
CONTENTS 
Short Communications by : 

R. BARBUTI, P._DEGANO, G. LEVI, HARVEY 
ABRAMSON, MASOUDYAZDANi, lvAN Fure, TAMAS 
GERGELY, JAN0 SZEREDI, JOHN M . CARROLL, 
O1-LuN Wu. M. H. VAN EMDEN, Lurs MoN1z 
PEREIRA. 

Community News & Events 
New Books 
Abstracts 
Research Centres Addresses 

EDITOR 

Prof. Luis MONIZ PEREIRA 

Departamento de Informatica 
Universidade Nova de Lisboa 

PUBLISHED 

UNIVERSIDADE NOVA DE LISBOA 
Centro de Informatica 
Faculdade de Ciencias e Tecnologia 
2825 Monte da Caparica - Portugal 
g 245 4214 · 245 4987 · 245 4464 · 245 5299 

245 5642 · 245 5643 · 245 5644 · 245 5645 

ACKNOWLEDGEMENT 

This publication has been fully subsidized 
by Junta Nacional de lnvestigai;ao Cientffica 
e Tecnol6gica (JNICTI, Av. D. Carlos I, 126, 
Lisboa, Portugal. 

COLABORA TION 

Thanks are due to ALEXANDRE SILVA and 
ANTONIO PORTO for help with the address list. 

SUBMISSIONS 

Send to the editor, typed or printed, if possible 
double spaced, one side of the paper only. 

CONTRIBUTIONS 

All those who can contribute please do so, by 
sending at least US$6.00 or equivalent, per 
number received, to the editor, payable to the 
Centro de Informatica da Universidade Nova 
de Lisboa. 

DESIGN, TYPESETTING AND PRINTING 

Servi9os Graficos da Universidade 
Nova de Lisboa 
Av. Miguel Bombarda, 20-1. 0 

1000 Lisboa, Portugal 

WINTER 1982/1983 

EDITOR'S FOREWORD 

• Last September, in Marseille, took place The First International 
Logic Programming Conference. Some 150 people were present from 
twenty countries: Argentina, Australia, Belgium, Brazil, Canada, 
Czechoslovakia, Denmark, France, Germany, Hungary, Israel, Italy, 
Japan, Norway, Poland, Portugal, Sweden, United Kingdom, USA and 
Yugoslavia. The proceedings, containing the 35 accepted papers, 
can be obtained with a check for US$30 plus postage payable to 
ADDP- Association pour la Diffusion et le Developpement de Prolog, 
to be sent to 

ADDP-GIA 
Case 901 
Faculte des Sciences de Luminy 
13 288 Marseille Cedex 9 
France 

• The Second International Logic Programming Conference will 
take place in Uppsala, Sweden, in 1984. For more information contact 
the program chairman 

Sten-Ake Ta"inlund 
Dept. of Computing 
Uppsala University 
Sturegaten 4A 
75223 Uppsala, Sweden 

• A Logic Programming Workshop will be held in the south of 
Portugal, in the last week of June (27 Jun-1 Jul) 1983. For further 
information contact 

Lufs MONIZ PEREIRA 

Dept. de Informatica 
Universidade Nova de Lisboa 
Quinta da Torre 
2825 Monte da Caparica, Portugal 

• To receive the Newsletter more often simply contribute more 
often. More contributions are needed in the way of local news, 
personal news, contracts, grants, visits, posts available, and other 
interesting community news items, such as new available software, 
efficiency comparisons of implementations, etc. Also, short communica
tions are welcome. Last but not least, monetary contributions are 
indispensable. 



short communications 

ON APPL YING AN INDUCTION LESS TECHNIQUE 
TO PROVE PROPERTIES OF RESTRICTED 

PROLOG PROGRAMS 

R. Barbuti, P. Degano, G. Levi 

lstituto di Scienze dell'lnformazione 
Universita di Pisa 

Corso Italia, 40 1-5600 PISA ITALY 

The aim of this note is to show an application of an inductionless 
technique for proving properties of logic programs to an example. Our 
method applies to annotated Horn clauses, where the inputs and the 
outputs are explicitly distinguished, as introduced by [1, 2). This 
restriction, while maintaining most of the expressive power of 
PROLOG, allows to define multi-output functions. Furthermore, in such 
a framework, we ($an adopt a proof technique originally developed in 
single-output functional approach, i.e. the Knuth-Bendix completion 
algorithm for term rewriting systems [3, 4]. Roughly speaking, such a 
technique consists in showing that a set (composed of equations, with 
a single output, defining a set of procedures, and the property to be 
proved) results in a consistent set of definitions. In order to prove 
consistency no induction is required, yet it is sufficient to show that, 
given a term, it cannot be reduced by means of the equations and the 
property to two different terms. 

In order to naturally express properties, we extend PROLOG clauses 
to have more than one literal in their left-hand side. Accordingly, the way--
a goal is computed has been modified, so that properties could be 
applied to, say, speed up the computation. In order to apply to 
annotated PROLOG our extension of the Knuth-Bendix completion 
algorithm, some restrictions are to be imposed on PROLOG. The first 
restriction is in connection with the distinction between inputs and 
outputs, and rules out the possibility of inverting a function. The 
second allows to write deterministic procedures only, and the others 
concern well-formedness of definitions. A detailed description of our 
extended/restricted PRO LOG can be found in [ 5), as well as a 
complete presentation of our method. 

A program is a set of clauses { lj < --Rj }, Ii being an atom and Rj 
a set of atoms, such that whenever Ii overlaps I< with substitution a, 
then Ri overlaps R< with '9. A property is a clause P1 , ... , Pn <--0, 
such that Pi overlaps some Ii. A program is consistent either if it does 
not contain any property, or if it contains some properties which 
preserve determinism of the results of computations. 

Given a consistent program F and a property P, our algorithm, if 
succeeding, shows that the new program F' obtained by adding P to F 
is consistent too. In other words, property P has been shown to be 
a theorem in the theory defined by program F. 

We assume familiarity with the Knuth-Bendix completion algorithm 
as presented for instance in [3]. 

Consistency is checked by showing that the new program F' is 
relational confluent. Relational confluence means that, given any goal, 
all its computations do terminate with the same result. The method we 
use for proving that a clause P is a theorem of a consistent program F, 
consists in determining all those (symbolic) goals to which both P and 
some clause in F can be applied. All possible computations of such 
goals are performed (symbolically evaluating the goals without instan-

2 

tiating their input variables), then their results are checked for 
(symbolic) equality. 

Let us show by means of an example how we prove a property 
of a program. 

Let us have the following clauses, where x, y, z, t, w, r denote 
variables over binary digits, and a, 13, y, 5, o, p denote binary numbers, 
i.e. sequences of binary digits built by applying the constructor"." to a 
sequence and a binary digit, and starting from the empty sequence },._ 

R1. Bplus(in: x,x,z ; out: z,x) <-
R2. Bplus(in: x,y,x; out: y,x) <-
R3. Bplus(in: x,y,y; out: x,y) <-
R4. Cplus(in: J,.,0; out: J,.) <-
R5. Cplus(in: J,.,1; out: A.1) <-
R6. Cplus(in: a.x,y; out: y.t) <--

Cplus(in: a,z; out: y), Bplus(in: x,y,0; out: t,z) 

R7. Nplus(in: a, J,.; out: a) <--
R8. Nplus(in: J,., 13; out: 13) <--
R9. Nplus(in: a.x, 13.y; out: y.t) <--

Nplus(in: a, 5; out: y), Cplus(in: 13,z; out: 5), 
Bplus(in: x,y,0; out: t,z) 

Clauses R1-R3 define the standard 3-adic (addend1, addend2, carry) 
binary addition whose value is the pair (result, carry). Clauses R4-R6 
define the sum of a bit over a binary number (carry over). Clauses 
R7-R9 define the sum of two binary numbers. 

Let us prove the following trivial property 

P. Nplus(in: a.O, 13.y; out: y.y) <-- Nplus(in: a,13; out: y) 

We look for the most general symbolic goals to which P and some Rj 
are applicable. Only R9 overlaps P yielding the following goal. 

G1. <-- Nplus(in: a.0, l3.y; out: y) 

Note that the output variables are left unbound. 
By applying P to G1 we obtain the binding y = 5.y and 

L 1. <-- Nplus(in: a,13; out: 5) 

By applying R9 and R2 the bindings y = o.t and t = y, z=0 are found 
and G 1 evaluates to 

L2. <-- Nplus(in: a,p; out: o), Cplus(in: 13,0); out: p) 

Since the bindings introduced during the two symbolic evaluations are 
compatible, we set L2 < -- L 1 as a new property to be proved. With 
the following property 

P1. Nplus(in: a,p; out: 5), Cplus(in: 13,0; out: p) < --
Nplus(in: a,13; out: 5) 

the property P is trivially proved by reducing L2 to L 1. 
Note that P1 has more than one literal in the left-hand side, connected 
by variable p. 

Now, we look for all the most general goals that can be obtained 
from P1 and R1-R9, namely superpositioning Nplus(in: a,p; out: 5) 

with R7-R9 and Cplus(in: 13,0; out: p) with R4-R6. 
No most general goal can be generated from P1 and R7 (nor R9), since 

r 



short communications 

binding p with the empty number J.. (with 13.y) would cause the output 
of Cplus to be bound to r. '(to 13.Y), too (recall that our programs cannot 
be inverted). 

From Pl and RS we obtain the goal 

G2. <-- Nplus(in: J..,p; out: y), Cplus(in: 13,0; out: p) 

whose computations originate the new property 

P2. Cplus(in: 13,0; out: 13) < - -

From Pl and R4 we generate the following most general goal to which 
both clauses can be applied. 

G3. <- -.,, Nplus(in: a,p; out: i5), Cplus(in: r.,0; out: p) 

whose computations lead both to the empty clause with compatible 
bindings. 

Superpositioning Pl and R6 yields the most general goal 

G4. < - - Nplus(in: a,p; out: i5), Cplus(in: 13.x,O; out: p) 

that evaluates in two different ways to the same literal, i.e. 

Nplus(in: a, 13.x; out: i5). 

It remains to prove that property P2 holds. The only most general 
goals are obtained from P2 and R4 and R6. The first goal is 

G5. <-- Cplus(in: r.,O); out: i5) 

that is reduced to the empty clause by two different computations. 
The same situation arises with the second goal 

G6. <-- Cplus(in: 13.x,O; out: i5) 

No new property is generated, thus the property P has been 
proved. 

The aim of this short communication is to show that our extension 
of the Knuth-Bendix algorithm can be profitably used to prove logic 
program properties. Thus, we have not mentioned at all interesting 
problems such as those related to new property generation (e.g. 
L 1 <-- L2 or L2 <-- L 1 ?), simplification of properties, termination 
of computations, and termination of the algorithm itself. 

REFERENCES 

[1] BELLIA, M., DEGANO, P. and LEVI, G.: "The call by name semantics of a clause 
language with functions". In : Logic Programming, K. L. Clark and S-A Tarnlund Eds., 
Academic Press, 1982. 

' [2] CLARK, K. L. and GREGORY, S.: "A relational language for parallel programming". Proc. 
Functional Programming Languages and Computer Architecture, Portsmouth 1981, 
171 -178. 

[3] KNUTH, D. and BENDIX, P.: "Simple word problems in universal algebras". In: Computa
tional problems in abstract algebra, J. Leech Ed., Pergamon Press 1970, 263-297. 

[4] HUET, G. and OPPEN, D. C.: "Equations and rewrite ru les: A survey". In: Formal 
Languages: Perspectives and Open Problems, Book R. Ed., Academic Press (1980) . 

[5] BARBUTI, R., DEGANO, P. and LEVI, G.: "Towards and inductionless technique for 
proving properties of logic programs". Proc. 1st Logic Programming Conference, Luminy, 
1982. 

A PROLOG IMPLEMENTATION OF SASL 

Harvey Abramson 

Department of Computer Science 
University of British Columbia 
Vancouver, B. C., CANADA 

I have recently completed a Prolog implementation of SASL (St. 
Andrews Static Language), an elegant functional (applicative) language 
characterized by: definition by recursion equations; non-strict 
semantics of function application; lazy evaluation; weak typing [ Turner, 
1976, 1979, 1981]. The definite Clause Grammar formalism ([Col
merauer, 1978] and [ Pereira & Warren, 1980]) and a few associated 
Prolog predicates are used, following Turner, to "compile" SASL 
expressions to a string of combinators and global names. This string 
is evaluated, however, by a normal order reduction machine (also 
implemented in Prolog), rather than by Turner's normal graph reduction 
machine: a normal graph reduction machine is feasible in Prolog, but . 
apparently only at the cost of modifying the Prolog data base once for 
each cycle of the reduction machine. 

Additions to SASL's global environment are made by the Prolog 
predicate define (using the Waterloo Prolog notation): 

< - define("fac O = 1 ; fac n = n * fac(n- 1 )"). 

This results in the following clause of the predicate global being added 
to the Prolog data base: 

global(fac,ap(ap(TRY,ap(ap(MATCH,constant(num(O)) ),num(1))), 
ap(ap(S,MUL T),ap(ap(B,id(fac) ),ap(ap(C,SUB),num(l)))))). 

The second component of global is the compiled version of fac with all 
local names removed: ap(x,y) denotes application of x to y, a primitive 
operation of SASL; the capitalized names are combinators defined in 
[Turner, 1981]. 

In application, such as: 

<-sasl("fac (sue n) WHERE n = 2, sue n = 1 + n", *Ans). 

the SASL expression is compiled to: 

ap(ap(U,ap(B,id(fac))), 
ap(Y,ap(U,ap(K,ap(K,cons(ap(ADD,num(l) ),num(2))))))). 

The reduction machine is brought into action, and *Ans is eventually 
instantiated to 6, the value of the expression. "cons(x,y)" denotes the 
pairing of x and y into a list, and is, like "ap", a primitive operation 

. of SASL. 
This implementation of SASL will be used, first of all, to implement 

and test the unification-based conditional binding constructs introduced 
in [Abramson, 1982]. 

It will also be used to test the feasibility of using SASL as a 
syntactic sugaring for Prolog predicates which are in fact functions of n 
arguments, ie, predicates of (n+ 1 )-arity with the first n as "input" 
arguments, and the (n+ 1 )-st as the "output" argument. A possible use 
of this sugaring of functions would be to write: 

N is < sasl expression> 

3 



short communications 

analogous to 

N is < integer expression> 

of DEC-10 Prolog, but allowing the definition of SASL functions and 
the manipulation of lists, strings, etc. If this sugaring turns out to be 
useful, SASL expressions then ought to be translated directly into 
Prolog rather than to a string of combinators which are then reduced. 

I found, by the way, the use of Definite Clause Grammars and 
Prolog to be an elegant, almost ideal tool for language implementation. 
I had previously implemented another version of SASL in BCPL, using 
a lazy SECD machine to evalute expressions. The Prolog implementa
tion seemed to me to require at least an order of magnitude less effort 
on my part to complete. 

The interpreter is available on request. 

REFERENCES 

[ABRAMSON, 1982] 
Abramson, ''Unification-based conditional binding constructs'', Proceedings-First Interna

tional Logic Programming Conference, Universite de Marseille, Luminy, 1982 . 
[COLMERAUER, 1978] 

Colmerauer, A, "Metamorphosis Grammars", in Natural Language Communication with 
Computers, Lecture Notes in Computer Science 63, Springer, 1978. 

[PEREIRA & WARREN, 1980] 
Pereira, F. C. N. & Warren, D. H. D. "Definite Clause Grammars for Language Analysis", 
Artificial Intelligence, vol. 13, pp. 231-278, 1980. 

[TURNER, 1976] 
Turner, D. A. "SASL language manual", Dept. of Computational Science, University of 
St. Andrews, 1976, revised 1979. 

[TURNER, 1979] 
Turner, D. A. "A new implementation technique for applicative languages", Software 
-Practice and Experience, vo l. 9, pp. 31-49, 1979. 

[TURNER, 1981] 
Turner, D. A. "Aspects of the Implementation of Programming Languages: The Compila
tion of an Applicative Language to Combinatory Logic", Ph.D. Thesis, Oxford, 1981. 

ACKNOWLEDGMENT: This work was supported by the National Science and Engineering 

Research Council of Canada. 

A PROPOSAL 

Masoud Yazdani 

Department of Computer Science 
University of Exeter, UK 

In Prologs based on the Edinburgh syntax there is a rather strange 
way of distinguishing between assertions to the data-base and queries 
of the data-base. 

i.e. if using a file then 
< no prompt>- is-father-of(John,Jane). 

represents a statement of fact and 
< user-typed prompt>- * is-father-of(John,Jane). 

represents a query. 
However, if the user is at a terminal, 

4 

< system-typed prompt>-* is-father-of(John,Jane). 
represents a query, while the statement of fact is 

< system-typed prompt>- *assert(is-father-of(John,Jane) ). 

Why not improve the syntax by following (in our view) a more consis
tent convention both at file level. and user-interaction level. 

is-father-of(John,Jane) . 
to represent a statement of fact 

is-father-of(John,Jane)? 
to represent a query. 

Micro-Prolog has attemped to solve this problem, with partial success, 
by introducing 

Does(is-father-of(John,Jane)). 
as query 

Add(is-father-of(John,Jane)). 
as statement of fact. 

The result of the above modifications is the ommission of 'does' and 
'add' from micro-Prolog in favour of a simple convention on '. ', '?' too. 

SYSTEM SIMULATION ON PROLOG BASIS 

Ivan Fut6 

Inst. for Coordination of Computer Techniques / SzKI / 
Budapest, H-1368 POB. 224, HUNGARY 

Tamas Gergely 

Research Inst. for Appl. Comp. Sci./ SzAMALK / 
Budapest, H-1536 POB. 227, HUNGARY 

To support discrete system simulation we elaborated an extended 
version of T-PROLOG [2], TS-PROLOG [3]. In TS-PROLOG it is 
possible to define systems, system components, system and 
component activities, communication paths, activity interrupts and 
times /durations/ locales to the components. These are ensured 
by the use of predefined clauses. 

A TS-PROLOG model consists of: ii Taxonomy definition. ii/ 
Communication definition. iii/ Local time definition. iv/ Definition of 
interrupts. vi Goal definition. vi/ Input form definition. vii/ Output form 
definition. viii/ Initialisation. ix/ Activity definition sections. 

For i-iv and vi-ix TS-PROLOG provides built-in clauses to help the 
user. 

i/ System(S_name, S_activity, StarLs, End_s): 
Component(Cname, C_activity, C_start,t C_end), 

Elementary_component(E_name, E_activity, E_start, E_end). 
Components_of(C_name, _level): 

Component(C_name_ 1, C_activity_ 1, CstarL 1, Cend_ 1 ), 

Elementary_component(E_name_ 1, E_activity_ 1, E_starL 1, 
E_end_1). 

System(N,A,St,Et), Component(N,A,St,Et), Elementary_component(N, 
A,St,Et) define respectively a system, a compound component, an 
elementary component of name N, activity A, begining its activity 
at St /expressed in local time/ and prescribed termination time 
Et /in local time/. Activity is syntactically an atom which will be 
executed by a process [ 2] corresponding to the system element, 
as a procedure call. 

i 
I 



.short communications 

ii/ Communication(Ci, Cj, Aijl-
Communication(Ci, Cj, Aijl: Restrictions_for(Aijl-

The above clauses define an allowed communication by message 
sending from component Ci to component Cj and the message is to be 
of form Aij- · 

iii/ Local time(Ci, Ril-

The above unit clause defines the local time I unit time ratio. Ci is 
the name of the component, Ri is of form T, .T, . . T which means that 
respectively T, 1 /1 O T, 1 /100 T local time unit is equivalent to one 
abstract time unit. 

iv/ Allowed_interrupt(Ci, Cj, Aj). 
Allowed_interrupt(Ci, Cj, Aj): Side_effects. 

The above definitions allows the process corresponding to comp
onent Ci to interrupt the process corresponding to Cj and force it to 
execute procedure call Aj /with Side_effects/. 

vi/ lnput(A). 
lnput(A): Restrictions_for(A). 

The form of assertions giving the input of the model are defined by 
the above clauses. When the TS-PROLOG system initializes the model 
it verifies that all inputs were initialized in the prescribed form. 

vii/ Output(A). 
Output(A) : Restrictions_for(A). 

The arguments and functor name of all unit clauses of form A are 
automatically printed out by the TS-PROLOG system /simulated data/. 
Naturally it is possible to use the standard printing built-in predicates 
too, during the simulation process. 

viii/ In the initialisation section the input assertions specified 
in section vi are given with concrete values for their parameters. 

ix/ The activity definition section provides the "working part" of the 
model. Special built-in predicates are at the user's disposal to define 
component's activities. Some of them will be mentioned /in addition all 
built-in procedures of the T-PROLOG and MPROLOG [1] languages may 
be used/: Sending(M), Sending(M, T) IT is the "delivery time of the 
message/, Holding(T) Ito suspend the process execution for T local 
time units/, lnterrupt(Cj), Waiting(M), Deletion(Cj), lntroduction(Cj L, A, 
St, Et) Ito delete and introduce components during program execution 
and modifying dynamically the original model, Delete_communication 

(Ci, Cj, Aijl, Add_communication(Ci, Cj, Aijl /to change dynamically 
communication paths I. 

TS-PRO LOG uses the POSS subsystem [ 4] of the modified 
MPROLOG [1] system /TM-PROLOG/. 

Now we give a simple example to show a TS-PROLOG program. 
A system /Space_system/ consists of a space ship, an astronaut 

and of a control center. The control center defines a goal I a cosmic 
object I to the astronaut and if it is acceptable, and reachable within the 
"life-time" of the astronaut then it will be visited. 

# Taxonomy definition # 

System(Space_problem, No_activity, 0, 100): 
Component(Space_ship, No_activity, 0, 10), 
Elementary_component(Contro/_center, GoaLgeneration, 0, 100). 

Components_of(Space_ship, 1--1): # level of spaceship 1--1 # 
Elementary_component(Astronaut, Decision_making, 0, 10). 

# Communications # 

Communication(Contro/_center, Astronaut, A._goal(_name, 
_access_time)): ldentifier(_name), Number(_access_time). 

Communication(Astronaut, Contro/_center, Acceptable(Yes)). 

# Local time definitions # 

LocaUime(Space_ship, .5). 
LocaUime(Astronaut, .5). 
LocaUime(ControLcenter, .1 ). 

# The time on board the space ship passes 5 times faster then on the 
control center # 

# Input definition # 

lnput(Acceptab/e_goa/(_a_goal)): ldentifier(_a_goal). 

# Output definition # 

Output(Visited(_cosmic_object, _time)). 

# Goal definition # 

Possible_goal(Alpha, 15). 
Possib/e_goal(Beta, 5). 
Possib/e_goal(Gamma, 5). 

# Initialisation # 

Acceptab/e_goal (Alpha). 
Acceptab/e_goal(Beta). 

# Activities # 

Goal-generation : 
Possib/e_goa/(_goal, _access_time), 
Sending(A._goa/(_goal, _access_time)), 
Waiting(Accepted(Yes)). 

Decision_making : 
Waiting(A._goa/(_goal, _access_time)), 

• Acceptable(_goal), 
Sending(Acceptable(Yes)), 
Holding(_access_time), LocaUime(_t1), 
Assclause(Visited(_goal, _t1)), 

The solution is that Gamma is visited at Space_ship / Astronaut 
local time 5. I Alpha is not a solution because 15 > 1 O the life time of 
the Astronaut, when Beta is not an acceptable goal. I 

REFERENCES 

[ 1] BENDL, J., KOVES, P. and SZEREDI, P.: "The MPROLOG system", Preprints of Logic 
Programming Workshop, Debrecen, Hungary, pp. 201-210, 1980. 

[2] FUT6, I. and SZEREDI, J. : "T-PROLOG User Manual", Institute for Coordination of 
Computer Techniques 1981, Budapest. 

[3] FUT6, I. and GERGELY, T. : "A Logical Approach to Simulation, to appear in the proceedings 
of"the 'International Conference on Model Realism"', Bad Hone!, FRG, 20-24.04.1982. 

[ 4] KOVES, P. anad SZEREDI, P.: A Programming Support Environment for PROLOG 
program development, presented at the Workshop "Logic programming for Intelligent 
Systems", Los Angeles, California, 18-21 aug. 1981. 

5 



6 

short communications 

A PROLOG DEMAND DRIVEN COMPUTATION INTERPRETER 

Luis Moniz Pereira 

Departamento de Informatica 
Universidade Nova de Lisboa 

Quinta da Torre 
2825 Monte da Caparica 

PORTUGAL 

This interpreter realizes the demand driven computation process described in [1] 

Notes: 

Predicate "stream" accepts a functional predicate goal R and delivers a stream X 
of results, where difference lists are used to represent streams. After each value in 
the stream is produced it pauses, and displays the stream. If a <CR> is given it 
continues, if a <space> is given it shows the calls waiting to be demand driven and 
continues. Example call: stream(p=: X) . 

Predicate "up_to" produces up to N values of a stream for a given call. Example 
call: up_to(3,conc( [1,2], [3,4 ])= : X). 

Predicate "#" evaluates any predicate call. If the predicate is functionally defined, 
it evaluates it recursively until a list is produced, where the head of the list, if any, 
contains the first result of evaluating the call, and the tail a call to a functional 
predicate for producing the next result. The call [] evaluates to the empty list. 

To do so, it uses predicate "@", which picks up a clause for a functionally defined 
predicate and evaluates its body if there is one. However, if any argument is demand 
driven and is not yet evaluated, no clause can be picked up and "@" will evaluate the 
demand driven arguments, and return to "#" the call with its arguments evaluated. 

?- op(230,xfx, =:). /* functional relations */ 

?- op(240,fx , @ ). /* access to program clauses */ 

?- op(240,fx , #). /* evaluation */ 

?- op(254,xfx,<-). /* functional relations' conditions */ 

/* USER INTERFACE */ 

stream(R=: X) :- s(R,X-X). 

s(R,X-Z) :- # R=:A, !, ((A=[] ; A=[-ITL list(T) ), Z=A 
A=[VI Tl, Z=[VIYL show(T,X), s(T,X-Y) ). 

show(T,X) :- write(X), getO(C), ( C=32, writem, skip(10), nl ; C= 10 ), nl. 

up_to(N,R=:[VIY]) N>0, # R= : [VISJ, !, Mis N-1 , up_to(M,S=:Y). 
up_to(_,_=: []). • 

/* INTERPRETER */ 

# R= : S 
# (A,B) 

( list(R), R=S @ R=:A ., # A=:S). 
#A,# B 

# G 

list( [ l). 
list([- I- J). 

G . 

/* access to non-unit and unit functional predicate clauses, regular 
Prolog clauses, and system predicates * I 

@ G (G <- C) , # C. /* non-unit clauses */ 
@ G :- G. /* unit clauses, Prolog, and system */ 

/* user specified info about demand driven arguments * I 

@ conc(A,X) =: conc(EA,X) 
'@ select(N,A) =: select(N, EA) 
@ sift(A) =: sift(EA) 

# A= :EA. 
# A=:EA. 
# A=:EA. 

I 
" 



short communications 

@ filter(X,A) =: filter(X, EA) 
@ merge(A,B) =: merge(EA,EB) 
@ mul(A,B) = : mul(A,EB) 

/* 

/* 

PROGRAMS 

cone */ 

conc([J,X) =: X. 

*/ 

conc([XIYJ,U) = : [Xlconc(Y,U)]. 

/~ bounded buffer */ 

# A= :EA. 
# A=:EA, #B=:EB. 
# B= :EB. 

boundeci.buffer(WS,RS) =: AS <- bmerge(WS,RS,O,S1), buffer(S1 ,U-U)=:AS. 

bmerge([write(X) I WSJ,RS,l,[write(X) I AS]) :- 1<5, K is 1+1, bmerge(WS,RS,K,AS). 
bmerge(WS, [read I RS],I, [read I AS]) :- l>O, K is 1-1, bmerge(WS,RS,K,AS). 
bmerge(_, [ 1,-, []) . 

. buffer( [write(X) I S],V-[XI W]) 
buffer( [ read IS], [XI V]-W) 
buffer( [ ],_-[]) 

buffer(S,V-W). 
[X I buffer(S,V-W)] . 
[ l . 

/* infinite list of integers */ 

intfrom2 =: inc(2) . 

inc(X)=:[Xlinc(K)] <- KisX+1. 

n_integers(N) =: Y <- intfrom2= : X, select(N,X) = : Y. 

select(O, _) []. 
select(N,[XIYJ) =: [Xlselect(K,Y)] <- N>O,KisN-1. 

/* primes */ 

primes =: sift(intfrom2). 

sift([XIYJ) =: [Xlsift(filter(X,Y))]. 

filter(X, [Y IZJ) = : [Ylfilter(X,Z)] <- YmodX=\= 0. 
filter(X, [YI Z]) =: [YI filter(X,Z)] <- Y mod X=: = O. 

/* quicksort */ 

qs( []) =: [] 
qs([XIYJ) =: conc(qs(Y1),[Xlqs(Y2)]) <- part(X,Y,Y1,Y2) 

part(X,[HITJ,[HISJ,R) H= <X, part(X,T,S,R). 
part(X,[HITJ,S,[HIRJ) :- H>=X, part(X,T,S,R). 
part(_, [ J, [ J, [ l). 

/* cyclic network of agents */ 

p= : Y <- merge( mul(2,[1 I Y]), merge( mul(3,[1 I Y]), muI(5,[1 I Y]))) = : Y. 

merge([XIYUUIVJ) [Xlmerge(Y,[U IV])] <- X<U. 
merge([XIYUUIVJ) =: [Ulmerge([XIYLV)] < - X>U. 
merge([XIY],[UjV]) =: [XI merge(Y,V)] < - X= U . 

mul(X, [YIZJ) =: [WI mul(X,Z)] < - WisX*Y. 

REFERENCE 

[1] HANSSON, A.; HARIDI, S.; TliRNLUND, S.-A: " Properties of a Logic Programming Language" in "Logic 
Programming" (K. Clark and S.-A. Tiimlund eds.), Academic Press 1982, and also report 8/81, Computing 
Science Dept., Uppsala University, Sweden. 

7 



short communications 

METACONTROL OF PROCESS SYNCHORONISATION 
IN T-PROLOG 

Ivan Fut6, Janos Szeredi 

Inst. for Coordination of Computer Techniques/ SzKI / 
Budapest, H-1368 POB. 224, HUNGARY 

In T-PROLOG to the initial goal sequence: A 1, ... , An of a PROLOG 
program correspond n processes executing the goals conceptually in 
parallel [ 3] I: New(A1), ... , New(An) /. 

To help potential users, a very simple but powerful mechanism is 
provided for user's scheduling algorithm definition [ 2]. To define such 
algorithm the full power of the M PROLOG [ 1 ] system can be used. 

This mechanism consists of a pair of built-in procedure calls, 
Suspend and Activate_suspended(_ 1st). 

The execution of procedure call Suspend causes the unconditional 
suspension of the currently active process. If there is no more activ
ab/e process in the system the built-in scheduler of T-PROLOG 
executes an Activate_suspended(_1st), call where _1st is an input 
parameter which has the form of a list of process identifiers. This list 
must be defined by the user as an output of a MPROLOG program 
sequence. For ex. to define a Last Suspended First Activated 
scheduling algorithm we can do the following: 

: New(Run(Process_ 1) ), New(Run(Process--2) ), New(Run(Process-3) ). 
# The corresponding goal sequence in PRO LOG : Run(Process_ 1 ), 

Run(Process--2), Run(Process-3). # 
Run(_n) : 

Suspension, Newline, Outterm(_n). 
Suspension : 

Active_process(_ap), 
Assclause(To_be_activated(_ap), 1 ), 

Suspend. 
Activate_suspended(_ 1st) : 

LSFA(_1st, 1). 
LSFA(_ap __ 1 st,_n) : 

Getclause(To_be_activated(_ap) ,n), /, 
Delclause(To_be_activated,n), Plus(_n, 1, _n1), 

LSFA(_1st, _n1). 
LSFA(Nil, _n) . 

Active_process(_ap), Assclause(_cl, _n), Getclause(_cl, _n) and 
De/clause are built-in predicates giving the identifier/name of the 
currently active process /internal or user defined name/, introducing, 
getting and deleting clauses from a partition. 

The output of the above program is : 

Process_3 
Process--2 
ProcesS-1 

REFERENCES 

[ 1] BENDL, J.,. KOVES, P. and SZEREDI, P.: "The MPROLOG system", Preprints of Logic 
Programming Workshop, Debrecen, Hungary, pp. 201 -210, 1980. 

[2] FUT6, I. and SZEREDI, J.: "T-PROLOG User Manual", Institute for Coordination of 
Computer Techniques, Budapest, 1981. 

[3] FUT6, I. and SZEREDI, J.: "T-PROLOG: a very high level simulation system", Logic 
Programming Newsletter no. 2, Autumm 1981. 

• s 

USING PROLOG TO ASSESS SECURITY RISKS 
IN DATA PROCESSING SYSTEMS 

John M. Carroll, Oi-Lun WU 

Computer Science Department 
University of Western Ontario 

London, CANADA 

This work indicates that PROLOG can be used to analyse data
processing systems in accordance with the non-discretionary data-flow 
security model. The PROLOG language allows the analyst to introduce 
work-factor considerations so that outputs that have security implica
tions can be identified and accorded the protection they deserve. 

The requirements of the non-discretionary data-flow model of 
computer security can be summarized in two commandments: 

1. Thou shalt not read upward; and 
2. Thou shalt not write downward. 

The adverbs "upward" and "downward" refer to levels of security. 
It is implied that every actor in a security transaction possesses an 

attribute called "clearance" which is quantified as a level of security. 
Within a computer system the actor may be an interactive user or an 
executing program. 

Likewise, it is implied that every object in a security transaction 
possesses an attribute called "classification" which is similarly quanti
fied as a level of security. Within a computer system, an object is a 
data item whose length may vary from a single bit to a countably 
infinite number of bits. 

A non-discretionary security model postulates several discrete 
levels. These commonly range ( in the Canadian context) from un
classified or level-0 to top secret or level-4. 

In the non-discretionary data-flow security model, an executing 
program or process must possess a secret clearance to seize an object 
possessing a secret classification. Moreover, any other object that is 
functionally related to a secret object must, thereafter, attract a secret 
classification. 

This is known as "high-water-mark" classification of objects. It is 
viewed, especially in the private sector of the economy, as causing 
expensive "overclassification" of files and outputs. 

It is proposed that a cost-effective solution to the problem of 
overc/assification could rest upon the principle of "work-factor" 
security. 

The work-factor is a measure of the work that an opponent would 
have to do to recover protected information from a less highly 
classified object that is functionally related to a more highly classified 
object. If that work is more expensive to the opponent than the value 
to him of the protected information, then cost/ effective work-factor 
security will have been achieved. The opponent will be deterred if he is 
the rational economic man encountered in the private sector of the 
economy. 

The first step is to represent the data-processing system by a 
. data-flow-diagram in accordance with standards adopted by the 
Canadian Department of National Defence. 

There is an underlying assumption that only trusted processes are 
used. That is, that every program in the system does what it is 
intended to do : no more and no less . 

" 



short communications 

The second step is to resolve the processing nodes or "bubbles" 
of the data-flow-diagram in terms of relational algebra primitives. It is 
convenient to observe the restriction that the inputs or outputs of the 
functions be either monadic (m) or dyadic (d). 

The third step is to prepare a PROLOG data base of all inputs and 
outputs of all functions. 

The fourth step is to prepare a PROLOG data base of all functions 
and all outputs. 

The fifth step is to prepare a PROLOG data base of work-factor 
weights. One entry is made for each unique function I weight 
combination. 

Work-factor weights are awarded empirically. The higher the 
weight, the more the function under consideration contributes to 
obscuring the protected data in a specific output. Furthermore, the 
weight values must be decided with respect to a specific data item. 

Consider a case in which a highly classified data item is called 

customer-credit-file 

Within the data-processing system there is a PROLOG function that 
strips the cash-sale I credit-sale flag from every record in a file of 
good-sales-orders (that is, either cash sales or sales to credit-worthy 
customers). The results of this operation are: (1) a file called untagged
sales-orders, and (2) another appearance of the original file, called 
good-sales-order-2. 

The output data base entries would be: 

next(good-sales-order-1, good-sales-order-2). 
next(good-sales-order-1, untagged-sales-order). 

The identifier md below means that the operation in question pro
duces either a monadic (m) or dyadic (d) output. 

The function data base entries would be : 

opr( untagged-sales-order, project2, md). 
opr(good-sales-order, project1 ,md). 

The weight data base entries would be : 

wght(project1 ,md, 1 ). 
wght(project2,md,3). 

The rationale for assigning different weights is as follows : When 
good-sales-orders are flagged as being cash or credit, an opponent can 
infer that the customers flagged as credit sales had favourable entries 
in the highly classified customer-credit-file. Therefore, protected 
information would be compromised if that opponent could view good
sales-orders-1. For this reason a work-factor weight of "one" is 
assigned signifying no protection. On the other hand, an opponent 
could obtain customer credit data from untagged sales only by ex
haustively making spurious purchases on credit using the names of 
different customers, and recording which sales were considered to be 
good; thereby inferring that the other customers had unfavourable 
credit records. Such an attack, which corresponds to a chosen plaintext 
attack in cryptanalysis, is expensive and time-consuming. Only a 
resourceful, dedicated and implacable opponent would undertake it. 
For most adversaries its cost would greatly exceed the value of the 
information derived. For this reason, a work-factor of "three" has been 
assigned. 

The choice of work-factor value is judgmental. The value can range 
from "one", signifying no protection, to "ten" which might be 
assigned to the encrypted output of an encrypting CALCULATE 
function. 

The PROLOG program is recursive. Its purpose is to exhaustively 
enumerate all descendents of a sensitive file in a complex data
-processing system; this is done so that appropriate measures can 
be taken to safeguard or disguise these descendents, and thereby 
preserve the security of the sensitive file. 

descendent(X,Y,W,D,O): -
next(X,Y), opr(Y,O,T), 
wght(O,T,W,), depth(D). 

descendent(X,Z,W,D,P): -
next(X,Y), opr(Y,O,T), 
wght(O,T,M,), descendent(Y,Z,L,D,P) 
W is M*L. 

In the PROLOG program, the weight assigned to a data item is the 
lowest product of weights assigned over the paths from the protected 
data item to it. The effect of this rule is exemplified by the following 
case. Further along in the example, there is a VALIDA TE function 
which checks part numbers and quantities ordered against part 
numbers and inventory balances on hand. The output consists of 
fulfil/able-sales-orders and an insufficient-stock-report. The fulfillable
sales-orders output is assigned a work-factor weight of "two". The 
overall work factor of this output is "six". 

It is reasoned that the fact that: (1) some orders are not filled 
because the customers want to buy on credit and have un-favourable 
credit records, and (2) some orders, whether credit or cash, are not 
filled because the supplier is out of stock would confound an opponent 
even if he were to launch a controlled plain-text attack. The two work 
factors combine multiplicatively to make life more difficult for an 
opponent. 

The PROLOG question is: 

?-descendent(customer-credit-file,X,Weight,Depth,Opr). 

The first term is the name of the highly classified data item, the 
second term evokes all descendents of that file, the third term gives 

the work-factor protection of that item, the fourth term indicates the 
depth of the tree or the "distance" in a data-processing sense 
between the highly classified data item and the item in question, and 
the fifth term identifies the function producing the data item. 

The answers after the PROJECT function removes the credit/cash 

flag are: 

Depth =4 
Opr = Project2, 
Weight=3, 
X =untagged-sales-order; 

Depth =4 
Opr = Project1, 
Weight=1, 
X = good-sales-order-2 ; 

9 



short communications 

The file good-sales-order-2 is scratched and therefore represents 
nu security exposure. 

The answers after the VALIDATE function has been invoked to 
check inventory status are : 

Depth =8 
Opr = validate2, 
Weight=6, 
X =insufficient-stock-report; 

Depth =8 
Opr = validate2, 
Weight=6, 
X = fulfillable-sales-order-1 ; 

Every data item that is functionally related to the protected item is 
identified by the program. Moreover, each of these items is assigned a 
weight that is a measure of the work an opponent would have to do to 
obtain knowledge of the contents of the protected item given that he 
has gained access to the item in question. 

Analyses using PROLOG have also been carried out on a payroll 
preparation system where the highly classified data items were 
employee salaries, and on a CAD/CAM (computer-aided-design/ 
I computer-aided-manufacturing) system in which the highly classified 
data item was the description of a proprietary machining operation. 

It is believed that PROLOG analysis of complex data-processing 
systems can assist greatly in applying cost-effective security measures 
that will protect "trade secrets" and personal data such as salaries and 
credit ratings in the private sector. It can also disclose potential 
security exposures in the public sector, where in sensitive systems, 
the weights might be all set to "one"; or "ten" where cryptographic 
protection is invoked. 

WARREN'S DOCTRINE ON THE SLASH 

M. H. van Emden 

Department of Computing 
Imperial College*, UK 

It is often stated that there are two different uses of the slash : an 
innocent one conveying only control information and a harmful use 
affecting. the meaning of the program. Warren has repeatedly explained 
in conversation that any use of the slash is only control information and 
that it is not useful to say that it "affects meaning", whatever that 
means. It seems that Warren's doctrine is sufficiently important and 
neglected to warrant this brief note. 

The Doctrine states that the predicate "I" has a nullary relation as 
meaning, as indeed its syntax suggests. There are two nullary rela
tions, FALSE and TRUE. The Doctrine states that the meaning of" I" 
is TRUE. In Prolog there is a side effect of proving the occurrence of a 
goal "/" in the program and that is to remove a part of the Jsearch 
tree. Which part is removed is explained by Prolog manuals ani:1 need 
not concern us here. The role of "/" is analogous to that of. output 
predicates : succeed always and have a side effect. 

10 

Thus according to the Doctrine, a Prolog program with slashes has 
meaning according the classical, Tarskian semantics of logic and the 
meaning remains the same when any or all slashes are removed. Now, 
in what sense is there, according to the Doctrine, a problem? 

Logic programming is useful because it supports correctness
-oriented· programming to a greater extent than other languages. That 
is, each clause of a logic program must be true of the relation to 
be computed. When this is the case, correctness of the interpreter 
guarantees that no falsehood can result from an activation of a Prolog 
program. When a false clause does occur in a program, falsehood can 
result. But these falsehoods can be prevented from appearing if certain 
parts of the search . tree are removed. And this can be done with a 
slash. See the classical example 

max(X,Y,Y) <- X<Y & /. 
max(X, Y,X). 

The second clause is not true of the relation where the third argument 
is the maximum of the first two. The slash prevents any consequences 
of its falsity from appearing. 

It is not the purpose of this note to discuss proper use of the slash. 
See for example Kowalski's "Prolog as a Language for Logic Pro
gramming" (Research Report DOC 81126, Imperial College). The only 
purpose of this note is to explain Warren's doctrine: 

"I" denotes TRUE 

and to point out that is always contains control information only, which 
can be used to prevent the appearance of erroneous consequences of 
false clauses. 

Thus the Doctrine indeed distinguishes two kinds of use of slash. 
In one case the clauses are true of the relation to be computed and 
in the other case they are not. The latter use is incompatible with 
correctness-oriented programming and may therefore be considered 
harmful. 

After disposing of the main business of this note it is useful to 
speculate on why harmful uses of slash are so common. In the 
examples that I can think of at the moment, the effect of the false 
clauses is always to define a relation containing the intended one. 
Because the slash removes part of the search tree, it causes the 
interpreter to compute a subset of the meaning (minimal model) of the 
program. Apparently, the limitations of pure Prolog can often be 
circumvented by writing a false program defining a superset of the 
intended relations and then, by craftily positioned slashes, to prune 
those parts from the search tree which contain false answers. 

The following heuristic is sometimes helpful in solving probability 
problems : "If it turns out to be difficult to determine the probability 
that something happens, then try to find the probability that it does 
not". Prolog programmers seem to apply a similar trick : to get the 
right set of answers, it may be easier to define a relation that is larger 
than the desired one and to lop off the undesired part. 

P. S. "!" or "/"? An advantage of the latter is that the usual name 
of the symbol suggests its intended use. 

© M. H. van Emden 1982 

• On leave from the Dept. of Computer Science, University of Waterloo. 

.. 



community news & events 

TEACHING COMPANIES 
AND SNOWBIRD COMPANIES 

There are two kinds of hospitals: you have 
the ordinary kind and then there are teaching 
hospitals. The latter are associated with 
university medical schools. The faculty do the 
pratical aspects of their teaching in that kind 
of hospital as well as their research. 

M . Lehman, head of the Department of 
Computing in London's Imperial College, has 
[Comm . ACM October 1981, pp. 718-719] 
proposed the concept of a «teaching company». 
The example he has in mind is a software 
house, which has the same relationship to an 
ordinary software house as a teaching hospital 
has to an ordinary hospital . There is a letter 
from Lehman in the October 1981 issue of 
the Comm . ACM explaining his plans in this 
regard. 

Another interesting news item reports on 
new companies formed to exploit pratical 
applications of genetic engineering. One of 
these is called Cetus and has its head office 
in Berkeley, California. Winston J. Brill, one 
of the key people they wanted for their new 
labis a faculty member in the University 
of Wisconsin. The interesting phenomenon is 
that prof. Brill is now work ing for Cetus 
without having been bought away from his 
University. This company was apparently fle
xible enough to arrange for a small Cetus lab 
to be established just off the University of 
Wisconsin's campus. Now they not only have 
prof. Brill working for them, but also some of 
his students [Sci. Am. Sept. 1981, Feb. 1982]. 

The manpower problems in computer 
science are similar to those in molecular 
genetics and have been publicized in the 
reports of a meeting of Computer Science 
Department chairmen in Snowbird, Utah in 
the summer of 1980 (see Comm. ACM June 
1981). The situation seems to be that industry 
and government think they need each year 
about three times as many computer science 
PhD's as are produced by universities. It does 
not matter whether they are indeed justified 
in claiming this need. They feel the need and 
they act accordingly, creating the well-known 
problems in unive rsities. The above two 
examples suggest a definite strategy on the 
part of individual computer science faculty 
nembers. 

They should go out to government and 
industry and find out what it is specifically 
in their area of expertise that causes the 
perceived need for PhD's. It may well be that 
certain planned research or development pro-

jects emerge. And it may be possible to per
suade the planners to have some of this work 
done on a contract basis in a small company 
(I propose to call it a «Snowbird Company») 
which is off-campus with respect to a computer 
science department rich in human resources. 
The recent development of powerful micro 
computers and improved data communicat ion 
facilities makes such a set-up feasible in many 
cases. 

Snowbird companies spread benefits all 
around: industry gets its work done, needs 
fewer PhD's, and university departments 
become more attractive to good PhD's in 
computer science. Students benef it by 
employment opportunities in a more innovative 
environment than that of the typical coop job. 
They benefit also by having a larger proportion 
,of practical, software-oriented faculty members. 

© ' M. H. van Emden 1982 

INTRODUCING SNOWBIRD COMPUTING 
CONSULTANTS, Ltd. 

There is a severe shortage of computer 
science PhD's: authoritative estimates put 
the supply at less than half of demand. In 
Artificial Intelligence the situation seems to be 
at least as extreme. This imbalance creates 
well -known problems both in industry and in 
universities. Snowbird Computing Consultants 
Ltd, which has been founded to organize the 
consulting activities of a small group of univer
sity faculty nembers and their students, is an 
example of a type of company which can help 
solve these problems. Each in its own field, 
such companies determine which specific 
planned or ongoing projects are in need of 
unavailable PhD's. They offer contributions to 
such projects on a consultancy basis. Clients 
benefit by getting their job done. Universities 
benefit by having fewer faculty members 
bought away by industry and by having faculty 
and students gain practical experience at an 
advanced technical level. 
Snowbird is based in Waterloo, Ontario, 
Canada. It consults in Artificial Intelligence and 
Logic Programming . Entry in these fields is 
especially timely. 

Artificial Intelligence arrives 

For many years, Artificial Intelligence has 
remained a rather esoteric branch of Com
puter Science, more readily associated with 
robots in space than with mundane concerns 

like making computer applications more acce
ssible to nonspecialist end-users. Yet it is 
precisely here that Artificial Intelligence is 
most promising. 

In the near future all professionals, most 
without any computing experience, have 
access to computers . Current interfaces do 
not allow this potential to be realized because 
supporting computer specialists are not avai
lable. Data Bases, for example, may have 
grown Very Large, but are not informative or 
helpfu l to the casual user; extremely sophis
ticated program libraries exist for statistics, 
numerical computation, structural engineering, 
etc., but most scientists and engineers, for 
whose use they are intended, cannot benefit 
without an expert as intermediary. Several 
contributions from Artificial Intelligence have 
recently been shown to be of immediate 
practical use in bridging the gap between the 
non-specialist user and computer applications. 
These contributions include non-procedural 
languages, expert systems, natural language 
interfaces, and knowledge representation 
techniques . 

Very few applications of Artificial Intelligence 
are in actual use. One important reason has 
been its high demands in terms of computing 
power. In recent years hardware has become 
much less of a bottleneck. Yet, because Artifi
cial Intelligence is almost exclusively practiced 
on very demanding Lisp systems, a problem 
remains. 

Logic Programming - an idea whose time 
has come 

Logic programming is the use of logic to 

* express information in a computer 
* to present problems to a computer 
* to use logical inference to solve these 

problems 

An important part of the aims of logic pro
gramming is rea lized by the Prolog language. 
Because of its bases in logic, Prolog resem
bles human knowledge representations more 
closely than Lisp. This makes Prolog a very 
effective language for implementing the 
techniques of Artificial Intelligence. Efficient 
implemenfations of Prolog are beginning to 
become available. Notable, for example, is the 
microProlog system from Logic Programming 
Associates of London, England, which runs on 
a Z80 microprocessor and can do some useful 
problems within 64K bytes of storage. The full 
benefits of Prolog can be realized on the new 
generation of 16-bit microcomputers. 

11 



community news & events 

The role of Snowbird Computing 
Consultants, Ltd. 

Logic programming has been developed by 
a number of independent workers maintaining 
close contact while associated with universities 
and laboratories dispersed throughout Europe 
and, to a lesser extent, North America. 
Although the University of Waterloo has 
played but a modest role in this development, 
it has, over the past 6 years, built up a 
valuable store of expertise and contacts in this 
area. While research into the theoretical 
aspects of logic programming continues to be 
based at the University of Waterloo, Snowbird 
is available to Waterloo faculty and students 
as a vehicle for application-oriented work. 

Although not formally associated with 
Snowbird, many prominent workers in logic 
programming are in principle available as 
consultants. 

Snowbird offers consultancy in 

* intelligent databases 
* natural language interfaces 
* expert systems 

Snowbird also condu~ts se~inars and indi
vidual training in the practice of logic pro
gramming, in Prolog implementation, and in 
application of logic programming in areas such 
as specification techniques, program veri
fication, and semantics of programming 
languages. 

The projects we contemplate fall into two 
distinct categories. The first consists of appli
cations using existing Prolog implementations. 
In the other, the application is sufficiently 
demanding to require at least adaptation of an 
existing Prolog implementation, for example 
to incorporate sizable data bases, to perform 
coroutining, or to interface efficiently with 
low-level software. Experience shows that, 
with a suitable operating system, such as 
Unix, the required adaptation can be completed 
with modest effort. 

For more information, contact Randy Goebel 
or Maarten van Emden at Snowbird, 229 Dick 
Street, Waterloo, Ontario NZL 1 N3, Canada. 

© M. H. van Emden 

APPIA 

The «Associagao Portuguesa Para a lnteli
gencia Artificial» (APPIA) has been created . 
Send any mail to the chairman, Luis Moniz 
Pereira. 

12 

ANNOUNCEMENT 

Michel van Caneghem and David Warren 
are to co-edit a book of papers on logic 
programming. The book will be published by 
Ablex Publishing Company as a volume in the 
series entitled «Advances in Artificial Intelli
gence» under the general editorship of Jerry 
Hobbs. The editors are seeking high quality 
papers on all aspects of logic programming, 
especially applications. Please send copies 
of manuscripts to at least one and preferably 
both of the co-editors: 

David Warren 
Artificial Intelligence Center 
SRI International 
333 Ravenswood Avenue 
Menlo Park 
California 94025, USA 

Michel van Caneghem 
Groupe d'lntelligence Artificielle 
Faculte des Sciences de Luminy, case 901 
13288 Marseille cedex 9 
France 

If a manuscript is identical to the version of 
a paper which appeared in the Proceedings 
of the First International Logic Programming 
Conference at Marseille, the author need only 
notify the co-editors that he wishes it to be 
considered for the book. 

NEWS FROM SRI INTERNATIONAL 

Fernando Pereira joined the Al Center 
on September 13 as a Computer Scientist 
to work on natural language and logic 
programming. 

Bill Zaumen, of the Telecommunication 
Sciences Center, has developed a Prolog pro
gram to analyse VLSI circuits and check them 
for «syntatic» errors. 

CHANGE OF ADDRESS 

Ehud Shapiro, formerly at Yale, has com
pleted his PhD. and is now at Dept. of Applied 
Mathematics, Weizmann Institute, Rehovot 
7600, Israel. 

ECCAI GOT STARTED 

After two and a half years of initiatives 
and exchange of views, a number of repre
sentatives of European Artificial Intelligence 
societies has now agreed to start the Euro
pean Co-ordinating Committee on Artificial 
Intelligence. In a constitutional meeting held 
during ECAl-82 the statutes of ECCAI 
presented below, have unanimously bee~ 
approved and the officers listed at the bottom 
of this page have been elected. 

Since so much work lies now ahead of us 
I will not spend the time· with talking abou~ 
the process which eventually led to this 
action. I would like, however, to point out the 
active and fruitful role which was played in 
the preparatory phase by Dennis de Cham
peaux, Amsterdam / New Orleans, who was 
appointed in 1980 for setting up ECCAI. From 
the material he handed over to me, I can see 
how much energy he invested in order to 
achieve this success. 

I would like to encourage further European 
Al communities to join ECCAI, in order to 
provide it with a broader basis and thus with 
more strength. This might require that such 
communities first find together in an orga
nized group or society. 

Besides simply getting started the first 
concrete actions of ECCAI have been mainly 
the following ones. 

The next European Al conference, ECAl-84, 
is planned to be held in Pisa (and ECAl-86 in 
the U.K.). 

A subcommittee has been set up for EEC 
matters such as the promotion of a European 
network which could be used by all Al groups. 
Its members are L. Aiello, Rome, J. P. Jouan
naud, Nancy, P. Raulefs, Kaiserslautern 
(chairman), and Y. Wilks, Colchester. 

The Commission of the European Commu
nities in Brussels has various programmes for 
supporting data processing and advanced 
information technology in general which expli
citly includes artificial intelligence. 

In the framework of its «pluriannual pro
gramme», for instance, support is offered for 
more cooperation in Al within Europe. The 
CALL FOR PROPOSALS is presented below. 

A second instance is an industrial pro
gramme running under the keyword ESPRIT 
which may be seen as a European response 
to Japan's 5G project. 

It is designed for a period of ten years, with 
starter projects planned to be initiated next 
year. Many of its goals are typically of an Al 
nature. Therefore we feel that European Al 
research should reasonably be participated. 

1 

r 



community news & events 

P. Raulefs and I are working towards such 
goals in the respective Scientific Council at 
the Commission. 

Finally, we are planning to gather infor
mation about Al activities in Europe to be 
made available in a pamphlet and would 
appreciate any relevant input. 

With these initiatives we hope to convince 
the .Al community that ECCAI is not just 
another burocratic body, rather might play a 
fruitful role in promoting Al research within 
Europe. We hope for the strong support from 
the side of the community in this respect. 

W. Bibel - chairman 

EUROPEAN CO-ORDINATING COMMITTEE 
FOR ARTIFICIAL INTELLIGENCE 

STATUTES 

Aim. To promote the study and application 
of Artificial Intelligence in Europe. 

Membership. European Artificial Intelligence 
Societies, namely: 

AISB 

GI 
AFCET 

AICA 

ARC 

NVKI 

OGAI 

APPIA 

Society for Artificial Intelligence 
and Simulation of Behaviour 
Gesellschaft fur lnformatik 
Association Franc;:aise de Cyberne
tique, Economie et Technologie 
Associazione ltaliana per ii Calcolo 
Automatico 
Association pour la Recherche 
Cognitive 
Nederlandse Vereiniging vor Kunst 
matige lntelligentie 
Osterreichische Gesellschaft fur 
Artificial Intelligence. 
Associac;:ao Portuguesa Para a lnte
ligencia Artificial (proposed). 

New societies of more than 25 members 
are to be admitted by a 2/3 vote of the existing 
membership. 

Societies of less than 25 members may be 
admitted as non-voting participants by a 2/3 
vote of the existing membership. 

Representation. Each society shall be repre
sented by two persons nominated by the 
society. 

Officers. The committee shall have a chair
man, and a secretary elected for two-year 
terms by the members of the committee. 

Procedures. The chairman shall convene 
committee meetings at least annually. The 
secretary shall run elections. All initiatives 

including changes to the constitution of the 
committee must be supported by a majority 
of 2/3 of the attendance at committee 
meetings. There must be a minimum of one 
month's notice for meetings. Proposals must 
be circulated with the notice of the meeting. 
Voting rights may be delegated with the 
notice of the meeting. Voting rights may be 
delegated or exercised postally. 

Activities 

i) To sponsor a biennial conference to be 
organised by one or more of the partici
pating societies. 

ii) To create subcommittees with special 
terms of reference including a subcom 
mittee concerned with EEC issues of 
common market based societies. 

iii) To promote the construction of a Euro
pean network. 

iv) To carry out other activities as appropriate. 

CALL FOR PROPOSALS 
FOR COLLABORATIVE RESEARCH WORK 

IN THE FIELD OF ARTIFICIAL 
INTELLIGENCE AND PATTERN RECOCNmON 

Objective 

The Commission of the European Commu
nities, acting in the framework of the plu
riannual programme of the Community in data 
processing has decided to grant financial 
support to cooperative research work in the 
field of Artificial Intelligence and Pattern 
Recognition. 

The assistance is not intended to support 
the cost of the basic research activity carried 
out by a research team, but rather to suport 
the additional costs of collaboration between 
teams in different Community countries: 
travel, subsistence when working abroad, joint 
workshops, usage of network services and so 
on . In exceptional cases a more substantial 
contribution could also be given to projects 
of particular interest. 

Topics 

Among the various fields of prospective 
interest preference will be given initially 
to those proposals which cover one of the 
following: 

Domains: 
- Image processing and LJnderstanting 
- Speech processing and understanding 

Techniques: 
- New algorithms 
- Para llel processing 
- Expert systems 

Applications: 
- Robotics 
- Office automation 
-Medicine 
- Remote sensing. 

Submission of proposals 

Research teams or ind ividuals working in 
these areas are invited to present proposals 
for cooperative international research. 

Proposals for financial assistance sho.uld 
state 

- the objectives and the programme of 
work for which support is sought and its 
relationship to the state of the art in the 
area. 

- the resources (financial and staff) which 
will be made available for the work with 
some indication on the way they are to 
be organized. 

- the ways and means of the planned 
cooperation and the expected benefits to 
be gained through international coopera
tion. 

- the possible links with other work. 
- the aid requested and its justification . 
- the timetable for the work and for the 

payment of aid . 
- any other information considered relevant 

for the appraisal of the proposal. 

Should the detailed definition of the pro
posal require expenditure on travel that cannot 
be met by the proposer from national resou r
ces, a preliminary proposal may be made to 
cover a contribution to these costs. 

The proposals should be addressed before 
January 1983 to: 

The Commission of the European 
Communities 
Directorate-General 111 
Attention Mr J. Desfosses 
200, rue de la loi 
B - 1049 Brussels, Belgium 

In return for its aid, the Commission may 
require progress reports and a commitment 
to publish the results . 

The selection of the proposals will be made 
with the assistance of the CREST Subcom
mittee on «Informatics and Information 
Technologies». 

The Commission reserves its right to refuse 
any proposal without any justification. 

13 



new books 

Beginning micro-PROLOG 

RICHARD ENNALS 
Department of Computing, Imperial College of Science and Technology 

University of London 

This book approaches PROLOG, the new microcomputer language 
(PROgramming in L_OGic), from the point of the human user. Written 
for the non-specialist as well as the computer professional teacher, or 
student user, the book is based on material developed from a project, 
Logic as a Computer Language for Children, run by innovator of the 
language, Dr. Robert Kowalski. The project enjoyed the full support of 
the Science and Engineering Research Council of Great Britain, as well 
as the Nuffield Foundation. 

The text is designed for use with, or without, a microcomputer, and 
contains exercises and teaching material for class use. Each new 
feature of the language introduced is ilustrated in programs written by 
schoolchildren from the original Pilot School. The project is described in 

. the context of recent developments in both educational computing and 
logic programming, and the language is introduced in the same clear 
manner as in the classroom. It raises the issue of the application 
of logic across the curriculum, with explorations into the areas of 
Information Technology, Mathematics, History, French and Science 
teaching. The final section looks ahead to future opportunities for 
the layman provided by logic programming in areas such as expert 
systems and large data base applications, and in the new "fifth 
generation» of computers that are now being planned. 

The Author 

Richard Ennals is a Research Fellow in the Department of Compu
ting at Imperial College of Science and Technology, employed on the 

project "Logic as a Computer Language for Children", and working in 
the Logic Programming Group led by Dr. Kowalski. He was an English 

scholar at Kings College Cambridge; English-speaking Union Exchange 

Scholar at Philips Academy, Andover, Massachusetts; read Philosophy 
and History at Cambridge; trained as a History Teacher at the Institute 
of Education, University of London; was Head of History at Sweyne 

School, Rayleigh, Essex; has lectured widely in schools, colleges and 

universities in Britain, America, Canada and Nigeria; and has published 
a number of articles on history, simulations and applications of 

PROLOG. 

The Language 

Micro-PROLOG is currently available on microcomputers using the 

ZB0 microprocessor and the CPI M Operating System, such as 
Research Machines 3B0Z North Star Horizon and Advantage, Zenith, 

Transam, Apple (with ZB0 card and upper and lower case characters). 
It is now being implemented on the Sinclair Spectrum, and will soon 

be available on the BBC Micro, Commodore PET, and Apple II. 

Order from 

Department MP 
ELLIS HORWOOD LIMITED - PUBLISHERS 
Market Cross House 

Cooper Street 

Chichester 
West Sussex PO19 1EB 

England 

ISBN 0-85312-517-1 approx. 200 pages (paperback) £7.50 

abstracts 

A View of the Fifth Generation 
and its Impact 

David H.· D. Warren 

Artificial Intelligence Center, 
SRI International 

Menlo Park, CA 94025, USA 

In October 1981, Japan announced a national 
project to develop highly innovative computer 
systems for the 1990s, with the title «Fifth 
Generation Computer Systems». This paper 
is a personal view of that project, its signifi
cance, and reactions to it. 

14 

Interfacing Predicate Logic Languages 
and Relational Databases 

Upen S. Chakravarthy, Jack Minker 
and Due Tran 

University of Maryland 
College Park, Maryland 20742, USA 

Predicate logic has been shown to be an 
effective language for expressing knowledge 
and for problem solving. It has also been 
recognized that predicate logic and relational 
databases (RDB) are closely related. A predi
cate logic language such as PROLOG can 
be used to perform queries on relational 
databases. 

Current implementati.ons of PROLOG 
assume that the RDB resides in primary 
memory. However, when the RDB resides in 
peripheral devices, the utility of PROLOG 
diminishes. 

We describe several ways in which 
PROLOG-like systems can be modified to 
operate effectively with large RDBs stored on 
peripheral devices. Two approaches to inter
facing a PROLOG-like system with large data
bases are the compiled approach described 
independently by Chang, by Kellogg, Klahr and 
Travis, and by Reiter, and the interpreter 
approach as discussed by Minker. We show 
how PROLOG can be adapted for the so
-called compiled approach. With respect to 
the interpreter approach we discuss a method 



proposed by Bruynooghe which modifies 
PROLOG in a simple manner. An approach 
using tables at search nodes of a proof tree is 
then described. The table approach requires a 
more extensive modification of PROLOG than 
the other approaches. We discuss the con
cept of table-sharing, which is similar to struc
ture sharing in many respects. 

On a Semantic Representation of Natural 
Language Sentences 

Jean Franr;ois Pique 

Lab. de Biophysique, 
Faculte de Medecine Timone, 

Universite d'Aix-Marseille II, France 

In this paper we consider problems in the 
hierarchy of sentence parts. Some solutions 
are given, representing the meaning in a three 
valued logic which we briefly describe. 

Coloring Maps and the Kowalski Doctrine 

John McCarthy 

Dept. of Computer Science 
Stanford University, California, USA 

It is attractive to regard an algorithm as 
composed of the logic determining what the 
results are and the control determining how 
the result is obtained. Logic programmers like 
to regard programming as controlled deduc
tion, and there have been several proposais 
for controlling the deduction expressed by a 
Prolog program and not always using Prolog's 
normal backtracking algorithm. The present 
note discusses a map coloring program pro
posed by Pereira and Porto and two coloring 
algorithms that can be regarded as control 
applied to its logic. However, the control 
mechanisms required go far beyond those 
that have been contemplated in the Prolog 
literature. 

Relational Data Bases «a la carte» 

Luis Moniz Pereira 
Miguel Filgueiras 

Departamento de Informatica 
Universidade Nova de Lisboa 

Quinta da Torre 
2825 Monte da Caparica, Portugal 

In some cases access to a relational data 
base by means of a menu may be the best 

abstracts 

.solution compatible with the requeriments on 
the access proper as well as with the time 
and money restrictions on the making of an 
access program. 

We have developed a general program, in 
Prolog, that using information gathered from 
the user generates a menu based consultation 
program tailored to suit the user data base 
and acess requirements. Some general ideas 
on relational data base access were used 
concerning implicit fields, combining of fields, 
special access predicates, references to texts, 
finding names from partial descriptions, etc. 

We claim the high usefulness of this pro
gram. To those who have data to store and 
retrieve, their work is only to plan a relational 
data base. The access program is instantly 
made. 

On the Implementation of Control 
in Logic Programming Languages 

Miguel Filgueiras 

Departamento de Informatica 
Universidade Nova de Lisboa 

Quinta da Torre 
2825 Monte da Caparica, Portugal 

First a description is given of some 
experiments on a (simulated) low-level 
implementation for a particular case of control. 
Then, a comparison concerning complexity 
and efficiency is made between this approach 
and a high-level implementation (in Prolog) for 
the same case. Conclusions on the more 
effective implementation level of logic pro
gramming languages introducing sequential 
parallel and co-routined execution are then 
presented as a generalization of the results for 
the particular case studied. 

NON-VON: a Parallel Machine Architecture 
for Knowledge-Based 

Information Processing 

David E. Shaw 

Department of Computer Science 
Columbia University 

New York, NY 10027, USA 

NON-VON is a highly parallel machine 
designed to support the efficient implemen-

tation of very large scale knowledge-based 
systems. The utility of such a machrne has 
been demonstrated analytically, and through 
implementation of a working knowledge
-based information retrieval system in which 
the NON-VON machine instructions were 
emulated in software. In cooperation with the 
Stanford Computer Science Department, we 
have begun to implement the most important 
components of the machine as custom VLSI 
circuits. 

The NON-VON Database Machine: 
A Brief Overview 

David E. Shaw 
Salvatore J. Stoffa 
Hussein Ibrahim 

Bruce Hillyer 

Department of Computer Science 
Columbia University, 

New York, NY 10027, USA 

Gia Wiederhold 

J. A. Andrews 

Department of Computer Science 
Stanford University, California, USA 

The NON-VON machine (portions of which 
are presently under construction in the 
Department of Computer Science at Colum
bia, in cooperation with the Knowledge Base 
Management Systems Project at Stanford) 
was designed to apply computational paralle
lism on a rather massive scale to a large share 
of the information processing functions now 
performed by digital computers. 

The NON-VON architecture comprises a 

tree-structured Primary Processing Subsystem 
(PPS), which we are implementing using 
custom nMOS VLSI chips, · and a Secondary 
Processing Subsystem (SPS) incorporating 
modified, highly intelligent disk drives . 
NON-VON should permit particularly dramatic 
performance improvenents in very large scale 
data manipulation tasks, including relational 
database operations and external sorting. This 
paper includes a brief overview of the NON
VON machine and a more detailed discussion 
of the structure and function of the PPS unit 
and its constituent processing subsystems. 

15 



On the long-term implications 
of database machine research 

David E. Shaw 

Department of Computer Science 
Columbia University 

New York, NY 10027, USA 

It is argued that the long-term import of 

current research on specialized hardware for 

database management may extend far beyond 

what is now considered the immediate pro

vince of database management systems. In 

particular, the potential support which «data

base machines» may provide for very high 

level mechanisms for the description of infor

mation processing tasks is considered and 

exemplified with an operational system for 

knowledge-based information retrieval. 

A Partial Evaluator of Lisp Programs 
Written in Prolog 

Kenneth M. Kahn 

Department of Computing Science, 
Uppsala University 

750 02 Uppsala, Sweden 

A new experimental technique for auto

matically generating compilers from inter

preters is applied to a Prolog interpreter. The 

Prolog interpreter called LM-Prolog was imple

mented in Lisp, with the dual purpose of 

supporting a partial evaluator for Lisp pro

grams called Partial and that the implemen

tation itself be a suitable input to Partial. 

A partial evaluator is a program which takes in 

programs and generates more efficient, less 

general, versions of them. Partial is being 

applied to LM-Prolog to produce specialized 

versions of Prolog for a given database of 

assertions or programs. If successful, an 

efficient compiler/interpreter Prolog system 

will be produced based upon a small simple 

interpreter. Maintenance and development of 

LM-Prolog is confined completely to the inter

preter and the compiler will automatically be 

kept compatible. Additionally, compilers for 

any interpreters built upon LM-Prolog can be 
automatically generated. 

16 

abstracts 

Concurrent Execution of Logic 

Kenneth A. Bowen 

School of Computer & Information Science 
Syracuse University, Syracuse, NY 13210 USA 

A preliminary study of a multi -processor 
interpreter for PROLOG is presented. The pro
cessors involved share no common memory 
and communicate by message passing. The 
interpreter provides for parallelism at both 
AND- and OR- nodes in PROLOG search 
trees. The development is top-down, begin
ning from search in an abstract tree. Algo
rithms are expressed in modified MODULA. 

Prolog Interpreter Based 
on Concurrent Progamming 

Koichi Furukawa 

ICOT - Institute for New Generation 
Computer Technology 

Tokyo 108, Japan 

Katsumi Nitta, Yuji Matsumoto 

Electrotechnical Laboratory 
lbaraki 305, Japan 

This paper presents a coroutine-based algo
rithm for interpreting Prolog programs. Two 
kinds of processes, named AND-process and 
OR-process, are introduced. It turns out that 
the complexity of an interpreter decreases 
by dividing tasks properly into each of them. 
We informally prove the correctness of our 
interpreter. The control part and unification 
part are separately proven. Finally we present 
a possibility to incorporate highly parallel 
@x~c;;ution of Prolog programs. 

A Lisp-Machine to Implement Prolog 

C. Percebois 
J. P. Sansonnet 

Laboratoire « Langages et System es 
lnformatiques» 

Universite Paul Sabatier 
116 route de Narbonne 

31062 Toulouse Cedex, France 

If throughout these past few years, new 
architectures have been developed in order 
to reduce the semantic gap separating the 
software from the hardware, too many appli-

cations yet require a difficult implementing 
effort. 

Through a direct execution model whose 
internal form derived from LISP, we have 
been able to bridge this gap thanks to an 
architecture embodying directly the concepts 
of a high level language specialized in tree
-structured processing. 

We present here an outline of a PROLOG 
implementation for this architecture. Then we 
give evaluation measures dealing with size 
and speed of our future interpreter. 

An Interpreting Algorithm 
for Prolog Programs 

M. H. van Emden 

Department of Computer Science, 
University of Waterloo, Canada 

We describe in pseudocode the main rou
tine of a Prolog interpreter. The algorithm is 
developed in several steps. Initially a search 
algorithm for trees is described. After a 
review of the Prolog theorem prover, the 
tree-search algorithm is applied to the search 
space of the theorem prover. Several ineffi
ciencies of the result are then eliminated by 
the introduction of proof trees and structure 
sharing. 

Prolog/KR- Language Features 

Hideyuki Nakashima 

Information Engineering Course 
University of Tokyo, Japan 

Language features of Prolog/KR are des
cribed . The language is mainly based on 
Prolog but has been extended to improve 
Prolog's capability of expressing controls. 
Although most implementations of Prolog 
support a cut operator to suppress global 
backtracking, it is too primitive to construct a 
large system. Prolog/KR provides, instead 
of the cut operator, plenty of higher order 
control predicates to make control structures 
manifest. The control structure also includes 
parallel computation and co-routines. Besides 
the control structures, Prolog/KR has the 
following features: 

1. The pattern matcher (unifier) has been 
extended. 

2. The system apprehends multiple worlds. 
3. Substantial debugging facilities are sup

plied. 

\ r 



Logic Programming: A Parallel Approach 

Norbert Eisinger, Simon Kasif, Jack Minker 

Computer Science Dept., Univ. of Maryland, 
College Park, MD 20742, USA 

Predicate logic programming provides a 
convenient mechanism for problem solving in 
the context of a multiprocessor system. The 
writer of a logic program need ,not be con
cerned about the specific configuration of 
the system, and advantage can be taken of 
inherent parallelism that exists in the system. 
Multiple problem solving machines may be 
working simultaneously on the same problem, 
sending requests to the set of machines 
containing procedure statements to match 
procedure heads and return responses. The 
system, described in general is being designed 
for a specific multiprocessor system, ZMOB. 
The system consists of a ring of 256 ZS0A 
microprocessors interconne_cted on a high 
speed bus together with the VAX.-11 computer. 

Knowledge Acquisition in Prolog 

Alain Grumbach 

Laboratoires de Marcoussis (CRCGE) 
Route de Nozay 91460 Marcoussis, France 

The problem we are dealing with is the 
problem of updating data or knowledge bases. 

We would like to provide the user with 
tools such that updating could be done in 
the same natural declarative manner as the 
queries. 3 kinds of logic requests would be 
possible: 

query: «who teaches course2 ?» 
assertion: «it is true that course2 is lee 

tured by linda.» 
negation: «it is false that course3 holds 

on monday». 

The user will not have to know anything 
about the internal informations. 

PROLOG appears to be very well suited to 
this kind of problem, (in comparison with 
other powerful languages as LISP or 
PASCAL), owing to the fact that facts and 
rules are represented in the same way, and 
to the unification technique. 

We describe the corresponding feature on 
an example dealing with semantic parsing of 

abstracts 

natural language sentences, and then apply it 
to the updating of relational data bases and 
knowledge based systems. 

Teaching Logic as a Computer 
Language in Schools 

Richard Ennals 

Department of Computing 
Imperial College of Science & Technology, 

London SW7 2BZ, UK 

The experience described in this paper has 
been gained on the project «Logic as a 
Computer Language for Children» which is 
supported by the Science and Engineering 
Research Council and the Nuffield Foundation. 
It is based at Imperial College, and has in
volved regular classroom teaching at Park 
House Middle School, Wimbledon _ since 
September 1980. An account will be given of 
the progress of the initial pilot class, the revi
sions that have been made for subsequent 
classes, the experimental teaching of mathe
matics and history using PROLOG, the deve
lopment of a «logic across the curriculum» 
approach to the teaching of mathematics, 
history, science and French, the development 
of an Information Technology course based 
on PROLOG, and a course using different 
PROLOG implementations. Issues for dis
cussion will include modes of representation, 
levels of logical reasoning, the practicalities of 
programming, the importanc:e or otherwise of 
efficiency and specification, and suggestions 
for future research. 

Graphs as Data in PROLOG Programs 

Jan Sebelik 

Institute for Application of Computing 
Technique in Control, Prague 1, 

Revolucnf 24, Czechoslovakia 

Petr Stepanek 

Department of Cybe~netics and Operational 
Research, Charles University, Prague 1, 

Malostranske namestf 25, Czechoslovakia 

Three types of representations of binary 
graphs in PROLOG programs are described, 
namely, graphs are represented as specific 
terms, by listing all edges and by collection of 

complete subgraphs. It is shown that there 
are some conditions on the specific represen
tations of graphs, which make possible to 
construct higher level logic programs for sol
ving some classical graph theoretic problems, 
which are independent of the representation . 
The communication with the specific data 
representation is realized by two so called 
fundamental predicates. Representation 
dependent conversion programs are described 
as well. 

A Prolog Simulation of Migration Decision 
Making in a Less Developed Country 

John W. Roach 

Department of Computer Science 

Theodore D. Fuller 

Department of Sociology 
Virginia Polytechnic Institute 

and State University, Virginia, USA 

The logic programing language PROLOG is 
used to create a cognitive model for migration 
decision making among Thai villagers. The 
simulation includes representations of social 
mores as well as of personal values written 
in PROLOG rules. Several prototypical Thai 
villagers are assigned characteristics (derived 
from real data) and run through the simulation 
to determine whether they will decide to 
migrate to the city. The relevance of working 
models, programs embodying a theory, to the 
social sciences is discussed. We conclude 
that working models have some advantages 
over more traditional statistical models: with 
social rules implemented in a rule-based logic 
language, we can assess the adequacy of the 
social theory by observing the behavior of 
prototypes. Possible future expansions to the 
program are suggested. 

Module Development Based on Program 
Transformation and Automatic Generation 

of the Input-Output Relation 

Douglas R. Skuce 

Department of Gomputer Science 
University of Ottawa 

Ottawa, Ontario, Canada 

A practical methodology, termed «genera
tor based programming», for developing relia-

17 



~ abstracts 

ble software modules is proposed, which 
synthesizes ideas from logic programming, 
detaflow programming, automatic tresting, 
and program transformation. In brief: a 
module M is designed as a series of sub
modules; each accepts as input a stream of 
input tokens and emits another stream as 
inputs to the next submodule. The first 
submodule is initially designed as a generator 
of its input-output relation, i.e all pairs of its 
input and output streams. A list of these can 
be quickly inspected to reveal errors in the 
relation, to give the writer confidence that the 
intended relation has indeed been obtained. 
We stress the importance of this «intentional 
feedback». The generator of subsequent 
modules, and lists of input-output pairs may 
thus be automatically generated for each 
submodule. Finally, the first module may be 
transformed, using automatic transformations 
if available, into function form. Alternatively, all 
modules may be transformed into some other 
language, for example an imperative language, 
and tested using the generator version. 

A well-known example, the Naur text for
matter, is presented. 

LOGIC PROGRAMMING - What does 
it bring to the software engineering? 

Toshiaki Kurokoawa 

Institute for New Generation 
Computer Technology 

Mita Kokusai Bldg. 21 F, 4-28 1-Chome, 
Minato-ku, Tokyo 108, Japan 

In this paper are studied the in;ipacts of 
logic programming on the software engi
neering field . Logic programming will solve 
many existing problems of the software 
written in conventional languages. However, 
new problems will be also brought by the 
logic programs. It is especially true when 
you use the actually implemented version of 
a logic programming language such as 
PROLOG. 

A conclusion is given that logic programming 
is a new discipline and a new way of software 
production. And the experience of software 
engineering can contribute to the creation of 
the really useful programming language based 
on logic. Several attempts on the develop
ment of a logic programming language are 
surveyed to investigate the implication to and 
frpm the software engineering activities. 

18 

A Design Methodology 
in Prolog Programming 

Z. Markusz 

Computer and Automation Institute, 
Budapest, Hungary 

A. A. Kaposi 

Polytechnic of the South Bank, London, UK 

Complexity control has been extensively 

used as an aid in · developing CAD programs 

for various architectural, mechanical and pro

duction engineering applications. 

This paper outlines the process of evolving 

a complexity controlling design methodology. 

It discusses the experience with its use and 

analyses the complexity properties of pro

grams designed by different methods. 

Complexity control may also be achieved 

retrospectively, or in the course of mainte

nance, by measuring the complexity of a 

program, identifying its most complex parts 

and reconstructing these as structures of 

simple components. This procedure may offer 

opportunities to identify re-usable program 

modules, thus leading to elegant program 

designs. 

Towards a Derivation Editor 

Agneta Eriksson, Anna-Lena Johansson 
and Sten-Ake Tarnlund 

UPMAIL 
Computing Science Department 

Uppsala University, Sweden 

We shall take up a derivation editor for four 
classes of derivations of logic programs. The 

purpose of an editor is to support an interac
tive construction of derivations so the informal 
reasoning of the user can be carried over to 
the formal reasoning of the editor and con

versely. A few implemented editors for logic 
programs have in particular, made it possible 
to formally prove a correctness theorem of an 
insert program on ordered binary trees. No 
automatic theorem prover is probably able 
to prove this theorem to-day, and may be a 

person would not do it either. 

Alternation and the Computational 
Complexity of Logic Programs 

Ehud Y. Shapiro 

Department of Computer Science 
Yale University 

New Haven, CT 06520, USA 

We investigate the complexity of deriva
tions from logic programs, and find it closely 
related to the complexity of computations of 
alternating Turing machines. In particular, we 
define three complexity measures over logic 
programs - goal-size, length and depth -
and show that goal-size is linearly related to 
alternating space, the product of length and 
goal-size is linearly related to alternating tree
size, and the product of depth and goal-size is 
linearly related to alternating time. The bounds 
obtained are simultaneous. 

As an application, we obtain a syntatic 
characterization of Nondeterministic Linear 
Space and Alternating Linear Space via logic 
programs. 

The Undecidability of two Completeness 
Notions for the «Negation as Failure» 

Rule in Logic Programming 

Howard A. Blair 

Computer Science Department 
Iowa State University, USA 

Two foundational results concerning com
pleteness notions for the «negation-as-failure» 
(NAF) rule for logic programs are reported. 
Two natural notions of completeness of the 
«negation-as-failure» rule arise. First, given a 
logic program P, and a predicate symbol A, 
is it the case that for every ground atom A' 
with A as predicate for which not- I- pA' 
holds, that not- I- pA' is indeed provable? 
(NC 1) Second, is it the case that for every 
ground atom A for which -A is Herbrand valid 
in logic program P, that -A is provable in P by 
the «negation-as-failure» rule? (NC2) 

The first of these two notions is of general 
interest and is independent of the closed 
world assumption. The decision problem for 
the completeness of NAF for (P,A) under 
(NC1) is n2-complete. The decision problem 
for the completeness of NAF for P under 
(NC2) is n3-complete. The results are derived 
by reducing (NC1) and (NC2) to recursion
theoretic notions via fixed-point semantics for 
logic programs. 



Negation and Semantics 
of Prolog Programs 

Taisuke Sato 

Electrotechnical Laboratory 
1-1-4, Umezono, Sakura-mura 

NOhari-gun, lbaraki, Japan 

The semantics of Prolog programs with 
'not' is discussed. It is shown that whereas a 
Prolog program with 'not' sometimes fails to 
have a minimum model which corresponds to 
the positive CWA (Closed World Assumption) 
it always has an N model irrespective of 'not'. 
Ncx: model proposed here corresponds to the 
negative CWA. Since both models agree on 
the truth value of P as far as call(P) termi
nates, the Ncx: model can be seen as a natural 
extension of the minimum model. Based on 
the Ncx: model, it is also shown that «Negation 
as Failure» inference rule is sound as far as 
the ground condition, P is ground whenever 
not(P) is called, is kept. 

Towards an lnductionless Technique 
for Proving Properties of Logic Programs 

Roberto Barbuti, Pierpaolo Degano 
and Giorgio Levi 

lstituto di Scienze dell'lnformaiione, 
Universita di Pisa, Italia 

The paper presents a non-inductive method 
for proving properties of logic programs, 
based on the Knuth-Bendix completion algo
rithm. The language we use to express pro
grams is PROLOG, constrained by distin
guishing inputs and outputs, and by imposing 
conditions which forbid to write non-determi
nistic programs. In order to naturally express 
program properties, PROLOG has been 
extended to allow clauses having more than 
one atom in their left-hand side, and the 
computation rule is accordingly extended. 
An example is presented to illustrate the 
power of the method. 

Unification-based Conditional 
Binding Constructs 

Harvey Abramson 

Department of Computer Science 
University of British Columbia 

Vancouver, Canada 

The unification algorithm, heretofore used 
primarily in the mechanization of logic, can 

abstracts 

be used in applicative programming languages 
as a pattern matching tool. Using SASL 
(St. Andrews Static Language) as a typical 
applicative programming language, we intro
duce several unification based conditional 
binding (ie, pattern matching) constructs and 
show how these can promote clarity and 
conciseness of expression in applicative lan
guages, and we also indicate some appli
cations of these constructs. In particular, 
we present an interpreter for SASL functions 
defined by recursion equations. 

Relational Production Systems 
and Logic Programs 

Paul H. Morris 

University of California, 
Irvine, California, USA 

The reletionship of logic programs to pro
blem solving systems is investigated further. 
The latter are represented by a version of 
the relational production systems of Vere, 
modified to use multisets rather than sets. 
It is shown that a Horn clause logic program 
may be precisely modeled by a relational 
production system with empty initial state, 
leading to an explanation of why a strong 
form of goal conflict is not an issue for logic 
programs. The model provides a type of ope
rational semantics for the top-down inter
preter. This is illustrated with the Fibonacci 
example. The results suggest that certain 
logically equivalent formules should be given 
distinct procedural interpretations. Implications 
of the multiset formalism for plan formation 
using logic are briefly discussed. 

A Comparison of the Logic Pro9ramming 
Language Prolog 

with Two-Level Grammars 

Jan Maluszyriski 

Software Systems Research Center 
University of Linkoping, Sweden 

A comparison of Horn clause logic pro
gramming systems and two-level grammars is 
carried out. The comparison is mainly infor
mal, based on a language analysis example. 
It is described how two-level grammars may 
be imposed restrictions enabling their use 
as a computational tool similar to Prolog. 

Moreover it is explained how the language 
generation feature of two-level grammars 
might serve as a means of controlling the 
nondeterministic computation in order to 
reduce backtracking. 

Medical Decision Aid: Logic Bases 
of the Sphinx System 

M. Joubert, M. Fieschi, D. Fieschi, M. Roux 

Service Universitaire de Biomathematiques, 
Statistiques Medicales et Epidemiologiques, 

lnformatique, Faculte de Medecine 
de Marseille, France 

The basic elements of the SPHINX inte
ractive system medical decision aid are here 
represented and discussed. They are the lite
rals of a typed logic of which we present 
the particularities. They make it possible to 
express specialised knowledge in the form of 
independent rules. In the interpretation of the 
latter, the usual unification is replaced by 
a unification which takes into account the 
implicit properties of the types according 
to their particular structure. Examples of 
knowledge expression are presented, and the 
way in which knowledge is used by the man
machine dialogue procedure, as well as by the 
decision procedure. 

A Dialogue in Natural Language 

Robert Pasero 

Groupe d'lntelligence Artificielle 
Faculte des Sciences de Luminy 

Marseille, France 

In - this paper we present a way of cons
tructing a dialogue between man and 
machine, through a simple syntactic and 
semantic system. We also give a Prolog 
program as a core for a more sophisticated 
system. 

First we describe a dialogue's language 
syntactic structure, then we define a three
valued logic system in order to represent the 
semantics of this language. Afterwards, we 
simulate this three-valued logic as a binary 

. logic, for the purpose of the program. 

19 



Application of Meta Level Programming 
to Fault Finding in Logic Circuits 

Kave Eshghi 

Department of Computing Imperial College 
of Science and Technology 

London, UK 

FAULTFINDER is a program that diagnoses 
faults in digital circuit modules. It relies on 
the input-output behaviour of the circuit to 
achieve this, without requiring access to the 
circuit elements directly. It uses techniques of 
meta language programming in logic. 

Dado: a Tree-Structured Machine 
Architecture for Production Systems 

Salvatore J. Stoffa and David E. Shaw 

Department of Computer Science 
Columbia University 

406 S. W. Mudd 
New York, NY 10027 USA 

Dado is a parallel, tree-structured machine 
designed to provide highly significant perfor
mance improvements in the execution of pro
duction systems. 

Exponential Improvement 
of Exhaustive Backtracking: 

Data Structure and Implementation 

Stanislaw Matwin 

Department of Computer Science 
University of Ottawa 

Ottawa, Ontario, Canada 

Tomasz Pietrzykowski 

School of Computer Science 
,t...cadia University 

Wolfville, Nova Scotia, Canada 

The paper presents the data structure 
enabling an implementation of an efficient 
backtracking method for plan-based deduction. 
The structure consists of two parts. Static 
structure combines information about the 
initial set of clauses and unifiers. Dynamic 
structure records information about the history 
of the deduction process (plan graph), about 
the unifications built in this process (graph of 
constraints), and about the conflicts encoun-

20 

abstracts 

tered. Dynamic structure consists purely of 
pointers and integers and is extremely 
economical. 

The system operates on u_nits. The units 
describe attempts to find the solution and 
reside on disk. A procedure controlling traffic 
of units between disk and memory and gua
ranteeing completeness of the search is 
presented. Some other procedures (deve
lopment and pruning of plans, development of 
constraints graph and conflict detection) are 
also discussed. 

The last section presents an example of a 
problem and follows its solution by a conven
tional PROLOG interpreter and by our system. 

An Introduction to Mu-Prolog 

Lee Naish 

Department of Computer Science 
University of Melbourne 

Parkville, Victoria 3052 Australia 

As a logic programming language, PROLOG 
is deficient in two areas : negation and control 
facilities. Incorrectly implemented negation 
affects the correctness of programs and poor 
control facilities affect the termination and 
efficiency. These problems are illustrated by 
examples. 

MU-PROLOG in then introduced. It correctly 
implements negation and has more control 
facilities . Control information can be added 
automatically. This can be used to avoid infi
nite loops and find efficient algorithms from 
simpie logic. MU-PROLOG is closer to the 
ideal of logic programming. 

Foundations of Logic Programming 

J. W. Lloyd 

Department of Computer Science 
University of Melbourne 

Parkville, Victoria 3052 Australia 

These notes given an account of the mathe
matical foundations of logic programming. It is 
assumed that the reader is familiar with a 
lbgic programming language, such as PRO
LOG, and hence appreciates the interest in 
the results presented here. 

Chapters 1 to 3 contain the most funda
mental results concerning soundness, comple
teness and the negation as failure rule. Most 

-of these results are well known, although 
many of the proofs are new. Further chapters 
on more advanced topics are planned. 

MU-PROLOG 2.4 Reference Manual 

Lee Naish 

Department of Computer Science 
University of Melbourne 

Parkville, Victoria 3052 Australia 

The MU-PROLOG interpreter is written in C 
and is especially suited to Unix environments. 
MU-PROLOG is intended to be upward 
compatible with DEC-10 PROLOG and Unix 
PROLOG. The syntax and built-in predicates 
are therefore very similar . MU-PROLOG 
correctly implements negation and has more 
control facilities than standard PROLOGs. 

Chaotic Semantics of Programming Logic 

J-L. Lassez and M. J. Maher 

Department of Computer Science 
University of Melbourne 

Parkville, Victoria 3052, Australia 

We use the notions of closures and fair 
chaotic iterations to give a semantic to logic 
programs . The relationships between the 
semantics of individual rules and the seman
tics of the whole program are established and 
an application to parallel processing is men
tioned. A chaotic fixed point theorem is given, 
which carries the non-determism inherent to 
resolution. Finally, a result of Apt and van 
Emden is reinterpreted by establishing the 
soundness and completeness of fair SLD 
resolution with respect to finite failure. 

Programming Law in Logic 

Allen Hustler 

Department of Computer Science 
University of Waterloo, Canada 

This paper briefly reviews recent work on 
automating the legal research process; inves
tigates the relationship between law and logic, 
and the work done by legal academics in this 
area; and describes a prototype interactive 
logic-based legal consultant written in the 
PROLOG language. 



Logic Programming for Expert Systems 

Peter Hammond 

Department of Computing 
Imperial College, 180 Queen's Gate 

London SW7 2BZ, UK 

The expert System MYCIN and PROS
PECTOR an . discussed in detail. A PRO LOG 
implementation MYCIN (PROLOG) is des
cribed and a faultfinding system FAULT
FINDER, also implemented in PROLOG, is 
defined. 

Knowledge-Based Retrieval on a 
Relational Database Machine 

David Elliot Shaw 

Department of Computer Science 
Columbia University 

406 S. W. Mudd 
New York, NY 10027 USA 

The central focus of this research has been 
the efficient retrieval of records from very 
large databases in applications where the 
criteria for description-matching require 
deductive inference over a domain-specific 
«knowledge base». Our approach ·has involved 
the design of a specialized non-von Neumann 
machine which permits the highly efficient 
evaluation of certain operators of a relational 
algebra of particular importance to the compu
tational task of logical satisfaction. The archi
tecture permits an O(log n) improvement over 
the best known evaluation methods for these 
operators on a conventional computer system, 
and may also offer a significant improvement 
over the performance of previously imple
mented or proposed database machines in 
other applications of pratical import. 

On Determining the Causes 
of Nonunifiability 

P. T Cox 

Department of Computer Science 
University of Auckland 
Auckland, New Zeland 

Determining whether or not a pair of 
functional expressions is unifiable is a problem 
of major importance in many processes, 
mechanical theorem-proving in particular. As a 

abstracts 

result, the unification problem has been inten
sively studied. A related problem of equal 
importance is how to deal with unification 
failure. Most processes using unification 
perform some search, and must backtrack 
when unification fails. The usual strategy is to 
backtrack to the last point at which unification 
was successful. This may not be the correct 
place to resume the search, however, and 
although the correct place will eventually be 
found, irrelevant areas of the search space 
will be investigated first. As a step towards 
more intelligent backtracking behaviour, we 
present a method for determining all the 
causes of nonunifiability. 

Deduction Plans: A Basis for lntelHgent 
Backtracking 

Philip T Cox 

Department of Computer Science 
Auckland University 
Auckland, Australia 

T omasz Pietrzykowski 

School of Computer Science 
Acadia University 

Wolfville, N. S., Canada 

A proof procedure is described that relies 
on the construction of certain directed graphs 
called «deduction plans». Plans represent the 
structure of proofs in such a way that problem 
reduction may be used without imposing any 
ordering on the solution of subproblems, as 
required by other systems. The structure also 
allows access to all clauses deduced in the 
course of a proof, which may then be used 
as lemmas. Economy of representation is the 
maximum attainable, consistent with this 
unrestricted availability of lemmas 

Restricted versions of this deduction system 
correspond to existing linear deduction proce
dures, but do not suffer from some of their 
shortcomings, such as redundant represen
tation, strict ordering of subproblems, and 
explicit substitution. One of the rules for cons
tructing plans, however, allows a subproblem 
to be factored to a previously solved one: this 
has no equivalent in existing systems. 

A further economy is obtained by making 
it unnecessary to perform substitutions and 
calculate most general unifiers. 

The source of unification failure can be 
located when a subproblem is found to be 
unsolvable, so that exact backtracking can be 
performed rather than the blind backtracking 

performed by existing systems. Therefore, a 
deduction system based on the construction 
of plans can avoid the wasteful search of irre
levant areas of the search space that results 
from the usual backtracking methods. Further
more, because of the graphical structure, it is 
necessary to remove only the offending parts 
of the proof when a plan is pruned after 
backtracking, rather than the entire pr;of 
constructed after the cutting point. 

The Database as Model: 
a Metatheoretic approach 

Kurt Knolodige 

SRI 
Menlo Park, CA 94025, USA 

This paper presents a method of formally 
representing the information that is available 
to a user of a relational database. The intended 
application area is deductive question ans
wering systems that must access an existing 
relational database. To respond intelligently 
to user inquiries, such systems must have a 
more complete representation of the domain 
of discourse than is generally available in the 
tuple sets of a relational database. Given this 
more expressive representation, the problem 
then arises of how to reconcile the infor
mation present in the database with the 
domain representation, so that database 
queries can be derived to answer the user's 
inquiries. Here we take the formal approach of 
describing a relational database as the model 
of a first-order language. Another first-order 
language, the metalanguage, is used both to 
represent the domain of discourse, and to 
describe the relationship of the database to 
the domain. The formal advantages of this 
approach are presented and contrasted with 
other work in the area. 

Prolog Interpreter 
and its Parallel Extension 

Yuji Matsumoto Katsumi Nitta 

Electrotechnical Laboratory 
lbaraki, Japan, 305 

Koichi Furukawa 

Institute for New Generation 
Computer Technology 

Tokyo, Japan, 108 

This paper presents a Prolog interpreter 
based on concurrent programming and its 

21 



extension to a parallel execution model. The 
execution of a Prolog program can be seen 
as a depth first traverse of an AND/OR tree 
defined by the program. Our interpreter is 
based on this point of view, and consists 
of two kinds of processes, AND-process an 
OR-process. 

Exponential Improvement 
of Exhaustive Backtracking : 

A Strategy for Plan-Based Deduction 

Tomasz Pietrzykowski 

School of Computer Science 
Acadia University 

Wolfville, Nova Scotia, Canada 

Stanislaw Matwin 

Department of Computer Science 
University of Ottawa 

Ottawa, Ontario, Canada 

The paper presents a method of mechanical 
deduction. Attempts to find refutation(s) are 
recorded in the form of triples: plan, cons
traints, conflicts. A plan corresponds to a 
portion of AND/OR graph search space and 
represents purely deductive structure of deri
vation. Constraints form a graph recording the 
attempts of unification, while conflicts identify 
minimal subset of the plan, removal of which 
restores unifiability. 

This method can be applied to any initial 
base of (nonnecessarily Horn) clauses. Unlike 
the exhautive (blind) backtracking which treats 
all the goals deduced in the course of proof 
as equally probable source of failure, this 
approach detects the exact source of failure. 

In this method only a small fragment of 
solution space is kept on disk ss a collection 
of triples. The search strategy and the method 
of non-redundant processing of individual 
triples which leads to a solution (if it exists) is 
presented. This approach is compared - on a 
special case - with blind backtracking and an 
exponential improvement is demonstrated. 

Algorithmic Program Debugging 

Ehud Y. Shapiro 

Department of Computer Science 
Yale University, USA 

(Thesis) 

In this thesis we lay a theoretical fra
mework for program debugging, with the goal 

22 

abstracts 

of partly mechanizing this actIvIty. In parti
cular, we formalize and develop algorithmic 
solutions to the following two questions: 

1. How do we identify a bug in a program 
that behaves incorrectly? 

2. How do we fix a bug, once one is 
identified? 

We develop interactive diagnosis algorithms 
that identify a bug in a program that behaves 
incorrectly, and implement them in Prolog 
for the diagnosis of Prolog programs. Their 
performance suggests that they can be the 
backbone of debugging aids that go far 
beyond what is offered by current pro
gramming environments. 

We develop an inductive inference algo
rithm that synthesizes logic programs from 
examples of their behavior. The algorithm 
incorporates the diagnosis algorithms as a 
component. It is incremental, and progresses 
by debugging a program with respect to the 
examples. The Model Inference System is a 
Prolog implementation of the algorithm. Its 
range of applications and efficiency is com
parable to existing systems for program 
synthesis from examples and grammatical 
inference. 

We develop an algorithm that can fix a bug 
that has been identified, and integrate it with 
the diagnosis algorithms to form an interactive 
debugging system. By restricting the class of 
bugs we attempt to correct, the system can 
debug programs that are too complex for the 
Model Inference System to synthesize. 

Extended Integrity -Constraints 
in Query-by-Example 

J. C. Neves, M. H. Williams 
and S. 0 . Anderson 

Computer Science Department, 
Heriot-Watt University 

Edinburgh EH1 2HJ, UK 

The specification and enforcement of inte
grity constraints has become an important 
aspect of data base systems, and data base 
management languages must make provision 
for them. In the case of the data base lan
guage Query-by-Example a style for handling 
certain types of integrity constraints has been 
developed by Zloof. An alternative approach 
is presented here which allows for a more 

general type of constraint. This includes the 
handling of functional, multivalued and 
embedded-multivalued dependencies and the 
more conventional and simpler type of inte
grity contraint in a uniform manner. 

A Prolog Implementation 
of Query-by-Example 

J. C. Neves, R. C. Backhouse, S. 0. Anderson 
and M. H. Williams 

Computer Science Department, 
Heriot-Watt University 

Edinburgh EH1 2HJ, UK 

Prolog is a programming language which is 
particularly well suited to data base applica
tions. However, since formulating queries for 
Prolog data bases requires a knowledge of 
Prolog syntax, various workers have been 
involved in developing better interfaces to 
Prolog data bases. Query-by-Example (QBE) is 
a data base management language which . 
provides a simple interface to relational data 
bases and which has a syntax which is very 
similar to Prolog goals. This paper examines 
the correspondence between QBE and Prolog 
from the viewpoint of a particular implementa
tion, and concludes that QBE is a natural 
choice as an interface to Prolog data bases. 

Designing Transparent Natural Language 
Interfaces for Information Systems 

Paul Sabatier 

Laboratoire d'Automatique 
Documentaire et Linguistique 

Universite de Paris 7 
· 2, Place Jussieu 

75221 Paris Cedex 05, France 

Natural language interfaces would gain in 
convenience and interest if the user were able 
to know what the system can understand, 
i.e., if they could reveal to him their linguistic 
capabilities and their limits, thus becoming 
transparent. This can be achieved indirectely, 
by producing explanatory and talkative 
messages when the analysis of a sentence 
fails; and directly, by allowing the user 
himself to ask the interface questions about 
its linguistic competence. We discuss these 
two aspects and their consequences for the 
design of interface involving such a capability 
of transparence. 

' . 



research centres addresses 

Here are some more: 

Dept. of Computer Science 
University of New South Wales 
P.O.B. 1, Kensington, NSW 2033 Australia 

Dept. of Computer Science 
University of Melbourne 
Parkville, Victoria 3052 

lmecc_Unicamp cp 1170 
Campinas SP 13100 

Dept. of Computer Science 
University of Ottawa 
Ottawa, Ontario K1N 9B4 

School of Computer Science 
Acadia University 
Wolfville BOP 1X0 

Institute for Application of 
Computing Technique in Control 

Australia 

Brasil 

Canada 

Canada 

Revolucni 24, Praha 1 Czechoslovakia 

DIKU 
Sigurdsgade 41 
DK- 2200 Copenhague N 

lnstitut fur lnformatik 
Technische Universitat Munchen 
Postfach 202420 

Denmark 

D-8000 Munchen 2 Deutsch land 

lmag, Universite de Grenoble I 
B. P. 53X, 38041 Grenoble Cedex France 

CRISS 
BP 47X 
38040 Grenoble Cedex France 

Service Universitaire de Biomathematique 
lnformatique, 27 Bd. Jean Moulin 
13385 Marseille Cedex 5 France 

Atelier Microinformatique 
Campus Universitaire de Beaulieu 
Avenue Du General Leclerc 
35042 Rennes Cedex France 

CNET LAA/SLC/PGL 
BP 40, 22301 Lannion Cedex 

LISH 
Universite de Toulouse le Mirail 
109 bis rue Vouquelin 

France 

31058 Toulouse Cedex France 

LSI 
Universite Paul Sabatier 
118 Route de Narbonne 
31062 Toulouse Cedex France 

Ensae-Cert 
Complexe Aerospatial de Lespinet 
10 Av. Edouard Belin 
31055 Toulouse Cedex France 

Centre Mondeal 
22, Av. Matignon 
75008 Paris 

Laboratoire d'lnformatique 
Ecole Normale Superieure 
5, Rue Marie Davy 
75014 Paris 

Otszk 
P. 0. B. 161 
Budapest H-1440 

Chinoin 
P. 0 . B. 110 
Budapest H-1325 

Vidioton 
P. 0 . B. 65 
Budapest H-1525 

France 

France 

Hungary 

Hungary 

Hungary 

Kfki 
P. 0. B. 49 
Budapest H-1525 Hungary 

Institute for Coordination 
of Computer Techniques 
1054 Budapest, Akademia UTCA 17 

Hungary 

Dept. of Applied Mathematics 
Weizmann Institute 
Rehovot 7600 Israel 

Information Engineering Course 
University of Tokyo, Graduate School 
Bunkyo, Honso 
Tokyo 113 Japan 

ICOT - Institute for New Generation 
Computer Technology 
Mita Kokusai Building, 21F 
4-28, Mita 1-Chome, Minato-Ku 
Tokyo 108 Japan 

Dept. of Computer Science 
University of Auckland New Zealand 

Runit Computing Centre 
7034 Trondheim-NTH 

Dept. of Computer Systems 

Norway 

The Royal Institute of Technology 
S-100 44 Stockholm 70 Sweden 

Cognitive Studies Programme 
Arts Building 
University of Sussex 
Brighton BN1 90N 

Dept. of Computer Science 
Herriot-Watt University 
Grassmarket, Edinburgh 

UK 

UK 

23 



24 

research centres addresses 

Dept. of Computer Science IBM Corporation 
University of Exeter P. 0. Box 390 
Stocker Road, Exeter EX4 4QL UK Poughkeepsie 

NY 12602 USA 

Robot Welding Project 
Burroughs Corporation Dept. of Engineering Science 

University of Oxford, Parks Road Federal and Special Systems Group 

Oxford OX1 3PJ UK P. 0. Box 517 
Paoli PA 19301 

Expert Systems Ltd. Dept. of Computer Science 
34 Alexandra Road Virginia Polytechnic Institute 
Oxford OX2 0DB UK Blacksburg VA 24061 

Dept. of Computer Science Centro de Computaci6n 
University of Delaware Universidad Simon Bolivar 
Newark DE 19711 USA Caracas 

STOP PRESS 

Digital 

Information and reports about Prolog implementation techniques 
and applications are wanted at Digital. Mail them to : 

Michael Poe 
Mailstop L TN1 - 2/H04 
295 Foster St. 
Littleton, Mass. 01460, USA 

First Announcement 

The Janos Bolyai Mathematical Society intends to organize a 
"Colloquium on Algebra, Combinatorics and Logic in Computer 
Science" in the period 12-16, September 1983 at Gyor, Hungary. 

The aim of the colloquium is to provide ground for the exchange of 
information on new achievements and the recent problems in any field 
of algebra, combinatorics and logic related to : the theory of automata, 
tree automata, computation and languages, semantics, complexity, 
computability, decidability, data structures, data manipulation and data 
analysis. 

Other fields of computer science applying algebra, combinatorics 
and lqgic are also welcome. 

We intend to publish the Proceedings of the Colloquium in a 
volume of the series Colloquia Mathematica Societatis J. Bolyai publis
hed jointly by the Society and North-Holland, Amsterdam. 

Interested colleagues are kindly requested to contact the secretary: 

B. Uhrin, Janos Bolyai Mathematical Society, 
1061 Budapest, Anker koz 1-3. Hungary. 

USA 

USA 

Venezuela 




