procedurally distinct)
AND connectives instead of just one as in
Prolog. The language allows for mixed/meta
level statements, and Prolog's cut has been
replaced by higher-level constructs.

This paper describes . Epilog . a.long with the
construction of an interpreter for it, written
in Prolog, aiming at a clear understanding of
the intended procedural semantics. Some
examples of application are shown.

14

abstracts

ORBI-An Expert System for Environmental
Resource Evaluation Through Natural

Language

Luis Moniz Pereira
Paul Sabatier

Eugenio Oliveira

Departamento de Informatica
Universidade Nova de Lisboa

2825 Monte da Caparica, Portugal

We describe a computer system, interroga
table in a flexible subset of Portuguese and
implemented in Prolog on a small machine,
which embodies and assimilates expert know
ledge on erivironmental biophysical resource
evaluation, is capable of explaining the applica
tion of that knowledge to a territorial data base,
and also of answering questions about its
linguistic abilities. The system was developed
in one year, under contract With the Portu
guese Department of the Environment.

A New Presentation of Distributed Logic

Luis Monteiro

Departamento de Informatica
Universidade Nova de Lisboa

2825 Monte da Caparica, Portugal

Distributed .logic is presented as the logical
formalization of a general abstract model of
concurrency, called a distributed transition
system. The operational and the declarative
definitions of the semantics of distributed
logic are outlined.

An Informative, Adaptable and Efficient
Natural Language Consultable Database .

System

Jean Fran<;ois Pique

Faculte de Medicine
Universite de Marseille
13288 Marseille, France

Paul Sabatier

Universidade Nova de Lisboa
Portugal

Within a unique formalism, logic is a power
ful theoretical basis allowing to represent a

database and to express the different (syntac
tic, semantic and deductive) processings invol
ved when this database is consulted in natural
language.

In this framework, we describe a complete
system using a three truth-valued logic ri
gorously defined. This logic allows a very fine
representation of questions semantics and lays
the theoretical basis for the creation of an
informative system consulted by casual or non
expert users.

On different points, we compare the perfor
mances of our system with those of some
related ones, and outline the possible exten
sions.

Logic Control With Logic

Luis Moniz Pereira

Departamento de Informatica
Universidade Nova de Lisboa

2825 Monte da Caparica, Portugal

Methods are presented for controlling
top-down executions with backtracking of
logic programs, that rely on writing interpreters
in logic to perform that control. This has
advantages of clearness, modularity and
adaptiveness.

Many examples are given. The Epilog lan
guage is introduced.

The Semantics of Parallelism
and co-Routining in Logic Programming

L. Moniz Pereira and L. F. Monteiro

Departamento de Informatica
Universidade Nova de Lisboa

2825 Monte da Caparica - Portugal

We begin with an introduction to a simple
but powerful logic programming language
called Prolog, in order to provide a rigorous
context of presentation of ideas and results.

Next we present definitions of sequential,
parallel and co-routined executions of pro
grams, in strictly logic programming terms, and
go on to define in logic a parallel interpreter for
logic programs, obtained by a simple program
transformation from a purely sequential inter
preter. We then show how similar transforma
tions may be directly applied• to programs to
obtain transforms that achieve parallelism or

co-routining without recourse to special inter
preters. Afterwards, we apply our results to
data base lookup and to problems arising from
the use of negation as nonderivability, and
suggest the basis of a rudimentary control
language for logic programs.

Included in "Mathematical Logic in Com
puter Science", North-Holland 1981 .

Knowledge Engineering Techniques
and Tools for Expert Systems

Rene Reboh

Software Systems Research Center
Link6ping University, S-58183 Link6ping, Sweden

(dissertation)

Techniques and tools to assist in several
phases of the knowledge-engineering process
for developing an expert system are explored.

A sophisticated domain-independent net
work editor is described that uses knowledge
about the representation and computational
formalisms of the host consultation system
to watch over the knowledge-engineering
process and to give the knowledge engineer
a convenient environment for developing,
debugging, and maintaining the knowledge
base.

We also illustrate how partial matching
techniques can assist in maintaining the
consistency of the knowledge base (in form
and content) as it grows, and can support a
variety of features that will enhance the inter
action between the system and the user and
make a knowledge-based consultation system
behave more intelligently.

Although these techniques and features are
illustrated in terms of the Prospector environ
ment it will be clear to the reader how these
techniques can be applied in other environ
ments.

A Specification of an Abstract
Prolog Machine and its Application

to Partial Evaluation

Henryk Jan Komorowski

Software Systems Research Center,
Link6ping University

S-581 83 Link6ping, Sweden
(dissertation)

We investigate partial evaluation of Prolog
programs as a part of a theory of interactive,

abstracts

incremental programming. The goal of of this
investigation is to provide formally correct,
interactive programming tools for program
transformation.

An abstract Prolog machine is introduced.
The machine is systematically extended to
an abstract partial evaluation Prolog machine.
Three fundamental partial evaluation trans
formations are introduced and proved to pre
serve meaning of programs: pruning, forward
data structure propagation, and opening (which
also provides backward data structure propaga
tion). The theoretical investigation is then
extended to account for relations between
logic and partial evaluation.

An implementation of a partial evaluation
system is then developed from the formal

· specification. The system is well integrated
and efficiently implemented in the Qlog pro
gramming environment. Several examples
illustrate the mechanism and applications of
partial evalution .

Finally, we outline how meta-rules that
control the execution of the Prolog program
can be incorporated into the system in a clean
way. Such rules are familiar from artificial inte
lligence research . They could be used in future
programming environments as specialized
metatheories which support the programmer
in particular tasks of programming.

Logig Programming Based on a Natural
Deduction System

A. Seif Haridi

UPMAIL
Computing Science Department

Uppsala University, Uppsala, Sweden

(dissertation

A novel approach to the subject of logic
programming is introduced. A natural deduc
tion system is proposed and its viability is
demonstrated as the basis of the computa
tional mechanism of logic programs instead
of resolution . The immediate and significant
consequence is that many .logical statements
which earlier have been considered as
specification are now executable, in particular
statements that are of non-clausal form. We
develop a programming theory which allows
us to study and specify computations proof
-theoretically. By means of this theory we
show how diverse topics and concepts of logic

programming are treated and understood in a
coherent way. Among the topics treated are
Horn clauses and more general statements for
expressing equivalence, first order . functions,
infinite data structures, negation and 'for-all'
type of computations. All these topics are
embodied in a logic programming language
that is under implementation. A computational,
but still proof-theoretical, substitute for unifica
tion is described and its correctness is proved.
It is an algorithm that generates a certain
kind of proofin our system. We associate
computation rules with the statements
expressed in our language to provide control
information for running programs effficiently.
These rules are general enough to widen the
scope of the operational understanding of a
logic program statement from Kowalski's
procedural reading to the concept of co-opera
ting agents (processes) working on infinite data
stH.Jct{lres.

Program Transformation by Data Structure
Mapping

Ake Hansson and Sten-Ake Tarnlund

UPMAIL
Computing Science Department

Uppsala University, Uppsala, Sweden

Suppose that we have a program P and a
data structure d and we want to arrive at an
isomorphic program P' that, for example, is
more efficient or more didactic than P. A well
known method to solve this problem intuiti
vely is to substitute a new data structure d'
for d and to manipulate P so we get an equi
valent program P'. A nice example of this idea
is the informal development of the heap sort
algorithm on binary trees to an algorithm on
arrays.

Our purpose is to present a formalization of
a 1- 1 function between lists and d-lists so
we can develop · an isomorphic program on
d-lists as data structure from a program on
lists by a formal derivation e.g., in a first order
natural deduction system. The success of this
method is dependent on whether or not there
are dextrous mappings between data struc
tures, and the merit of a mapping function
may be reflected by the length (number of
steps) in such a derivation.

Program transformation can be viewed as a
special case of program synthesis when the

15

specification is a program, but it can also
be used as an auxiliary method for deriving
programs from abstract specifications
(abstract in the sense that no data structure
is specified, and moreover, several programs
can be derived).

Properties of a Logic Programming
Language

Hansson, A., Haridi, S., Tarnlund S.-A.

UPMAIL
Computing Science Department,

Uppsala· University, Uppsala, Sweden

We have developed a logic programming
system based on natural deduction. It consists
of a class of statements which is a superclass
of Horn clauses. We can run logical state
ments that earlier have been considered as
specifications. For example, the language
contains the logical constants negation, equi
valence, universal quantifier and identity that
give the notions of definitions of functions and
relations, infinite data structures and virtual
classes. Computation rules provide control
information for running programs efficiently
and, for example, we have the concept of
cooperating processes giving us computations
on infinite data structures that terminate.

A Programming Language Based
on a Natural Deduction System

Sten-Ake Tarnlund

UPMAIL
Computing Science Department

Uppsala University, Uppsala, Sweden

We shall take up a programming language
based on natural deduction. Our presentation
starts with the subset of Horn clause logic
on which Prolog is based. It continues with
inference rules that provide a programming
language on full predicate logic. For example,
we have negation at the object level and
virtual classes. Identity is added to the lan
guage and this provides us with the notion of
a function. Moreover, identity makes a unifica
tion algorithm redundant. The ideas of evalua
ted and non-evaluated terms as well as infi
nite objects are introduced. A few simple
computation rules are discussed, in particular

16

abstracts

control on the inference rule 'and-introduction',
from which we may obtain several well-known
computation rules, e.g. coroutining and lazy
evaluation. Furthermore we treat computations
on infinite data stuctures and prove that they
terminate. Finally, we treat computations on
negated statements.

(Re)lmplementing Prolog in Lisp
or

YAQ- Yet Another QLOG

Mats Carlsson

UPMAIL
Computing Science Department

Uppsala University, Uppsala, Sweden

The report describes an embedding of Prolog
into a portable Lisp programming environment.
The syntax, data types, 1/0, and debugging
tools are inherited from the host language.
Space saving aspects of the implementation
are discussed. There is an optional occur
checker and a novel feature called variable
arity.

Deductive Modeling of Human Cognition

Goran Hagert

Department of Psychology
Uppsala University, Sweden

Sten-'Ake Tarnlund

UPMAIL
Computing Science Department

Uppsala University, Uppsala, Sweden

Deductive analysis (DA) is presented as an
approach to the study and simulation of
human cognitive processes. DA is composed
of a psychological theory and a methodology
that can shed light on mental phenomena.
The cognitive theory is embedded in the
problem space and the control structure
hypotheses. The methodology consists of
IOgica·I derivations of computer models
from an abstract specification. The item
-recognition task and the three-term series
task are analyzed for purpose of illustration.
Several aspects of human cognition in these
environments are discussed. It is argued that
DA brings new notions to the study of human

cognition, for instance, to design sets of
models and to distinguish between empirically
equivalent models ..

Natded, a Derivation Editor .

Agneta Eriksson and Anna-Lena Johansson

UPMAIL
Computing Science Department

Uppsala University, Uppsala, Sweden

We introduce the derivation editor, NATDED,
by taking up McCarthy's challenge that a
program for concatenating lists is associative.
That is to say, given three lists X, Y, and Z,
concatenating Y to X and concatenating Z to
this result gives the same list as concatenating
Z to Y and concatenating this result to X. The
first step to prove this property is of course to
characterize it formally. The second step is to
prove the theorem and we would like to get a
formal proof that keeps the structure of a
simpler informal argument. The example helps
us also to illustrate this, and we shall espe
cially focus on two properties of the derivation
editor: first, we illustrate the possibility to get
structures of proofs; and next, the potential to
write composite rules. Finally we comment on
the implementation.

A PROLOG Implementation
of Query-by~Example

J. Neves

Department of Computer Science
Universidade do Minho, Braga, Portugal

R. C. Backhouse and S. 0. Anderson

Department of Computer Science
Heriot-Watt University, Edinburgh EH1 2HJ,

UK

Data bases can be conveniently represented
as a set of clauses in a subset of the predi
cate calculus known as Horn clausal form.
This form of predicate calculus has been
implemented as the programming language
Prolog (Programming in Logic). Query-by
-Example is a simple interface to relational
data bases which requires the user to for
mulate a query by filling in tables of example
results.

The similarity between QBE syntax and
Prolog goals· has been noted in the literature.

This paper realises that correspondence by
providing a translator from QBE to Pro.log
goals. Our conclusion is that Prolog is a good
tool for implementing relational data bases.

Issues such as the inclusion of general rules
in Prolog data .bases and how to express
them in QBE, and the interpretation of not
in Prolog suggest that with more work the
marriage of QBE and Pro.log will result in a
more powerful and accessible data base
system than either provide separately.

Descriptions and Qualifiers

Mark Wallace

The Computer Studies Group
The University

Southampton, S09 5NH, UK

Natural language conveys information by
referring to things and asserting how they are
related. We can parse sentences into 'descri
ptions' and 'qualifiers' which have an anala
gous semantics. Descriptions can represent
names ("Fred"); determiners and numbers
("the 2 party leaders", "anyone"); phrases
with embedded clauses ("the man who came
to dinner"); and natural language functions
("both parents' of each pupil"). We discuss
the formal query language of descriptions and
qualifiers with reference to the effect of
determiners on meaning and database
searching. We report on an implemented
natural language system based on descrip
tions and qualifiers.

Restriction Grammar in Prolog

Lynette Hirschman and Karl Puder

Research and Development Activity
Federal and Special Systems Group

Burroughs Corporation
Paoli, Pensylvania 19301, USA

This paper describes the implementation
of Restriction Grammar in DEC-10 Pro.log.
Restriction Grammar (RG) is derived from
a style of grammar developed at the Linguistic
String Project of New York University; it
consists of a set of context-free BNF defini
tions, augmented by grammatical constraints
or restrictions. During parsing, a tree is
automatically generated to represent the

abstracts

context-free rules that have been applied.
A special circular data structure for tree terms
implements multiple links between each node
and its parent, its first child, and its left and
right siblings, allowing free traversal of the
tree. The restrictions access the necessary
contextual information by climbing through the
tree and testing its structure, rather than by
parameter passing, as in DCG's. An inter
preter hides from the user the parameters for
tree construction, in addition to those for the
input and output word stream. The resu lt is a
highly inspectable, easily modifiable grammar
which transfers many of the book-keeping
tasks (e.g., parse tree generation, parameter
passing) from the user to the RG interpreter
or translator.

Bi-Directional Inference

Joao P. Martins, Donald P. McKay
and Stuart C, Shapiro

Department of Computer Science
State University of New York at Buffalo

Amherst, NY 14226, U.S.A.

We present an overview of SNIP, the
SNePS Inference Package, and discuss the
interaction between forward and backward
inference. Such interaction is called bi-direc
tional inference and corresponds to a bi-direc
tional search. Bi-directional inference sets
up a conversational context and focuses a
system's attention towards the interests of
the user, cutting down the fan out of pure
forward or pure backward chaining. We show
an example of bi-directional inference and
compare the results obtained using such
inference with the results obtained using
backward or forward inference only.

SNePSLOG User's Manual

Donald P. McKay and Joao Martins

Department of Computer Science
State University of New York at Buffalo

Amherst, NY 14226, U.S.A.

SNePSLOG is a logic programming interface
to SNePS. It uses SNalculus, the basic
predicate calculus augmented with SNePS
logical connectives. The system consists of
two ATN grammars, one for parsing and one

for generation. In addition, there is a top/eve/
READ-EVAL-PRINT loop which takes the place
of the SNePS top/eve/. The SNePSLO'to lan
guage is described by a context free
grammar.

A Prolog Implementation of a Large System
on a Small Machine

Lufs Moniz Pereira
Antonio Porto

Departamento de Informatica
Universidade Nova de Lisboa

2825 Monte da Caparica, Portugal

This paper describes a natural -language
question-answering system for aiding in the
planning of research investment which was.
completely written in Pro.log (database inclu
ded) and runs on a microcomputer.

We emphasize the techniques employed to
get such a system to run on a small machine.

Towards a Logical Reconstruction
of Relational Database Theory

Raymond Reiter

Department of Computer Science
Rutgers University

New Brunswick, NJ08903, USA

Insofar as database theory can be said to
owe a debt to logic, the currency on loan is
model theoretic in the sense that a database
can be viewed as a particular kind of first
order interpretation, and query evaluation is a
process of truth functional evaluation of first
order formulae with respect to this interpreta
tion . It is this model theoretic paradigm which
leads, for example, to · many valued proposi
tional logics for databases with null values,

In this paper I argue that a proof theoretic
view of databases is possible, and indeed is
much more fruitful. Specifically, I show how
relational databases can be seen as specia l
theories of first order logic, namely theories .
incorporating the following assumptions:

1. The domain closure assumption: The indi
viduals occurring in the database are all
and only the existing individuals.

2. The unique name assumption: Individuals
with distinct names are distinct.

17

3. The closed world assumption: The only
possible instances of a relation are those
implied by the database.

It will follow that a proof theoretic
paradigm for relational databases provides
a correct treatment of

1. Query evaluation for databases with
incomplete information, including null
values.

2. Integrity constraints and their enforcement.
3. Conceptual modelling and the extension of

the relational model to incorporate mor-e
real world semantics.

Associative Evaluation of PROLOG
Programs

Katsuhiko Nakamura

Tokyo Denki Univ.
Department of Systems Engineering
Hatoyama, Saitama 350-03, Japan

An evaluation method for PROLOG pro
grams is represented, which is employed in the
H-PROLOG interpreter. In this method, hash
memories are used to store several kinds of
information for the purpose of high speed
access and efficient comparison of data. The
main working storage is a hash memory and
contains variable-value (term) pairs called
bindings. The notion of binding is extended so
that it is referred by its variable name and a
label called a context which is generated at
each application of a clause (a procedure).
A binding contains another context to deter
mine whether it is "alive" or "dead". Another
hash memory contains the "monocopy" lists
which represent subterms in a program and
the indices of clauses. The system written
in the C language is simple because
of employment of the data structures based
on the hash techniques and of LISP functions.

A Prolog Implementation of the
Knuth-Bendix Reduction System

Armando Matos

Departamento de Engenharia Electrotecnica
Universidade do Porto

Rua dos Bragas, 4099 Porto Codex, Portugal

I have developed a Prolog program imple
menting the Knuth-Bendix Reduction System

18

abstracts

([1]) ; most ot the examples in [1]. notably the
most difficult one (example 16) were tried and
verified (in a couple of cases with apparently
shorter sequences of intermediate axioms).

Interestingly enough, the program runs in a
small mini-computer (PDP 11-03) using the
Edinburgh RT-11 interpreter with similar
execution times to those reported in [1].

Two aspects of programming deserve
mention: in the first place, if terms of the
theory are represented as Prolog terms and
the "built-in" Prolog unification is used (as
I have done) care should be taken due to the
absence of the occur check in most Prolog
implementations. In the second place, the
candidate selection for critical pairs requires
some form of heuristic control (I have used a
complexity measure) so that powerful axioms
are generated as early as possible.

It would be interesting to run this example
on a bigger machine (using a compiler) and
to program more general reduction systems
(see [2]).

A detailed report of this work is ava ilable
from the author.

[1] Knuth; Bendix- Simple Word Problems
in Universal Algebras - in Computational
Problems in Abstract Algebras. Ed. J.
Leech, Pergammon Press, pp. 263-267,
1970.

[2] Peterson; Stickel - Complete Sets of
Reductions for some equational theories.
JACM, V.28 No. 2, pp. 233-264, 1981.

A Logical Approach to Simulation

Ivan Fut6

Institute for Coordination
of Computer Techniques

Budapest H-1368 POB. 224, Hungary

Tamas Gergely

Research Institute for Applied
Computer Science

Budapest H-1536, POB 227, Hungary

Computer simulation plays an important role
within the solution of those problems which
are connected with analysis or synthesis of
objects of high complexity. The main character
istics of simulation models and their develop
ment are analysed. In order to support the
development a consistent family of formal

notions are briefly introduced within the frame
of mathematical logic. The theory thus obtai
ned is called simulation logic. Declarative and
procedural aspects of simulation models can
be handled in a unique way by the use of a
constructive part of the first order classical
logic. Horn formulas which were the basis of
logic programming now become the basis for
logic simulation. TS-PROLOG, the simulation
language of logic simulation is developed and
its usage illustrated by modelling a decentra
lised control system worked out in detail.

A Discrete Simulation System Based
on Artificial Intelligence Methods

Ivan Fut6 and Janos Szeredi

Institute for Coordination of Computer
Techniques

Budapest, Hungary

A discrete event simulation system based
on the Al language PROLOG is presented.
The system called T-PROLOG extends the
traditional possibilities of simulation languages
toward automatic problem solving by using
backtrack in time and automatic model
modification depending on logical deductions.
As T-PROLOG is an interactive tool, the user
has the possibility to interrupt the simulation
run to modify the model or to force it to
return to a previous state for trying new
possible alternatives. It admits the construc
tion of goal-oriented or goal-seeking models
with variable structure. Models are defined in
a restricted version of the first order predicate
calculus using Horn clauses.

To appear in "Discrete Simulation and
Related Fields" ed. A. Javor, North-Holland
Amsterdam, 1982, pp. 135-150.

LDM - A Program Specification
Support System

Zs. Farkas, P. Szeredi, E. Santane-T6th

Institute for Coordination of Computer
Techniques (SzKI)
Akademia utca 17.

H-1054 Budapest, Hungary

LDM is a software development method
based on the ideas of logic programming and

the Vienna Development Method. The LDM
language can be considered as a constructivity
preserving extension of PROLOG with notions
useful for describing programs; these extra
notions originate mainly from VDM. This paper
deals with the use of LDM in the specification
and design phase of program development.
An interactive support system is introduced,
which helps formulating specifications in LDM
and checking them by executions (which is
made possible by constructivity). Besides
listing the commands of the system an
example is shown to illustrate not only the
LDM language but the use of the system
as well. Finally, the realization of the system
as a PROLOG program is outlined.

First International Logic Programming Con
ference, Marseilles, France, September 1982.

Module Concepts for Prolog

Peter Szeredi

Institute for Coordination of Computer
Techniques (SzKI)

H-1368 Budapest, POB 224, Hungary

I-

abstracts ·

We outline the problems of introducing

modularity to the PROLOG language, over

view three present implementations featuring

some level of modularity, and discuss the

consequences of the modularity models intro

duced.

Presented at the Workshop on "PROLOG

Programming Environments" Link6p ing,

Sweden, 24-26 March 1982.

The MPROLOG Programming Environment:
Today and Tomorrow

Peter Koves

Institute for Coordination of Computer

Techniques (SzKI)

Akademia utca 17.

H-1054 Budapest, Hungary

The state of the MPROLOG system, as of

february 1982, is described. The program

development subsystem (POSS) is introduced.

STOP PRESS

A new version of the "User's Guide DEC
system-10 Prolog" is available, authored by
D. Bowen, and can be obtained from the
Department of Artificial Intelligence at Edin
burgh.

I= I-

The services of the envisaged programming
laboratory are briefly described.

MPROLOG is a modular PROLOG system

developed by the Institute for Coord ination of
Computer Tecnn iques (SzKI) . The system was
designed to support modular programming in
PROLOG and efficient program development
and execution. One of the most important
des ign cr ite ria was that the system itse lf
should be as highly portable as possible.

The MPROLOG system currently consists

of four components: the pretranslator, the
consolidator, the interpreter and the program
development subsystem (POSS).

The paper describes the current state of the
system. It then goes on to outline some plans
for future development. These include the

completion of a compiler by the end of 1982.
and the upgrading of the POSS into the
MPPL: the MPROLOG Programming Labora
tory. The latter incorporates a source level
global optimizer (including intermodule opti
mization), a full-scale focuss ing mechanism
for syntax-driven editing, and support of group
work through a dedicated software data base.

I= I-
19

research centres addresses . .

Here are some more:

Department of Computer Science
The University of British Columbia
2075 Wesbrook Mall
Vancouver B.C. V6T 1W5 Canada

Department of Computer Science
University of Western Ontario
London Ontario N6A 5B9 Canada

INRIA
Domaine de Voluceau - Rocquencourt
BP 105
78150 Le Chesnay France

SZAMKI
P O.B 227
Budapest H-1536 Hungary

SZTAKI
P.O.B. 63
Budapest H-1502 Hungary

SZAMOk
P.O.B. 146
Budapest H-1502 Hungary

NIM IGUSZI
P.O.B. 33
Budapest H-1363 Hungary

20

Dept. of Computer Science
Trinity College
201 Pearse Street
Dublin 2

I.E.I-C.N.R
Via S. Maria 46
1-56100 Pisa

Electrotechnical Laboratory
Sakura-Mura, Niihari-Gun
lbaraki

Software System Research Center
Linkoping University
S-581 83 Linkoping

Computer Research Center
Hewlett Packard Laboratories
1501 Page Mill Road
Palo Alto CA 94304

IBM Research Laboratory
5600 Cottle Road
San Jose CA 94143

Dept. of E.E.C.S.
University of Santa Clara
Santa Clara CA 95053

Ireland

Italy

Japan

Sweden

USA

USA

USA

Logicon ~ Operating Systems
21031 Ventura Blvd
Woodland Hills CA 91364

Dept. of Computer Science
Duke University
Durham NC 27706

Dept. of Computer Science
Rutgers University
New Brunswick NJ 08903

RADS/I SIS
Griffis A.F.B. NY 13341.

IBM Systems Research Institute
205 East 42nd Street
New York NY 10017

Dept. of Computer Science
University of Texas at Austin
Austin TX 78712

Dept. of Computer Science &
Josef Stefan Institute
University of Edvard Kardelj
Ljubljana

USA

USA

USA

USA

USA

USA

Informatics

Yugoslavia

