
CONTENTS

Short Communications by:
Alan M. Frisch, B. Canet, Earl Fogel, F. Kluz
niak, Ian Watson, James F. Allen, Jan Sebelik,
Kenneth M. Kahn, Leon Sterling, L. Ungaro,
Mark Giuliano, Maarten van Emden, Mohd.
Zahran Halim, 0. Ridoux, R. A. Corlett, S. J.
Todd, S. Szpakowicz, Y. Bekkers.

Community News & Events
New Journals & Books
Abstracts

EDITOR

Professor Luis MONIZ PEREIRA
Departamento de Informatica
Universidade Nova de Lisboa

PUBLISHED

UNIVERSIDADE NOVA DE LISBOA
Centro de Informatica
Faculdade de Ciencias e Tecnologia
2825 Monte da Caparica - Portugal
~ 245 4214 · 245 4987 · 245 4464 · 245 5299

245 5642 · 245 5643 · 245 5644 · 245 5645
Telex: 14542

ACKNOWLEDGEMENT

This publication has been partially subsidized
by Junta Nacional de lnvestigac;:ao Cientffica
e Tecnol6gica (JNICT). Av. D. Carlos I, 126,
Lisboa, Portugal.

COLLABORATION

Thanks are due to ALEXANDRE SILVA for help
with the address list.

SUBMISSIONS

Send to the editor, typed or printed, if possible
double spaced, one side of the paper only.

CONTRIBUTIONS

All those who can contribute please do so, by
sending at least US$6.00 or equivalent, per
number received, to the editor, payable to the
Centro de Informatica da Universidade Nova
de Lisboa.

DESIGN, TYPESETTING AND PRINTING

Servic;:os Graficos da Universidade
Nova de Lisboa
Av. Miguel Bombarda, 20-1. 0

1 000 Lisboa, Portugal

WINTER 83/84

EDITOR'S FOREWORD

EW
olLllf BN

An International Journal
on

Rfth Generation Computers
Vol.1 No.1 1983

Editor-in-Cbief T Moto-oka

Associate Editor K. Fuchi

OHMSHA. LTD. Al\ ~ Springer-Verlag
· Tokyo Osaka Kyvto ~ ~ Tokyo Berhn He1delbe,g New York

• Logic Programming is not merely
picking up speed. ft is spreading like a
phase change to encompass the whole
of computer science.

A number of small and large com
panies and corporations are actively
promoting research and development
projects in the field.

Two new journals have been laun
ched: "The Journal of Logic Program
ming" and "New Generation Compu
ting", whose policy is expected to
be one of cooperation. At the recent
workshop in Portugal seventeen coun
tries were represented, 80 people
attended, and forty five papers were
delivered.

A symposium is already scheduled
for February, in Atlantic City, New
Jersey, USA, and the next international
conference is due in July, Uppsala,
Sweden.

At least two collective books
comprising a collection of papers are
forthcoming: "Issues in Prolog Imple
mentation", edited by John Campbell
for Ellis Horwood Ltd. in England and
"Logic Programming and its Applica
tions", edited by David Warren and

Michel van Caneghem for Ab/ex Publishing Corporation; both are expected at the
beginning of the year. Ehud Shapiro is preparing a book with a selection of Prolog
programs.

• This newsletter has received another Portuguese government grant, about ba/f
the previous ones, since these grants are intended for scientific publications in the
launching stage. Thus your financial support is increasingly more important (see note
about contributions on this page).

The newsletter also needs more collaboration, specially in the way of community
news. New numbers will come out as soon as there is enough material to be published.
Be sure to help it come out sooner. Act now.

• Below we intended a photograph from the enjoyable "Logic Programming Works
hop'83" which took place last June near Albufeira, Portugal. However, the photos we
have are not good enough. Can you send us any for the next issue ?

short communications

AN OVERVIEW OF THE HORNE
LOGIC PROGRAMMING SYSTEM

Alan M. Frisch, James F. Allen, Mark Giuliano

Computer Science Department
The University of Rochester

Rochester, New York 14627, USA

Introduction

HORNE is a PROLOG-based logic-programming system embedded
in LISP. Programming in HORNE involves a careful mixture of logic
programming and LISP programming.

Since the summer of 1981, HORNE has been continually evolving
from its origin - HCPRVR (Chester, 1979). The main implementation is
in FRANZ LISP on a VAX; a scaled-down implementation also exists in
UC/ LISP on a PDP-10. Today, HORNE bears little resemblance to
HCPRVR; the primary similarity being the manner of embedding logic
in LISP and the LISP-logic interface.

This paper conveys the flavor of the current state of the system -
sacrificing detail and completeness for succinctness and simplicity.
After a brief overview of the basic systems, this paper highlights those
aspects of HORNE that differ from more conventional PROLOG
systems. We assume that the reader is familiar with the rudiments of
PROLOG and LISP. A more thorough account of the system may be
found in the "Horne User's Manual"· (Allen and Frisch, 1982).

The Basic System

Each clause in the HORNE data base is represented by a list stored
on the property list of its procedure name, i.e., the predicate name of
its sole positive literal. HORNE has a large set of facilities for defining,
editing, deleting, and examining the data base of clauses. It is also
capable of saving a subset of the database in a file and adding clauses
to the data base from a file. Each clause may be labelled, enabling data
base manipulations to be specified either by procedure names or by
labels. All of these facilities are implemented as LISP functions.

The HORNE interpreter is a traditional PROLOG-style LUSH resolu
tion theorem prover, also implemented as a LISP function. This
function enables the user to specify that a certain number of proofs
of a theorem are desired or that all proofs are desired. The prove
function also provides a battery of tracing and debugging facilities.

HORNE has several built-in predicates that are typically found in
PROLOG - among them a cut predicate, a predicate to test if a
variable is bound, and one to test if a variable is bound to an atom.
Many of the usual built-in predicates, such as those for arithmetic and
input/ output, are not needed since they are provided as built-in fu
nctions in LISP and can be accessed through the LISP-logic interface.

Embedding Logic in LISP

Those features of HORNE discussed so far are a straighforward
LISP implementation of a logic-programming system. This section, and
the next, point out that HORNE is a much tighter combination of logic
and LISP.

2

A clause is encoded as a list of atomic formulae, the first of which
is interpreted as the sole positive literal of the clause. An atomic
formula is represented as a list whose first element, a LISP atom, is
interpreted as the predicate name. The remaining elements of the fist,
each of which may be any S-expression, are the terms of the atomic
formula. Through a mechanism not described here, certain
S-expressions are interpreted as logical variables. For purposes of
this paper, we will show variables as atoms whose print names begin
with "?".

The use of LISP S-expressions as HORNE terms is a crucial design
point. It is as if HORNE has only one function symbol, cons. Thus, the
S-expression (f a) represents the term cons(f,cons(a,nil)), not the term
f(a). From this viewpoint it is easy to see that the following terms unify
with the most general unifier (m.g .. u.) shown:

a ?x with mg.u. {?x/a}
(a) ?x with m.g.u. { ?x/(a)}
(a) (?x) with m.g.u. {?x/a}
(ab c) (?x. ?y) with m.g.u. {?x/a, ?y /(b c)}
(ab) (a ?x . ?y) with m.g.u. { ?x/b, ?y /nil}
(a) (a ?x. ?y) does not unify
(ab) (?x) does not unify

This approach eliminates the need for special notation an'ci me
chanisms to handle lists and allows for a notation that appears
to handle functions of a variable number of arguments. LOGLISP
(Robinson and Sibert, 1981) takes the same approach to embedding
logic in LISP; QLOG (Komorowski, 1982) does not

The LISP-Logic Interface

We have already mentioned that HORNE'S logical terms are LISP
S-expressions. There are two other mechanisms through which logic
and LISP interact in HORNE

A predicate name can be declared to be a LISP-predicate. Whe
never the prover tries to prove a goal whose predicate is a LISP
predicate the LISP evaluator is used to test the goal. The goal fails if it
evaluates to nil and succeeds otherwise. Before the LISP evaluation
takes place, all logic variables in the expression are replaced with their
current bindings.

HORNE has a built-in predicate, setv*, that takes two terms. A goal
with the setv * predicate succeeds if and only if the first term is equal
to (i.e. unifies with) the result of the LISP-evaluation of the second
term. All logic variables in the second term are replaced with their
current bindings before the LISP-evaluation takes place.

Typed Variables

Logical variables of HORNE may be restricted to range over a
subset of the domain. Such a subset is called type A variable, 1x, that
ranges only over the type A is written as ?x: A. The advantage of
adding types to the languages is that the theorem prover can reason
about a set of individuals rather than backtracking over all individuals in
the set. This is a sort of minimum commitment strategy

short communications

The user may add clauses to the HORNE data base to specify

a type theory that is used to derive sentences about relationships

between types. Relationships of interest include an element of the

domain belonging to a type, one type being disjoint from another, and
one type being a subset of another. The theorem prover deals with

typed variables solely during unification. Two variables, 7a:A and ?b:B

unify to ?c: A B if and only if A intersets B. A variable. ?a: A, and

a constant, b, unify to b if and only if b is an element of A The unifier
determines whether A intersects B or whether b is an element of A,
by _ recursively calling the theorem prover to derive the desired fact

from the type theory.
The idea of handling types totally during unification has been used

by Reiter (1977). Under a strong restriction, called 1-completeness, he

has proved his method sound and complete Frisch (1983) has relaxed
this restriction as far as possible with the following result: The method

is complete if, and only if, the type theory can be rewritten as a set of

logically equivalent Horn clauses. Hence, HORNE'S method of handling
typed variables is sound and complete. A current concern of ours is

with placing restrictions on the use of function signs in the type

theory- if no such restrictions are made there may exist an infinite

number of most general unifiers of two terms.
A great deal of efficiency in handling types is gained by pre

computing the relationships among them. Rather than derive facts

from the type theory when needed, much of the computation is done

when the type theory is specified or updated and the results are

stored.

Hashing

HORNE has a facility for specifying parameters to a hashing techni

que used to find quickly database clauses that match a goal literal with

a certain . predicate. This allows the hashing technique to be tailored
to the characteristics of each predicate. A user is able to specify

what terms, or substructures of terms, of the predicate are useful keys

for indexing the clauses. In addition to the primary key, a sequence

of secondary keys to be hashed in succession can also be specified.

A user can also declare the size of the hashtable for each key. The

HORNE hash function operates on ground atomic keys. Two special

locations are reserved in each hashtable - one for keys that are

non-atomic and one for keys that are variables. Hashing has no effect
on the ordering of axioms; it simply eliminates futile attempts at
unification.

The HORNE Compiler

The HORNE compiler translates HORNE clauses to LISP functions
which are in turn compiled with the LISP compiler. Experiments have
shown that the resulting code runs 2 to 4 times faster than the
interpreted code. The primary factors accounting for this speed-up are
an improved method of variable allocation and binding and a deeper
level of LISP embedding. The HORNE compiler currently performs no
optimizations of the type found in the Edinburgh PROLOG compiler
(Warren, 1977).

Acknowledgements

We thank Dan Chester for starting this work off on the right track
and supplying us with his HCPRVR, Rich Pelavin for his aggressive
work on the compiler, and Rose Peet for her expert editorial assis
tance. The work reported in this paper was supported by National
Science Foundation grants IST-8012418 and IST-8210564.

REFERENCES

ALLEN, J. F. and FRISCH, A. M. - "HORNE user's manual" . Internal Report. Computer
Science Dept., Univ. of Rochester, September, 1982.

CHESTER, D. L. - "Using HCPRVR" Internal Report. Dept. of Computer Science, Univ.
of Texas at Austin, August, 1979.

FRISCH, A. M. - "Knowledge retrieval as specialized inference" Ph.D. thesis. Computer
Science Dept., Univ. of Rochester, 1983

KOMOROWSKI. H. J. - "OLOG - The software for PROLOG and logic programming". In
K. Clark and S. A. Tarnlund (Eds .), Logic Programming. New York: Academic Press, 1982.

RE ITER. R. - "An approach to deductive question-answering" Report No. 3649, Bolt Beranek
and Newman, September, 1977.

ROBINSON, J. A. and SIBERT, E. E. - "The LOGLISP's users manual" Technical Report,
School of Computer and Information Science, Syracuse Univ., December, 1981.

WARREN, D. H. D. - "Implementing PROLOG - compil ing predicate logic programs"
Research Reports 39 and 40, Dept. of Artificial Intelligence, Univ. of Edinburgh, 1977.

PURE PROLOG IN PURE LISP

Kenneth M, Kahn

UPMAIL, Department of Computing Science, Box 2059
Uppsala University, S-750 02 Uppsala, Sweden

In the Summer 1982 issue of the Logic Programming Newsletter,
one finds a Pure Lisp in Pure Prolog by Pereira and Porto. The follo
wing is an interpreter for Pure Prolog written in Pure Lisp. It uses the
primitive "Let" which is simply syntactic sugar (Let ((x v-1) (y v-2))
body) is equivalent to ((lambda (x y) body) v-1 v-2).

(defun prolog (database) ; ;a top-level loop for Prolog
; ; reads a form, proves it, and then iterates
(prove (list (rename-variables (read) '(O))) "

'((bottom-of-environment)) database 1)
(prolog database))

(defun prove (list-of-goals environment database level)
; ;proves the conjunction of the list-of-goals
; ; in the current environment
(cond ((nul l list-of-goals)

; ;succeeded since there are no goals
(print-bindings environment environment)
; ;ask user if another 'possibility is wanted

(not (y-or-n-p "More 7 (y or n) ")))
(t (try-each database database

(rest list-of-goals)
(first list-of-goals)
environment level))))

3

short communications

(defun try-each (database-left database goals-left goal environment level)
(cond ((null database-left)

()) ; ;fail if nothing left in database
(t (let ((assertion

(rename-variables (first database-left)
(list level))))

(let ((new-environment
(unify goal (first assertion) environment)))

(cond ((null new-environment) ; ;failed to unify
(try-each (rest database-left) database

goals-left goal
environment level))

((prove (append (rest assertion) goals-left)
new-environment database
(addl level)))

(t (try-each (rest database-left) database
goals-left goal
environment level))))))))

(defun unify (x y environment)
(let ((x (value x environment))

(y (value y environment)))
(cond ((variable-p x) (const (list x y) environment))

((variable-p y) (const (list y x) environment))
((or (atom x) (atom y)) (and (equal x y) environment))
(t (let ((new-environment

(unify (first x) (first y) environment)))
(and new-environment

(unify (rest x) (rest y) new-environment)))))))

(defun value (x environment)
(con ((variable-p x)

(let ((binding (assoc x environment)))
(cond ((null binding) x)

(t (value (second binding) environment)))))
(t x)))

(defun variable-p (x) ; ;a variable is a list beginning with "?"
(and (list p x) (eq (first x) • ?)))

(defun rename-variables (term level)
(cond ((variable-p term) (append term level))

((atom term) term)
(t (cons (rename-variables (first term) level)

(rename-variables (rest term) level)))))

(defun print-bindings (environment-left environment)
(cond ((rest environment-left)

4

(let ((variable (first (first environment-left))))
(cond ((zerop (third variable)) ; ;variable level

(print (second variable)) ; ;variable name
(princ "= ")

(prinl (value variable environment)))))
(print-bindings (rest environment-left)

environment))))

; ;a sample database:
(setq db '(((father jack ken))

((father jack karen))
((grandparent (? grandparent) (? grandchild))
(parent (? grandparent) (? parent))
(parent (? parent) (? grandchild)))

((mother el ken))
((mother cele jack))
((parent (? parent) (? child))
(mother (7 parent) (? child)))

((parent (? parent) (? child))
(father (? parent) (7 child)))))

; ;the following are utilities

(defun first (x) (car x))
(defun rest (x) (cdr x))
(defun second (x) (cadr x))

(defun third (x) (caddr x))

(defun assoc (x list)
(cond ((null list) list)

((equal x (first (first list))) (first list))
(t (assoc x (rest x)))))

(defun y-or-n-p (mesage)
(print message)
(let ((response (read)))
(cond ((eq response 'y) t)

((eq response 'n) nil)
(t (y-or-n-p message)))))

Perhaps someone would like to try running the Lisp written
in Prolog in this Prolog written in Lisp. I wish to acknowledge Par
Emanuelson and Martin Nilsson for showing me inspiringly small
Prolog interpreters in Lisp.

A SHORT NOTE ON GARBAGE COLLECTION
IN PROLOG INTERPRETERS

Abstract

Y. Bekkers, B. Canet, 0. Ridoux, L. Ungaro
lrisa / lnria, Rennes

FRANCE

Any good marking algorithm for garbage collection in PROLOG
starts the marking from all active goal statements. Our point is that
when marking information which is accessed via an active goal state
ment kept in a backtrack point, it is incoherent to consider bindings
which have been established later than the creation of this backtrack
point.

short communications

Background

It is assumed that the reader is familiar with PROLOG interpreters.
This short note follows Bruynooghe's articles on memory management
[1] and garbage collection [2] in PROLOG interpreters.

Using the t rail for marking

The state of a sequencial backtracting PROLOG interpreter repre
sents a sequence of acrive goal statements by means of objects
such as goal skeletons and bindings. The current bindings are those
of the current goal statement, every earlier active goal statement is
defined by considering its goal skeletons under a subset of the current
bindings: namely the bindings which where current at the creation of
the goal statement. Considering the goal skeletons of an earlier goal
statement under the current bindings defines a "phantom" entity,
hence useless accesses.

Therefore, to know the information which is accessed from a goal
statement kept in a backtrack point, one should "undo" the bindings
which are irrelevant to this goal. This is similar to what is done with
the trail before resuming a backtrack point, but in a marking algorithm
for garbage collection, the undoing should only be simulated to allow
resolution to proceed. A special tag associated whith every binding can
accomplish this.

Example

The program is

C1 a(Y) <- c(Y,f(Z)), d(Z)
C2 c(q(a), V).
C3 d(f(a,T)) <- e(g(T)), f(W,U)
C4 e(g(b))

The question is

<- a(q(X)), b(X).

After four steps of execution, the state of the interpreter is as in
figure 1. The active goal statements are in node Ill which is supposed
to be a backtrack node, and in node V which is the current node. Using
Bruynooghe's algorithm to mark information will result in marking
garbage as useful memory cells. On the contrary if the trail is used to
tag irrelevant bindings, the term f(a,T) will not be marked. The binding
of variable Z to this term is irrelevant for the goal statement where
variable Z occurs because this goal statement is older than the binding
of Z to term f(a,T).

In this example Z and T are global variables in Warren's sense [3].
However, with our method, the binding of Z is proved to be a garbage,
therefore it is destroyed. As a consequence, the global variable T is no
longer accessible from any goal statement, and the binding of T and T
itself are proved to be garbage.

Figure 2 shows what is remaining after collecting garbage.

REFERENCES

[1] "The memory management of PROLOG implementations", M. Bruynooghe, in Logic
Programming, eds. Tarnlund and Clark, Academic Press 1982.

[2] "A note on garbage collection in PROLOG interpreters", M. Bruynooghe, Proceedings
of the First International Logic Programming Conference, Sept 14-17th 1982, Marseille,

France.
[3] "Implementing Prolog-cornpiling logic programs. Vol. 1 and 2" D.H.D. Warren. DAI.

Research Report, No. 39, 40. University of Edinburgh, 1977.

Figure 1

bindings shared goal statements

a(q(X)),b(X).
void

II

y -> q(X)

Ill

X - > a
V -> f(Z)

IV

Z ->f(a,T)

T -> b I V

Figure 2

bindings shared goal statements

void

II

Ill

X - > a

IV

I V

5

short communications .

A PROBLEM DESCRIPTION IN PROLOG

Jan Sebelik

Institute for Application of Computing Technique in Control
Revolucni 24, Prague 1, Czechoslovakia

We suggest a Prolog program for solving a logic puzzle. The pro
gram consists of three parts. In the first part, the syntax of a problem
oriented language is defined by a suitable choice of operators and their
precedences. The second part is a simple interpreter for this problem
oriented language. The third part is the main program, which solves
the problem. It is written in the problem oriented language and, in fact,
it is a formulation of the problem at the same time.

?- op(100,xf ,holds).
?- op(150,xfy,.).
?- op(200,xfx, if).
?- op(220,xfy,and_).
?- op)300,xfx,can_verify).

?- op(300,xfx,sees).
?- op(300,xfx,is_deducible_from).
?- op(300, fx, iLis_deducible_that).
?- op(300,xf ,is_false).
?- op(320,xfy,and).
?- op(340,xfx, knows_that).
?- op(340, xf , knows_whaLhaLhe_has_himself) .

?- op(360,xfx,has).
?- op(380, fx,the).
1- op(380,xf ,hat).

X holds : - fact(X) .
X holds : - fact(X if Y), Y holds.
X and_ Y holds : - X holds, Y holds.

fact(X) : - (the_problem_is_stated_as(Text)
i nference_ru les_a re_stated__as(T ext)) ,

member(X, Text)
question(X) : - iLis_deducible_that X holds, output(X).

the_problem_is_stated__as(

there__are_five_hats. three_oLthem__are_white_two__are_black.
three_men_are__standing_one__after_the_other_ie. the second sees

the first. the third sees the second. the third sees the first.
each_has_one_haLon_his_head. ie_the_statement. the third has

black hat and the second has black hat and the first has black
hat is_false. the_third_said_thaLhe_does_noLknow_whaLhaL
he_has_on_his_head. then_the_second_said_the_same. iLmeans_

that. the third knows_whaLhaLhe_has_himself is_false. and_
similarly. the second knows_whaLhaLhe_has_himself is false.
th e_q uestion_is_whaLhaLthe_fi rsLman_has).

inference_rules_are_stated__as(

iLis_deducible_that A._man has white hat if Statement is_false

6

and_ Statement is_deducible_from A__an has black hat. similarly.
A._man has white hat is_deducible_from An_assumption if Statement
is_false and_ Statement is_deducible_from A._man has black hat
and An_assumption.
A._man knows_whaLhaLhe_has_himself is_deducible_from An__assump
tion if A._man can_verify An__assumption and_ A._man has certain
hat is_deducible_from An_assumption.
Man1 can_verify Man2 has Some hat if Man1 sees Man2. A._man
can_verify Fact1 and Fact2 if A._man can_verify Fact1 and_ A._man
can_verify Fact2.
Everything is_deducible_from An__assumption if An__assumption
is_false.
and_iLis_alUor _solving_the_problem).

After starting the program with the goal

1- question(the first has What hat) .

the program will answer: the first has white hat .

DATA DRIVEN LOGIC PROGRAMMING:
A RESEARCH PROPOSAL

Mohd. Zahran Halim 1, Ian Watson

Department of Computer Science
University of Manchester, UK

There are already a number of approaches put forward for the
parallel execution of logic programs [1-5] All the schemes pro
posed involve the creation of processes that may proceed concurrently
and communicate with one another via messages. A major problem
encountered when trying to realise such message-based schemes
is that of simultaneous access to common memory by processes
executing in parallel. This leads to a degradation in performance and
results in an inefficient use of resources.

The data flow approach to parallel computer architectures is
an attempt to resolve the problems of multiprocessor machines by
introducing a known communication requirement between processes
and memory and to make use of processing resources only to perform
useful computation [6, 7]. We propose to investigate execution models
which are effectively data driven and to base the design of a parallel
logic programming engine on such a model. An outline of a preliminary
model which exploits OR-parallelism follows.

Model Outline

A goal <-P is activated by the arrival of a binding environment 9.
The result of activating a goal is a stream of bindings { ei, i= 1 , .. , n}
representing new binding environments resulting from alternative ways
of solving P. Diagrammatically:

e , n}

1 On study leave from the University Sains Malaysia, Penang, Malaysia.

short communications

Or-parallelism is exploited by sending P .0 to all clauses whose
head predicate matches that of P. The result of invoking a clause is a
stream of output bindings { ll;, i= 1, ., m} each representing an alter
native wav of solving P using the clause:

P .0 p,;,i=1, .. ,m}

Thus, a more detailed view of goal activation is

{0;,i= 1, .. ,n}

where 0; = 0·\

In the above diagram, {A;, i= 1, .. , n }, represents the merged stream
of alternative bindings returned bv each clause invoked. The
"compose" function adds the bindings returned to 0 (whether explicit
composition of substitutions is performed is a question to be resolved
later)

. ,m}

(output
bindings)

Notice that each subgoal is activated in turn i.e. no attempt is made in
this model to exploit AND-parallelism. However, it should be noted that
activation of subgoal; does not have to wait for the completion of
subgoal;_1 i.e. it can be activated as soon as a stream element arrives.
In the case where the clause is an assertion, either the emptv stream
or the output bindings of the unifier is returned, depending on whether
unification is successful.

The essence of the model is that it treats a logic program as
defining a program graph where nodes are activated upon arrival of
their arguments. Viewed this wav, the creation of child processes for
searching independent branches of the search tree and the subsequent
communication of results back. to the parent reduces to a function call
to each alternative subprogram (clause) with appropriate call/return
mechanisms.

Further research will look into

- extensions of the model

(i) to include negation bv failure to prove
(ii) to explore restricted forms of AND-parallelism (eg. detection and

parallel activation of independent goals)
(iii) to consider lower level functions (sav bv decomposing the func

tions outlined above) - this approach would implv that logic

programs would be compiled into a program graph of lower level
functions. However, more potential parallelism mav be discovered
eg. unification could possiblv be compiled to match some argu
ments in parallel.

- implications in the design of machine architecture

It is likelv that the n JChine structure would share manv of the
characteristics of existing data flow machines. The multilavered ring
concept of the Manchester Data Flow Machine looks particularlv
promising [6]. It is envisaged that the machine would have facilities
to efficientlv support features such as the handling of streams and
large structures. In addition, effective means of controlling paral
lelism, especiallv in the activation of negative goals, will be required.

REFERENCES

[1] CONERY, J. S. and KIBLER, D. F. - "Parallel Interpretation of Logic Programs". ACM

Conference on Functional Languages and Architectures, 1981.
[2] CONERY, J. S. and KIBLER, D. F. -Sum-mary of "Efficient Logic Programs:a research

proposal". In Logic Programming Newsletter, Spri_ng, 1981.
[3] W ISE, M . J. - "A Parallel PROLOG: the construction of a data driven model". ACM

Conference on LISP and Functional Programming, 1982.
[4] CLARK, K. L. and GREGORY, S. - "A Relational Language for Parallel Programming".

ACM Conference on Functional Languages and Architectures, 1981 .
[5] POLLARD, G. H. - "Parallel Execution of Horn Clause Programs". Ph.D. Thesis. Imperial

College, London, 1982
[6] GURD, J. R. and WATSON, I. - "Dataflow Systems for High Speed Paral lel Computing"

Computer Design, Vo l. 19, No. 6 & 7. June 1980, p_ 91 & July 1980, p. 97 .
[7] WATSON, I. and GURD, J. R. - "A Practical Dataflow Computer". IEEE Computer,

Vol. 15, No. 2, feb 1982.

SOME REMARKS ON THE CUT

Leon Sterling

Department of Artificial Intelligence

University of Edinburgh, UK

Perhaps the most difficult technique to teach when introducing
people to Prolog is the use of the cut or slash. No satisfactorv account
currentlv exists. In this note I'd like to make three observations on how
the cut can be considered and explore the consequences for teaching.
These were incorporated in mv Prolog course in the Epistemics
programme last vear. The usual caveat is given that no attempt to
explain all uses of cut is being made.

The first observation is that manv uses of the cut are reallv "effi
ciencv hacks". Consider a fypical example, the definition of max, a
predicate whose third argument is the maximum of its first two. The
standard definition using cut is

max(X,Y,X) :- X >= Y, ! .
max(X,Y,X).

7

short communications

Here the equivalent program without the cut is

max(X,Y,X)
max(X,Y,X)

X >= Y.
X < Y.

The purpose of the cut in the first program is to obviate the need of
the second comparison, X =< Y. There are also important considera
tions of saving space bv removing choice points, but that won't be
considered in this note. But look at the cost in order to gain a little
efficiencv. The first program has to have its 2 clauses in the order
stated. It is dependent on the Prolog order of reading clauses, which
is not true of the second program.

Further, the second program is much clearer. The logic is in a form
that would enable reasoning about the program in some larger context.
Come the millenium, and an intelligent compiler which knows that
either X > Y or X =< Y, will be able to make an appropriate optimiza
tion for itself producing the second program from the first.

What I am arguing for in this case is that the second program
should alwavs be the one taught. The conditions bv which the
predicate is chosen should be made explicit. At a later stage when
one's program is working and super efficiencv is desired, then cuts can
be introduced to make the program go faster, but that is onlv at the
last stage, and the cut in the first program should be viewed in that
light.

Let us consider another classic example, computing factorials. The
totallv naive program is

fact(O, 1).
fact(N, Fact) M is N - 1, fact(M,P), Fact is N * P.

This program is "wrong". It will correctlv anwer the querv 7- fact(4,X).
with X= 24, but asking for another solution would involve the program
becoming lost down an infinite branch of the search tree. One solution
is to change the first clause to

fact(O, 1) : - ! .

This removes the problem when vou ask for alternatives to the above
querv, but still gets lost on a querv such as ?- fact(-1 , X). A correct
program is

fact(O, 1).
fact(N,Fact) :- N > 0, M is N - 1, fact(M,P), Fact is N * P.

The difference is outting in the explicit condition. This addition makes
the code correct, more robust and easier to teach. It is true that the
code might be made more efficient bv adding a cut. But in this case
the cut is a minor consideration. The program would be made much
more efficient bv adding an extra argument as an accumulator and
making fact tail-recursive. Thus this is not a good example for explai
ning the use of cut.

Making conditions explicit corresponds well with Shapiro's sugges
tion of guarded clauses in concurrent Prolog [Shapiro 83]. Here the
explicit conditions would naturallv form the guard.

8

This leads to the second observation about the use of cut. A
common need when writing logic programs is to specifv a set of
mutua!lv exclusive cases. Consider the following small database in a
social securitv office in outback Scotland*.

/* Entitlement Rules

entitlement(X, invalid_pension)
entit lement(X, old_age_pension)
entitlement(X,supplem_benefit)
entitlement(X, nothing).

/* Facts */

invalid(mc_tavish).

*/

: - invalid(X).
over -65(X), paid_up(X).

: - over _65(X) .

over _65(mc_tavish). over _65(mc_donald). over _65(mc_duff).
paid_up(mc_tavish). paid_up(mc_donald).

What these facts represent are various pensions that people can get
under particular conditions, such as being an invalid or over 65 vears
old. The conditions are mutuallv exclusive and if none applv the person
receives nothing bv the last entitlement rule. The problem with the
rules as thev stand are that thev don't express that the conditions are
mutuallv exclusive. So the querv 7- entitlement(mc_tavish,X). will give
3 alternatives for X, namelv X=inva lid_pension, X=old_age_pension
and X= supplem_benefit. Stopping alternatives can be achieved bv
adding a cut to the end of each rule, for example

entitlement(X, invalid_pension) : - invalid(X), ! .

But this is not completelv satisfactorv as queries such as
?-entitlement(mc_tavish, nothing). succeed. To avoid that particular
problem, one can make the conditions explicit as advocated above. The
rules would then b&

entit lement(X, invalid_pension) inva lid(X).
entitlement(X, old__age_pension)

over_65(X), paid_up(X), not(invalid(X)).
entitlement(X,supplem_benefit) :- .

over_65(X), not(paid_up(X)), not(invalid(X)).
entitlement(X, nothing)

not(invalid(X)), not(over_65(X)) .

The not contitions seem a little unnatural, however. There are also the
usual difficultv of using negation in Prolog with non-ground terms.
There ought to be some higher-level predicate which can express that
certain conditions are mutuallv exclusive, and it be left to a compiler to
incorporate the consequences efficientlv.

There is another wav of avoiding the success of
?- entitlement(mc_tavish, nothing). That is, bv writing each rule as
follows.

entitlement(X, Y) : - invalid(X), I Y = invalid_pension.

• This is a modified example originally from Sam Steel.

short communications

But again a higher-level predicate would be much preferable, and the

use of cut here should be taught as an implementation trick, not a

feature.
The final observauon is that it can be useful to view the addition of

a cut to a program as changing the intention of the program, at least
from the point of view of the user. This in contrast to "Warren's

Doctrine on the Slash" as described by van Emden in the winter Logic

Programming Newsletter. This is best illustrated with an example.

Consider the following two programs.

select(X, [XI L], L)

select(X, [HI L], [HI R])

selecUirst(X, [XI LJ, L)

select(X, [HI L], [HI R])

select(X, L, R).

! .
selecUirst(X, L, R).

In both cases the pr "9dicates are true if the third argument is a list

resulting from removing an element, the first argument, from the
second argument, a list. The difference comes when you use the

predicates in a larger context. The select predicate we standardly use

non-deterministically to find an element of a list with a particular

property and keep the rest of the list for further computation. The

predicate select-first cannot be used in the same way. It can however
be used apparently non-deterministically to choose the first element of

the list.

Similarly, one can iistinguish between two predicates, member and
member-check, which differ only by the presence of a cut in the first

clause. Member can be used non-deterministically to generate and

test, and further will succeed more than once if there are multiple

copies of an element in a list. Member-check only succeeds once in
the above case, and cannot be used non-deterministically. Each variant

of the predicate has its use. For example in the standard utilities we

use, both predicates are available.

Whether the program variants, i.e. with or without cuts, can be said
to have different meanings is beyond the scope of this note. It relates

however to a question whether two versions of a compiled predicate
with different mode declarations can be said to be different. The point

is, however, that when using the programs they are considered as two

different programs.

The consequences for teaching cut related to this last observation

is that cuts should be considered in the context of a particular use of
a program. Again this is analogous to setting mode declarations for

compiling programs. Once that program is used for any different
purpose, all cuts present should be reconsidered as being appropriate

for the new use.

REFERENCE

[SHAPIRO, 83]

Shapiro, E. "A Subset of Concurrent Prolog and its Interpreter" Report TR-003, ICOT,

Japan, 1983.

A BASIC INTERPRETER FOR COROUTINING

1. The interpreter

R. A. Corlett, S. J. Todd

Marconi Research Centre
West Hanningfield Road

Great Baddow
Chelmsford, Essex CM2 8HN

United Kingdom

The advantages of coroutining processes have been well do
cumented elsewhere [1, 2, 3, 4]. This note describes a simple inter
preter written in Prolog to enable selective coroutining of goals within
a Prolog program. In the program below the goal 'system(P)' succeeds
if P is a call to a built-in predicate and is used to avoid errors from
accessing the body of system predicates.

suspend.
system(//(X, Y)).

?- op(251,xfy,//)

true/ /P : - ! , call(P).
(true,P)//0 :- !,(P//0)
(suspend, P)/ /0 : - ! , (0//P)
(P;0)//R :- !,(P//R; 0//R).
((P;0),R)//S : - !,(P,R//S; 0,R//S)
((P;0),R)//S :- I,(P,0,R//S).
((P//0)//R) : - !,(P//0//R)
(P,0)//R :- l,(system(P) -> cal l(P),(0//R);

clause(P,S),(S,0//R)).
P//0 :- !,(system(P) -> call((P,0));

clause(P, R),(R/ /0))

The infix operator, '//', has a declarative reading of 'and', and
coroutines the processes it separates. Transfer of control out of the
active process is effected by the explicit inclusion of suspension points
defined by the presence of a 'suspend' goal. This basic approach to
coroutining is useful in problems that are amenable to the type of
analysis carried out in [1].

2. An example

An example of a problem for which the explicit insertion of sus
pension points is appropriate is the classic Eight Queens problem for
which a simple sequential solution, from [2], is given below:

solution(Perm) : -
permutation([1, 2, 3,4, 5, 6, 7, 8], Perm), safe(Perm).

permutation(L, [0I M]) :-
remove(0, L, L 1), permutation(L 1, M).

permutation([],[]).

9

short communications

remove(X, [XI L], L).

remove(X, [YI L], [YIM] remove(X,L,M).

safe([0ueen!List]) :
nodiagonal(0ueen, List, 1), safe(List).

safe([]).

nodiagonal(01, [021 List] , N)
noattack(01,02,N),N1 is N + 1,
nodiagonal(01, List, N1).

nodiagonal(01, [],N).

noattack(01,02, N) :-
01 > 02, Diff is 01 - 02, Diff = N.

noattack(01,02,N) :-
02 > 01, Diff is 02 - 01, Diff = N.

Gallagher [7] analyzes the inefficiencies in this solution and
suggests a "transformation" of the program to simulate a coroutining
solution. An implementation of his solution using our interpreter is
given below:

solution(Perm)
permutation([1,2,3,4,5,6, 7 ,8], Perm)//safe(Perm).

permutation(L,[0IM]) :-
remove(0, L, L 1),suspend,permutation(L 1, M).

permutation([],[]).

remove(X, [XI L], L).
remove(X, [YI L], [YIM])

safe([0ueenllist]) :-

remove(X, L, M).

suspend, (nodiagonal(0ueen, List, 1)/ /safe(List)).
safe([]).

nodiagonal(01, [021 List], N)
noattack(01,02,N),N1 is N + 1,
suspend, nodiagonal(0 1 , List, N 1).

nodiagonal(01, [], N).

noattack(01, 02, N) :-
01 > 02, Diff is 01 - 02, Diff = N.

noattack(01,02,N) :-
02 > 01, Diff is 02 - 01, Diff = N.

Advantages of this approach are:

(i) Our interpreter provides a more general implementation of corou
tining for this class of problem.

(ii) Our program has a declarative reading that is identical to the

original program.
(iii) The interpreter need only be invoked where the additional

control is required.
(iv) The interpreter can be tuned to increase efficiency in particular

problems.

10

3. Tuning the interpreter

There are several ways in which the interpreter can be tuned:

(i) By removing unused clauses from the interpreter, for example
in the Eight Queens problem those that handle disjunctions are not
required.

(ii) By declaring certain predicates to be system predicates, we
can limit the depth to which the interpreter operates and executes
subgoals of coroutining processes, that do not include suspends, in
native mode. By declaring 'remove' and 'noattack' as 'system' we
halved the execution time in the above program.

(iii) By including application specific instantiations of interpreter
clauses: this becomes equivalent to Gallagher's approach.

suspend.

?- op(251,xfy,//).

((P//0)//R) :- !,(P//0//R).

solution(Perm) : -
permutation([1,2,3,4,5,6, 7,8], Perm)//safe(Perm).

permutation(L, [0IM])//R :-
remove(0, L, L 1),(R/ /permutation(L 1,M)).

permutation([],[])//0 :- !,call(0)

remove(X, [XI L], L).
remove(X, [YI L], [YI Ml) : - remove(X, L, M).

safe([0ueenllist])//P :-
p //(nodiagonal(0ueen, List, 1)/ /safe(List)) .
safe([])

nodiagonaI(01, [02IList], N)/ /P :
noattack(01,02,N), N1 is N + 1,
(P/ /nodiagonaI(01, List,N1)).

nodiagonal(01, [],N)//P :- ! ,call(P).

noattack(01,02, N)
noattack(0 1 , 02, N)

4. Limitations

01 > 02, Diff is 01 - 02, Diff = N.
02>01, Diff is 02 - 01, Diff=N.

The interpreter as given makes no provision for 'if then-else' cons
tructs or cuts. The interpreter might also be extended to handle
multiple levels of active coroutined processes, but this requires a more
detailed analysis of the flow of control that is in fact required.

REFERENCES

[1] GALLAGHER, J. - "Simulating Coroputining For The 8 Queens Problem", Logic Program

ming Newsletter, No. 3.
[2] CLARK, K. and McCABE. F. - "The control Facilities of IC-Prolog", in Expert Systems

in the Microelectronic Age, Edinburgh Univ. Press, 1979.
[3] PEREIRA, L. M. - "Logic Control With Logic", Proceedings of the First International

Logic Programming Conference, 1982.
[4] PEREIRA, L. M. and MONTEIRO, L. F. - "The Semantics of Parallelism and Co-routining

in Logic Programming", in Mathematical Logic in Computer Science, North-Holland, 1981.

short communications ·

A NOTE ON DEFINITE CLAUSES

Maarten van Emden

University of Waterloo
Ontario, Canada

Several recent publications have used "definite clause" as a
svnonvm for "Horn clause". This was certainly not the intention when
the former concept was introduced.

A Horn clause is a clause with at most one positive literal.
A definite clause is a Horn clause with at least one positive literal.

It seems to me that no svnonvm is needed for "Horn clause",
whereas "definite clause", as defined here, can be very useful.

EDISON IN PROLOG

Ron Hayter

Department of Computer Science
University of British Columbia

Canada

Edison [1] [2] is a new multiprocessor language designed
by Brinch Hansen. It is descended from Pascal, Concurrent Pascal,
and Modula, and it was designed to be suitable both for teaching
concurrent programming and for writing real-time programs. As an
exercise in the use of Prolog, I developed an experimental Edison
system for a course in language implementation taught bv Professor
Harvev Abramson. The system consists of a compiler producing inter
mediate machine code, an interpreter, and a translator of that code into
BCPL. This system was developed in less than one month.

The compiler is the largest component of the system. It is divided
into three conventional passes: lexical, syntactic, and semantic. The
lexical pass organizes the characters of the Edison program into
tokens. The syntactic pass builds a parse tree from the list of tokens.
Fina/Iv, the semantic pass transforms the parse tree into code for a
hypothetical intermediate machine.

Each of these passes was written using definite clause grammars
The use of DCGs (together with the exceptionally clean design of
Edison) made the writing of the compiler quite straightforward. The
compiler is concise and, I hope, quite readable. However, it is also very
poor at error recovery: it stops as soon as an error is detected. Since
the purpose of the project was not to produce a production-quality
compiler, this strategy was acceptable. It seems that to add reasonable
error recovery would add considerably to the size of the compiler and
would seriously reduce its readability

Next, an interpreter for this intermediate machine was written, also
in Prolog. DCGs were again used, this time to describe the effects of
the machine instructions on the state of the machine. Unfortunately,
the interpreter had to be abandoned before it was completed because
it was able to run only for a short while before our local implementa
tion of Prolog ran out of stack space This problem could be solved by

adding a tail-recursion optimization to the Prolog interpreter. Although
the details of how to interpret Edison's multiprocessing statements
have not been worked out, a coroutining mechanism, such as that in
Epilog [3] [4], should make implementation easy

When the idea of implementing an interpreter in Prolog had to
be abandoned, another approach was taken. A Prolog program was
written to translate the intermediate machine code into BCPL. This
translation was verv straightforward. A BCPL routine is defined for
each Edison procedure and function in the program. Each machine
instruction is simply translated into a call to a BCPL global procedure
which implements the instruction. Edison processes map quite con
veniently onto BCPL coroutines [5].

This Edison system implements the full language, except for
separate compilation, but it is rather limited in capability. In the course
of this project, most of the limits of our Prolog interpreter were
reached, particularly internal table sizes and the stack size. As a result,
only small programs (no more than about 100 fines) can be compiled,
and it was not possible to complete a Prolog definition of an interpreter
for the compiled code. However, despite the limitations of our Prolog,
I was able to produce an experimental implementation of a "real"
programming language in a short time. Prolog is a very powerful tool,
especially with the addition of DCGs and logic control, for the imple
mentation of programming languages.

REFERENCES

[1] HANSEN, P. B. - "Edison-A Multiprocessor Language", Software-Practice and Expe

rience, Vol. 11, pp 325-361, 1981.

[2] HANSEN, P. B. - "The Design of Edison", Software-Practice and Experience, Vol. 11,

pp 363-396, 1981 .

[3] PEREIRA, L. M. - "Logic Control With Logic", Proceedings of the First International

Logic Programming Conference, pp. 9-18, Marseil le, 1982.

[4] PORTO, A. - "Epilog: A Language for Extended Programming in Logic", Proceedings

of the First International Logic Programming Conference, pp. 31 -37, Marseille, 1982.

[5] MOODY, K. and RICHARDS, M.-"A Coroutine Mechanism for BCPL", Software-Practice

and Experience. Vol. 10, pp. 765-771, 1980.

IMPLEMENTATION OF LISPKIT LISP IN PROLOG

Introduction

Earl Fogel

Department of Computer Science
University of British Columbia

Canada

The project was the implementation in PROLOG of the LISPKIT
(Henderson, 1980) version of LISP.

LISPKIT is a purely functional language, unlike most LISPs. Varia
bles are instantiated onlv through the association of parameters and
arguments, and functions are evaluated in the environment in which
thev were created, not the environment at the time thev are called.

11

short communications

General approach

An input s-expression passes through lexical and syntactic analysis
based on a Definite Clause Grammar (DCG) description of LISPKIT.

If the input expression is a valid LISPKIT form, a parse tree is
produced by the syntactic analysis. This parse tree is then evaluated,
and the resulting value is printed.

Lexical analysis

The input expression is broken down into a string of lexemes.
which are: identifiers; integers; and parentheses.

These are passed on to the syntactic analyser in the forms:

LEXEME

identifiers
integers
parentheses

Syntactic analysis

FORMAT

id(*id)
int(*int)
(and).

All the valid L/SPPKIT s-expressions are recognized, and a parse
tree is produced.

For example:

(CONS e1 e2)

would parse as:

CONS(e1 ,e2)

Evaluation

The value of a constant is itself. The same holds for integers and
the special identifiers NIL and T.

All other identifiers are evaluated by looking up their values in the
environment list.

The LISPKIT built-in functions are grouped into two classes: those
that evaluate their arguments before executing (EVAL type functions);
and those that do not evaluate arguments before execution (NOEVAL
type}.

All the built-in functions are evaluated by applying a PROLOG
version of the function to its arguments (or to a list of their values
in the case of EVAL functions).

User-defined functions are all EVAL type. They can be called either
by name (where the name has previously been definecd in a LET or
a LET.REC), or by explicitly giving a LAMBDA expression defining the
function · whenever it is called.

User functions are handled in a somewhat more complex fashion.
The function (name or LAMBDA expression) is evaluated, and the
resulting function definition is then applied to a list of the argument
values for that particular function application.

In order to evaluate functions in the environment in which they
were created, the entire environment at the time of a function defini
tion is stored as part of that definition, along with a parameter list, and
the LAMBDA expression itself.

12

Differences from LISPKIT

LISPKIT uses the period '.' in the definition of LET and LET.REC.
I omit it.

In this version of LISPKIT, LET or LET.REC expressions may be
used to define directly recursive functions, but only LET.REC will handle
indirect recursion. In Henderson's LISPKIT, LET.REC must be used for
both forms of recursion.

Conclusions

LISPKIT LISP has been implemented successfully in PROLOG.
As we have at this time only a PROLOG interpreter, this LISPKIT

runs more slowly than compiled LISPs.
Input and Output are not yet ideal. The input s-expression must be

enclosed in double quotes and be followed by a period. The value that
is output is printed with a very simpleminded pretty print function.

REFERENCES

GOEBEL, R. - "PROLOG/MTS User's Manual", TM80-2, UBC Dept. of Computer Science,
Dec. 1980.

HENDERSON - "Functional Programming Application and Implementation", Prentice-Hall, 1980.

A NOTE ON PROLOG SYNTAX

F. Kluzniak, S. Szpakowicz

Institute of Informatics
Warsaw University, POLAND

Prolog is now undergoing a period of rapid growth: new implemen

tations are making the language accessible to an increasing amount

of computer users. For a lot of people - implementors included -

Prolog-10 is the standard Prolog as far as syntax and most built-in

predicates are concernd. It might not be realistic to expect that a

completely different standard would ever gain wide acceptance, but it

might not yet be too late for some revisions. We would like to draw

attention to several aspects of this syntax which make is unnecessarily

unpalatable.

1. Variable names

It is not a good idea to start variable names with capital letters, and

other names with small letters. It should be the other way round:

constants should stand out clearly from the enclosing text and the best

way to achieve that is to capitalise them; variables are usually more

numerous and writing them in small letters would save keystrokes and

make programs look cleaner, variables usually play the part of common

names and constants that of proper names.

short communications

Of course, infix functors would have to be capitalised, too. (We use
"infix" as a generic name for "infix", "prefix" and "postfix" - calling
them "fix functors" would perhaps be carrying it too far, but the term
"operators"is manifestly misleading). The choice between
inherits_after(John, Jack) .
and
lnherits_after(John, Jack) .
is a matter of taste, but
?- who lnherit s_after John.
would have to be mandatory.
?- Who inherits_after john .
only serves to suggest another meaning.

2. List notation

Special list notation instead of Marseille Prolog's original dotted lists
seems to have been introduced only to please LISP (or rather POP)
adherents and to avoid the minor technical problem of recognising
whether a dot terminates a term. Such considerations are certainly not
worth the drawbacks:

- the intended reading is x cons y , so x.y seems more natural than
[XIY]; it also saves keystrokes;

- John.Jack.NIL does not save keystrokes, but is still easier to write
and tells us more than [john, jack]: the result of binding x to NI L in
John .Jack.x is more obvious than that of binding X to [] in [john,
jack!X] (quite different than in [john , jack, X]);

- commas are used to separate calls, and procedure parameters, and
term arguments and list elements: given sufficient nesting, it is a
conscious effort to unravel the real context of a comma;

- the apparent complexity of a program is increased by introducing an
extra level of bracketing: we like infix functors because we are not
tolerant to nesting;

- there is nothing special about lists as compared to other terms
(except that they are used by some built-in predicates): the extra
notation contributes to the fact that some people are more comfor
table with lists than with other terms and use them eg. to represent
binary trees.

In short, we definitely prefer

Append(NIL, I, I).
Append(e1 . I, 12, e1 . 112)
to
append([], L, L) .

Apped(I, 12, 112).

append([E1 IL], L2, [E1 I LL2]) : - append(L, L2, LL2).
Try some more involved examples, u'sing (a .b).c for [[AIBJIC]!

3. Characters

In Prolog-10, strings are not equivalent to lists of characters, but to
lists of ASCII codes, which are the standard character representation.
To declare # as a special character, one writes
special(35).
This is ridiculous: one doesn't need to know about character codes to
program in most assemblers. To be sure, there is a special conven-

tion - apparently added as an afterthought - that"#" (which is really
[35]) is sometimes dereferenced to #:
special(Hash) : - Hash is "# " .

This is ad-hocery at its worst'
Of course, one does need non-printing characters - from time to

time - but special effects should be achieved by a built-in predicate
without making things inconvenient for the everyday user. Adopting
the natural convention of representing small-letter constants in quotes,
we would write

Ctrl-2(char)
Letter(char)
Letter(char)
rather than
ctrl--2(26).
letter(Char)
letter(Char)

Ord_chr (26, char).
char>= 'a', char=< 'z' .
char>= A, char=< Z.

Char>= 97, Char = < 122.
Char > = 65, Char=< 90

(or whatever the codes might be).

4. Priorities

This is a minor point, but it is a good example of the effects
of premature de-facto standardisation. It is generally accepted in
elementary arithmetics, programming languages etc. that the priority
of multiplication in a + b x c is higher than that of addition: Prolog-10
would call it lower. The source of this strange departure from custom
is probably accidental: a mistake, or an artefact of the parsing method.

We will stop here, although it would not be difficult to raise some
other complaints. A good example is the interaction of the cut and the
system predicate call. Apparently, in

a(X) : - b, ca ll(X), fa il.
a(_) : - C.

c is not executed if the goal is
:- a((d, 1)).

This, again, seems to be an accidental artefact of a concrete
implementation which allows horrible misuse of the language and
sometimes makes other implementations more difficult. The rational
solution is to make all manuals discourage taking advantage of this
effect by calling it non-standard 1

The four points we have raised here barely scratch the surface of
Prolog syntax and the set of built-in predicates. Would it be too difficult
to get rid of the old conventions by modifying existing implementations
and passing existing programs through a preprocessor? If revisions of
this sort are ever to be made, now is the time 1

Acknowledgement

The question of syntax has been raised by others from time to
time; authors of several implementations adopted more rational
conventions. It would be difficult to draw up a complete list of refe
rences, so allow us to acknowledge our own lack of ,originality in this
note.

13

community news & events

SECOND INTERNATIONAL
LOGIC PROGRAMMING

CONFERENCE

Uppsala University, Uppsala, Sweden
2-7 July 1984

Call for Papers

The series of International Logic Pro
gramming Conferences is the main forum for
papers describing original Logic Programming
Research. The conference now arrives in
Uppsala following a successful meeting in
Marseille 1982.

PROGRAM AREAS

Applications of Logic Programming

Data bases Natural language understanding

Education

Expert systems

Graphics

Knowledge theories

Office systems

Speech understanding

Vision

Architecture and Hardware for Logic Pro
gramming

Architecture models

Architecture assessment

Buses

Memories

Networks

Processors

Circuits (V)LSI design methods

Foundations of Logic Programs

Computability Semantics

Program analysis and complexity

Logic Programming Implications

Economical

Educational

Industrial

International

Professional

Social

Logic Programming Languages

Algorithms and methods

Constructs and principles

Implementations

Logic Programming Methodology

Formal development of programs (synthesis)

Program transformation

Control of program computations

Verification Metalevel inference

14

PAPER SUBMITTAL

The conference will consider all aspects of
Logic Programming. Authors should submit
four complete copies of their papers concer
ning (but not limited to) the listed topics. The
papers should arrive no later than January 15,
1984 to the Program Chairman:

Professor Sten-Ake Ti:irnlund
c/o Professor J. A. Robinson

School of Computer and Information Science
313 Link Hall, Syracuse University
Syracuse, New York 13210, USA

Author notification: March 15, 1984.
Camera-ready copy: April 15, 1984.

Papers will be reviewed for their clarity,
originality and significance by three members
of the program committee.

Papers must be written and presented in
English and be typed double spaced on one
side only of each sheet. They must not be
longer than 7 proceedings pages, about 5 000
words.

Approvals for presentations and publications
must be obtained from the authors when they
submit their papers. A paper should contain
the following items: Abstract and title of
paper; name, country, affiliation, mailing
address and telephone number; one program
area; the following signed statement: "The
paper will be presented at the conference by
one of the authors."

PROGRAM COMMITTEE

K. A. Bowen, Syracuse University, USA
M. Bruynooghe, Leuven University, Belgium
K. Fuchi, ICOT, Japan
H. Gallaire, Laboratoires de Marcoussis, France
K. M. Kahn, Uppsala University, Sweden
P. Koves, SZKI, Hungary
F. G. McCabe, Imperial College, UK
F. Pereira, SRI, USA
L. M. Pereira, Universidade Nova de Lisboa,

Portugal
J. A. Robinson, Syracuse University, USA
E. Shapiro, Weizmann Institute, Israel
S.-A. Ti:irnlund, Uppsala University, Sweden
M. van Caneghem, University of Marseille,

France

LOGIC PROGRAMMING PROJECTS
FUNDED THROUGH DEC'S EXTERNAL

RESEARCH PROGRAM

Realizing the importance and potential of
logic programming, and appreciating the difi
culties associated with conducting research in
this area without adequate computing resour
ces, Michael Poe and Roger Nasr, from the
32-Bit Systems Advanced Development Depart
ment in Digital Equipment Corporation, have
proposed and received the approval for fun
ding a series of Logic Programming related
projects through DEC'S external research pro
gram office. The funding provides for credit
applicable towards the purchase of DEC
equipment, mostly VAX11-730'S and VAX11-
750'S, and is in exchange for research results
in the form of literature, technical assistance
in specific Logic Programing topics, or soft
ware for research and prototyping purposes.
The five projects are the following :

- David Warren, SRI International, USA, was
funded to work on a Prolog engine design,
applicable to VAX architecture, and with
potential for implementation in microcode.

- Ehud Shapiro, Weizmann Institute, Israel,
was funded to work on prolog program
ming environments aimed at increasing
programmer productivity and convenience
(E. G. Built-in Editor and Intelligent
Debugger).

- Luis Moniz Pereira, New University of Lis
bon, Portugal, was funded to work on
knowledge engineering related Prolog
extensions as well as expert system
implementation methodology. A second
project, with Luis Monteiro, is for multi
processor Prolog implementation.

-Alain Colmerauer, Groupe Intelligence
Artificielle, Luminy, France, was funded
to work on Prolog extensions for natural
language processing, infinite trees support,
alternative unification techniques, and
enhanced rule database access techniques.

LOGIC PROGRAMMING WORKSHOP'83
Albufeira, Algarve, Portugal

Maurice Bruynooghe

A very nice place at the borders of the
Atlantic, a program spread over five days, this
was the setting for the Workshop. As a conse-

community news & events

quence, the daily program was not overloaded
and a two-hour lunch-time break allowed to
absorb delays on the timetable. This created a
jovial informal atmosphere, with plenty of time
as well for informal meetings and exploration
of the nice surroundings.

The presentations gave a good impression
of the ongoing research in the fast growing
field of Logic Programming. The panels gave a
broader perspective on the individual research
efforts, sketched the most important areas
and created some deeper understanding of
the basic research needs in this field

LOGIC PROGRAMMING WORKSHOP'83

Paul F. Wilk
Department of Artificial Intelligence,

University of Edinburgh, UK

Over 80 delegates from 17 different coun
tries attended the Logic Programming Work
shop'83 in the Algarve, Portugal, from the
26th June to the 1st July. The workshop was
organized by the Nucleo de lnteligencia Artifi
cial, of Departamento de Informatica, Univer
sidade Nova de Lisboa. The program chairman
was Lufs Moniz Pereira.

The workshop consisted of 43 formal pre
sentations (35 of which appear in the pro
ceedings) and six panel sessions. The ses
sions were divided into topics on: Natural
Language; Knowledge Base Systems; Logic
Programming Theory; Prolog Implementation;
Data Bases and Logic Programming Methodo
logy.

Jan Chomicki (Warsaw University, Poland)
discussed the problems related to using
Prolog as an implementation language for data
bases. In particular the paper discusses how
to organize and access large Prolog data
bases (based on extendible hashing and partial
match retrieval).

Wlodzimierz Grudzinski (Warsaw University,
Poland) described SPOQU EL - a query lan
guage for relational data bases (written in
Prolog).

Tomasz Pietrzykowski (Acadia University,
Wolfville, Canada) presented a data base
model of a functional programming language,
ca lled PROGRAPH, which uses a graphical
display for the user interface.

Lufs Pereira (Universidade Nova de Lisboa,
Portugal) presented a relational data base

modeller for generating data bases. The
program uses information gathered interacti
vely, from the user, to generate specific
menu-based consultation programs.

Jan Komorowski (Harvard University, USA)
presented a universal display editor (not in the
proceedings) as a software prototype lan

guage tool. An example application of a Pascal

syntax-directed editor was explained.

Patrick Sa int-Dizier (IRISA, Campus Univer

sitaire de Beaulieu, France) described a way
of building an intelligent interface between
a human and a computer.

Antonio Porto (Universidade Nova de Lis
boa, Portugal) gave a talk about the natural

language interface to a garden store assistant

(written in Prolog).

Miguel Filgueiras (Universidade Nova de
Lisboa, Portugal) described the des ign of a

kernel for a know ledge directed parser of

natural languages. To check consistency of

syntax analysis with respect to mean ing, non
application dependent semantic tests are

performed during syntax analysis. The applica
tion dependent parts of the semantic analysis
are specified in a separate module. Therefore,
it is claimed that it is easier to adapt the
interface to new applications.

Pau l Sabatier (University of Paris, France)
presented a formalism and implementation
technique by which left and/or right conte
xtual constraints (used in contextual grammars
to specify rule ordering) can be easily expres
sed and efficiently computed in Prolog II. The
implementation technique builds a graph
contain ing contextual information (built during
parsing) which may be used to recover the
context when a contextual constraint has to
be satisfied.

Veronica Dahl (Simon Fraser University,
Canada) chaired the panel on Natural Lan
guage the theme of which was current trends
in logic grammars. A case was made for
context-sensivity in grammars contrary to the
current trend of augment ing context-free
grammars with new rules during the parse.

Martin Williams (Heriot-Watt University, UK)
described the implementation of an approach
to security and integrity in Query-by-Example
based on the idea of maintaining the consis
tency of data in the data base. The approach
extends the conventional types of integrity
constraint to include functional, multivalued
and embedded multivalued dependencies.

Jose Neves (Heriot-Watt Un iversity, UK)
presented an extension to Query-by-Example
(written in Prolog) that enables a user of a
data base to obtain positive and negative
feedback information from queries or updates
that are incomplete or incorrect

Igor Mozetic (Jozef Stefan Institute, Ljbudl
jana, Yugoslavia) described the development
of an expert system that models the electrical
behaviour of the heart. The model is used to
automatically generate a knowledge base of
all physiologically possible combinations of
cardiac arrhythmias and their corresponding
ECG descriptions.

Ferenc Darvas (Szki, Budapest, Hungary)
described a log ic-based expert system for
model building in regression ana lysis. The
system (written in MProlog and FORTRAN;
which communicate by files) has been used
to test drug design performance.

Eugenio de Oliveira (Universidade Nova
de Lisboa, Portugal) described a proposal
to develop expert building tools in Prolog.
The system wi ll combine a knowledge base
acquisition subsystem (gathering semantic
nets, metaknowledge and production rules)
with a consultation subsystem (which uses
metaknowledge to guide the developer
through the presentation of explanations,
reasoning and deductions)

Ed Stabler (University of Western Ontario,
Canada) discussed the problem of achieving
optimally efficient response to quer ies
addressed to a large deductive data base.
Moreover, where the user wishes to interacti

vely optimize the query for subsequent use.

The system permits the interactive addition
of general rules (expressions containing logical

variables) as well as particular facts (expres

sions containing no variables) to the data

base.
Jack Minker (University of Maryland, USA)

chaired the panel on Knowledge Based Sys
tems. Current issues in developing expert

systems were discussed, in particular: what

distinguishes an expert system from an appli

cation pogram; how is the expert's know

ledge acquired and represented; how is tem

poral data handled; what toolkit should be

provided for the expert system developer;
what morals should be applied to expert sys

tems; how is search controlled in an expert

system and what are the criteria for user

acceptability (particularly when different

15

community news & events

classes of user perceive different system
models).

Pierre Deransart (INRIA, France) proposed
an operational algebraic semantics for Prolog
programs that follows resolution.

Andrzej Lingas (Linkoping University,
Sweden) proposed that in order to fully
understand the behav iour of para ll el goal
execution of logic programs it was necessary
to ap.ply the ideas of Tu ring-machine com
plexity theory to the complexity measures of
logic programs i. e. goal size, goal length, goal
depth and conjunctive goal size.

Dan Sahlin (The Royal Institute of Techno
logy, Sweden) described an abstract machine
ca lled "gepr" (goal, environment, program and
resumption register). The gepr machine is a
state transition system. The paper contains a
definition the transition rules that convert one

state to the next. Each rule corresponds to a
rule in a natural deduction system

Patrizia Asirelli (lstituto Elaborazione lnfor
mazione, Pisa, Italy) described a fixed point
semantics of Horn clauses with infinite terms
- infinite terms are often used to define
parallel commun icating processes in Prolog
but current semantic definitions are incom
plete and apply to unwanted infinite terms.
Two semantic definitions are proposed based
on least fixed point construction. A proposed
operational semantic definition generates a
unit clauses - representing a terminal clause
(if non has been defined). A fixed-point seman
tics is defined which reflects the idea that
non-terminal symbols are partial approxima
tions of infinite terms.

Patrizia Asirelli then commented on some
aspects of the first order semantics of a
connective suitable for expressing concurren
cy. This is achieved by introducing the
concept of class; a cluster of concurrent
atoms ; where an atom has a predicate and
"N" terms. Processes communicate by
semaphores manifested as shared logical
variables.

Maarten van Emden (Imperial College,
London, UK) chaired the panel on Logic Pro
gramming Theory. The panel commented on
the growth in theory papers. In particular
many ideas had been transferred from other
fields such as complexity theory. The topics
discussed included complexity, concurrency,
infinite terms, operational and fixed-point
semantics and negation by failure.

16

John Lloyd (Melbourne University) announ
ced the release of MU-Prolog; which is
written in "C", has a correct implementation
of negation by failure, data base support, and
a syntax similar to DEC-1 O Prolog.

Gerard Ballieu (Katholieke Universiteit
Leuven, Belgium) described a virtual machine
to implement Prolog. The machine is based
on David Warren's abstract Prolog machine
but uses a structure copying techniques for
working storage.

David Bowen (Edinburgh University, UK)
described a Prolog implementation, similar to
that of Ballieu, that aims to combine a high
degree of portability with speed and an effi
cient utilization of memory. The virtual
machine for the implementation is written in
the programming language "C". The design is
well suited to optimization for particular
machines, because there is is a central core

which can be translated into microcode or
assembly language.

Paul Wilk (Edinburgh University, UK) des
cribed the production and evaluation of a set
of Prolog benchmarks (not in the proceedings).
The benchmarks consist of a number of large
Al programs and over 100 small benchmarks.
A methodology was described for producing
the small benchmarks (each one of which is
designed to benchmark a particular facet of an
implementation) which can be applied to other
Al languages. Benchmarking results were
given for four Prolog implementations on six
different computer systems.

Frank McCabe (Imperial College, London,
UK) briefly described Lambda Pro log which is
an attempt to unite Lambda Calculus and logic
programming. He then described Abstract
Prolog Machine (APM) which will be used as
a target architecture for Lambda Prolog.
However, APM is seen mainly as a Prolog
architecture for single user machines.

Hiroshi Nishikawa (Institute for New Genera
tion Computer Technology, Japan) gave an
overview of the design of the Personal Se-

. quential Inference Machine architecture. PSI
has a 40 bit word format (8 bit tag and 32 bit
data) It has a 32 bit real address space (no
virtual addressing) with a non-structure sharing
implementation of working storage. The lan
guage system consists of a subset of DEC-1 O
Prolog with extended abilities for hardware
resource handling, interrupt handling and
process control. Notedly, the machine archi-

tecture includes provision for garbage collec
tion and process switching.

Marco Bellia (Universita di Pisa, Italy) pro
posed a compiler that maps Prolog to a
demand driven architecture. This is done by
automatically annotating clauses (similar to
automatic generation of mode declarations)
according to functional dependencies. An
annotation distinguishes between an atomic
formula that computes a value for a given
variable and one which uses the value of the
variable.

Stanislaw Matwin (University of Ottawa,
Canada) described an intelligent backtracking
algorithm, applicable to first order logic.
Essentially, a depth first search of the proof
tree is directed by information kept in a sepa
rate graph structure; which represents the
unifications generated during the proof.

Jack Minker outlined PRISM -A Parallel
Inference System for Problem Solving. PRISM
is based on logic programming and is imple
mented on SMOB; a parallel multi-micropro
cessor system. The system is designed to
provide a general experimental tool for the
construction of large artificial intelligence
problem solvers.

Seif Haridi (The Royal Institute of Techno
logy, Sweden) described a mechanism that
would control the traversal of the search tree
in an Or-Parallel token machine (where a
token pool contains processes that are ready
to execute but have not yet been allocated a
processor). This is complemented by a mecha
nism that prunes the search tree; removing
branches that are obsolete computations.

Subsequently Haridi explained a machine
architecture (similar to that of ALICE by John
Darlington of Imperial College) for the Or
Parallel token machine.

Maurice Bruynooghe (Katholieke Universiteit
Leuven, Belgium) chaired the panel on Prolog
implementation. The talk focussed on the
effect of a Prolog implementation on pro
gramming style - noting that programming
elegance was often sacrificed for time and
space efficiency. The desire for a Prolog stan
dard was mooted because of Prolog portability
problems. But generally, delegates thought
that the subject area was at too early a stage
in its evolutionary development to merit this.

E. Elcock (University of Western Ontario,
Canada) gave reasons why Prolog should not
be thought of as a specification language. In
particular, the procedural semantics of a

community news & events

Prolog program are incomplte; often it is not
clea r that a program w ill terminate so it is
necessary to consider proof of terminat ion of
a program.

Pavel Brazdil (Facu ldade de Economia,
Porto, Portuga l) discussed the problems asso
ciated with the development of Prolog pro
grams (not in the proceedings) . Suggestions
were made for a Prolog toolkit similar to that
of Interlisp.

Richard O'Keefe described a polymorphic

type system for Prolog (obta inable from DAI,
Hope Park Square, Edinburgh University, UK)

and how it integrated with other Prolog deve
lopment tools written at Edinburgh University.

One advantage of a good type system is that it

provides a static tool for determining whether

all cases in a Prolog predicate have been con
sidered. Moreover this type system can be

used as a basis for encapsulation; providing
an abstract data type facility.

The Panel on Data Bases was chaired by

Jack Minker. The panel discussed Herve

Galla ire's paper (Laboratoires de Marcoussis,
France) "Logic Data Bases vs Deductive Data

Bases". Gallaire's important paper presents
a taxonomy of data bases formulated by de

composing logic programming and data bases .

into their component parts and studying their

interconnections. Detailed descriptions of two
important contrasting implementation approa
ches are described; logic data bases and
deductive data bases . Logic data bases are
bu ilt above or aside Prolog and have their own
description and manipu lat ion languages. The
deductive data base approach uses logic to
provide extensions to conventional data base
systems; if on ly to remove the prob lem of
implementing query languages w ith procedural
languages Ga llaire expects that the Japanese
Fifth Generation Pro ject wi ll reveal a more
precise taxonomy than his, based on axioms
rather than relationships.

Madhur Kohl i (University of Maryland, USA)
presented a theory for the intelligent control
and execution of function free logic programs
based on integrity constraints . The integrity
constraints may be user supplied or automati
cally generated at run-time by analysis of goal
failure.

Chris Moss (University of Pennsylvania,
USA) defined a predicate "seqof" that enables
the total set of solutions to a problem to be
returned ind ividually, and processed indivi-

dually, rather than returned collectively and
processed as required.

Harvey .Ab rams on (University of British
Columbia, Canada) gave a defin ition of HASL
(contained in the proceedings; written in
Prolog) HASL is a purely appl icat ion language
which uses SASL's combinator reduction
machine in conjunction with unification based
conditional binding expressions.

Ed Babb (ICL, Stevenage, UK) put forth an
alternative philosophy for adapting resolution
for logic programming termed Fin ite Computa
tion Principle. The principle ma intains the
power of symbolic substitution but seeks to
manage infinite processes by combin ing order
independence of predicate execution w ith infi
nite process detection . Management is per
formed by knowing and detecting the condi
t ions that lead to infinite processes and then
applying axioms of logic to determine a predi
cate order that makes the computation finite.

Keith Clark (Imperial College, London, UK)
chronic led the historical development of Logic
Programming in relation to Computer Science
(not in the proceedings). From this chronology
the reasons for the features incorporated into
PAR LOG (A parallel logic programming lan
guage) were rationalized. The ma in features of
the language are: Modules; And-parallelism;
Or-paralle li sm; Eager functions; Lazy func
tions; Set expressions and Prolog as a subset
(unl ike Concurrent Prolog).

Ehud Shapiro presented a rationale for the
design of Concurrent Prolog. Of particular
note was his reluctance to move away from
simplicity until experimentation had confi rmed
him of the features that should be added to
th e language (not in the proceedings; a copy
of the interpreter, w ritten in Prolog, can be
obtained from Department of Appl ied Mathe
matics , Weizmann Ins t itute of Science,
Rehovot 76100, Israel).

Akikazu Takeuchi (Institute for New Genera
tion Computer Technology, Japan) described
interp rocess communicat ion in Concurrent
Prolog This is realized by sharing variables
amongst processes. Therefore when a shared
variable is instantiated to a message all pro
cesses sharing the variable receive the
message. However, in Prolog, destructive
assignment of shared var iables is not per
mitted so every time a message is sent a
new shared va riab le must be gene rated
for the · next communication. This form of
commun ication is known as streaming.

Lufs Monteiro (Un iversidade Nova de Lisboa,

Portugal) described work, similar to that des

cribed by Asirell i, for concurrent programs.

However, in this work Prolog is extended w ith

the concept of an event, which gives a tem

poral logic programming language.

.Antonio Porto (Universidade Nova de Lisboa,

Portuga l) described a concurrent language

design that combines action reduction w ith

logic programming The main features of the

language are: synchronization; concurrency;

action rules and abstract data types.

The Panel on Log ic Programming Metho

dology was chaired by Ehud Shapiro. The ses

sion was oriented to research methodology

rather than programming methodology. (Dele

gates noted that there were no good texts

available that described the programming

methodology and techniques applicable to

Logic Programming. However Ehud Shapiro

announced that shortly he would have a book

published suitab le for advanced logic pro

grammer's

It should be noted that in some cases pre

sentation of work was not given by the author

of the paper that appears in the proceedings.

Furthermore, some papers that appeared in

the proceedings were not presented at the

conference and so are not covered here.

The following li st represents the open

research areas covered by the conference:

(logic programming is defined here to be sy

nonymous with Prolog) :

1. data base implementation,

2. natural language processing,

3. query languages,

4. intelligent user interface,

5. expert systems,

6. expert system building,

7. logic programming semantics,

8. parallel logic programming machines,

9. sequential logic programming machines,

10. abstract log ic programming machines,

11. intelligent proof-tree search,

12. logic programming toolkits,

13. sequential logic programming languages,

14. parallel logic programming languages.

17

community news & events

PROLOG - WHAT IT IS AND WHERE
TO GET IT

Fernando Pereira

SRI International

Why should I want Prolog?

Prolog is a simple but powerful program
ming language for symbolic computation
based on a computationa lly treatable subset
of logic. It can be seen as a clean combination
of the concepts of symbolic programming lan
guages such as Lisp and those of relat ional
databases.

Prolog was born at the University of Mar
seille in the early 70's. After 8 years of com
parative obscu rity un a smal l community of
dedicated implementors and users, Prolog has
been brought to the attention of the wider
world by its surprising adoption as the starting
point for the Japanese 5th generat ion
computer research effort.

Prolog has been used for (order of items
doesn't imply any form of ranking:

- natural language interaction with com
puter systems

- architectural design
- drug design (very successful commercia l

application in Hungary)
- VLSI ci rcuit analysis
- artificial intelligence research
- compiler writing (Prolog itself, APL)
- algebraic computation
- database access and data description lan-

guages
- descrete event simulation
- program development systems
- expert systems

and certa inly more thant I can remember or
know about.

I have a Unix system; how do I get Prolog?

Please note that Prolog, like other interactive
symbolic languages requires more space to
run than lower-level languages. Don't expect
miracles on a PDP-11.

For the PDP-11 UNIX V6 or V7 :

- Chris Mel lish's system, obtainable from
the Dept. of Al. Edinburgh University,
Forest Hill, Edinburgh, Scotland.

- Very compact and reasonably fast, wil l
run substantial programs even without
separate I/D space.

18

- As far· a I know, its development has
been frozen .

- W ritten in PDP-11 assembly code.

For the VAX UNIX 4.1 BSD or Eunice under
VMS:

- CP rolog, obtainab le from EdCAAD,
20 Chambers Street, Edinburgh EH1 1JZ,
Scotland.

- Des igned for mach ines with 32 b it
addresses; requires at least 750K of vir
tual memory to run comfortably.

- it has an extensive set of system predi
cates.

- still being developed and improved: if
you get the initia l licence from EdCAAD,
you may ask me for bug fixes and im
provements.

- Written in C and Prolog.

Forthcoming:

For the VAX AND Z8000 :

- POPLOG, combined POP-11 and
Prolog from the University of Sussex
(available now on ly for VMS) .

- Reported to be somewhat faster than
CProlog.

- Written in POP-11 and VAX assembly
code.

For 68000:

- EdCAAD's CProlog is being ported.

All these systems comply broadly with the
syntax and reperto ire of system pred icates
described in "Programming in Prolog" by Bill
Clocksin and Chris Mellish, Springer Verlag
1981. This is the book to get if you want to
get into Prolog.

Others:

There are several other more or less
portable Prolog systems written in C or
Pascal, but they are rather experimental
and I cannot recommend them for general
use.

If you have information about other Prolog
systems, want to know more about Prolog or
have bug reports on CProlog, w rite to:

Fernando Pereira
Artificial Intelligence Center
SRI International
333 Ravenswood Ave.
Menlo Park, ca lifornia 94025
USA
Phone : (415)859-5494
ARPANET: PEREIRA SRI-Al

The 1984 IEEE International Symposium on
LOGIC PROGRAMMING

Atlantic City, New Jersey, February 6-9, 1984

Sponsored by the ·IEEE Computer Society
and its Techn ical Committee

on Computer Languages

The symposium will consider fundamental
principles and important innovations in the
design, definition, and implementation of logic
programming sustems a,nd app lications. Of
special interest are papers related to parallel
processing. Other topics of interest include
(but are not limited to): distributed control
schemes, FGCs, novel implementation techni
ques. performance issues, expert systems,
natural language processing and systems pro
gramming.

Additional information:

Doug DeG root
Program Chairman
IBM Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598, USA

Technical Committee:

Jacques Cohen (Brandeis)
Doug DeGroot (IBM Yorktown)
Don Dwiggins (Logicon)
Bob Keller (University of Utah)
Jan Komorowski (Harvard)
M ichael McCord (IBM Yorktown)
Fernando Pereira (SRI International)
Alan Robinson (Syracuse University)
Joe Urban (Univ. Southwestern Louisiana)
Adrian Wa lker (IBM San Jose)
David Warren (SRI International)
Jim Weiner (Univ. New Hampshire)
Walter Wilson (IBM DSD Poughkeepsie)

Proceedings w ill be distributed at the sym-
posium and wi ll be subsequently available for
purchase from IEEE Computer Society.

CALL FOR PROGRAMS

I am looking for interesting Prolog pro
gramming examples, to be included in a book
I am writing on advanced Prolog programming
techniques. Interesting programs that satisfy
2 or more of the fo llowing requ irements are
solicited :

community news & events

(1) The program solves an interesting pro
gramming problem, or implements a non
-trivial algorithm, for wh ich previous reference
in the literature is available.

(2) The program demonstrates an interesting
Prolog programming technique, not necessarily
available in other programming languages.

(3) The program is written in Pure Prolog.
Negation and cut included. 1/0 excluded
unless it is an inherent part of the problem,
such as data-entry and display, or tokeniza
tion. Side-effects excluded unless the problem
explicity requires the man ipu lation of the
clauses in the internal data-base.

(4) The program is short.
(5) The program is brilliant dirty Prolog trick.

Please include references to published sta-
tements of the problem and/or solutions in
Prolog or other programming languages.

Authors of the programs published w il l be
appropriately acknowledged.

Please send them to :

Ehud Shapiro
Dept. of Appl. Mathematics
The Weizmann Institute of Science
Rehovot, 76100 ISRAEL

Al AND DATABASE
RESEARCH LABORATORY AT THE

UNIVERSITY OF MARYLAND

by Jack M inker

The Al and Database Research Laboratory
at the University of Maryland consists of Jack
Minker, the director of the laboratory, and a
number of faculty and students engaged in
diverse activities. Other facu lty connected
w ith t he group are Donald Perl is and John
Grant. Perlis is concerned wi th theoretical
issues assoc iated w ith log ic programming,
non-monoton ic, reasoning, and cognitive pro
blems. Grant, of Towson State University, is
primari ly concerned w ith theoret ical issues in
databases. It is anticipated that other faculty
will become part of the laboratory

There are several graduate st udents and
one vis iting scholar in the laboratory. The gra
duate students of the laboratory are: U.S.
Chakravarthy, A. Csoeke-Poeckh, S. Kasif, M.
Kohli, r. Piazza, and D. Wang. The visiting
scho lar is: S. Desai (India) - United Nations
Fellowsh ip (until September'83)

Individua ls who plan to visit the Al and
Database Research Laboratory for short
periods of time include : I. Futo of Hungary,
S. Gregory of the Imperial College of London,
T. lmielienski of McGill university, R. Reiter of
the University of British Columbia, J. A. Ro
binson of Syracuse University and F. Pereira
of SRI. Visitors during the past year were:
K. Bowen , Syracuse, R. Reiter, U. British
Columbia and S. Haridi, Sweden. Individuals
interested in activities in which our laboratory
is engaged are encouraged to vis it the AIDBRL
at Maryland.

2. Computers and Programs

In addition to conventional computer sys
tems, we have avai lable a paral lel computer,
ZMOB. This computer was designed by Chuck
Rieger while he was a member of our faculty,
is being implemented, and should be avai lable
by the summer 1983. ZMOB consists of 256
Z80A microprocessors interconnected on a
high speed conveyor belt with the VAA 11/780
as the host processor. Moblets (individual
Z80A machines) can be accessed by physical
address and by pattern matching. A message
can be sent to a specific machine, to all ma
chines, or to a set of machines. Point-to-point
high speed transmission between processors
exists .

The AIDBRL members are developing a
logic programm ing system for the ZMOB,
termed PRISM (parallel inference system).

3. Logic Programming Activities

a. PRISM

The major activity of the group is the develop

ment of PRISM. The work started in earnest
in aproximately January 1982. PRISM has
been implemented and is being tested on a
simu lated system since the ZMOB hardware
is not available. Is is expected that ZMOB wi ll
be available during the summer of 1983.

The underlying ideas behind PR ISM appea
redin Eisinger, Kasif, and Minker [1981, 1982].
A detailed functional report on the system
appears in M inker et al. [1982]. PRISM is a
first-generation system to permit paralle lism in
problem solving . As such, many features that
are requi red for an ultimate pa rallel problem
solving system have been omitted in the initial
system. (For example, we have ignored opera
ting systems and recovery issues in the inital

development). There are, however, a large
number of capabilities built into the initial
system.

PRISM consists of several parts: a user
host interface that exists on the VAA 11 /780;
a set of Z80A machines (moblets) designated
as problem solvers (PSMs); a set of machines
designated as Extensional Database Machines
(EDB) that store ground atomic formulae (rela
tional database tables); a set of mach ines
designated as Intensional Database Mach ines
(IDB) that store procedu res (the general rules
in the system); and a IDB monitor machine
which determines if the IDB machines are
overloated.

The user can specify control in terms of the
sequence of atoms to be executed in a set of
prob lems to be so lved. Atoms can be exe
cuted in parallel,sequentially, or as specified
by a partial ordering. Simi larly procedures can
be specified as being executed sequential ly, in
parallel, or as specified by a partial order. The
PSM has been w ritten in a modular fash ion to
permit alternative control structure programs
to be incorporated in the system. Alternative
node and literal selection algorithm may be
incorporated as part of the control structure.
The user may specify the configuration (i.e.,
the number of moblets requ ired as a mini
mum) in which a problem is to be run . If
additional moblets are available, the PRISM
wil l automatica lly take advantage of them. In
addition to the papers cited above, the follo
wing papers descrive va ri ous portions of
PRISM: M inker et al. [1983], Chakravarthy et
al. [1982], Kasif et al. [1983a, 1983b].

b. Control Structure

The control of searches in a logic programs
is important for developing efficient expert
systems and problem solvers. In Kohli and
Minker [1983a, 1983b, 1983c] we discuss
how fa ilures to find so lutions along paths,
together with integrity constraints may be
used o provide more intel ligent search than is
achievable with backtracking. The control struc
ture of PRISM is presented in Kasif et al.
[1983].

A major objective of our work in this area is
the investigation of control issues with respect
to distributed problem solving. Preliminary stu
dies have been directed towards developing a
control specification language for logic pro
gramming systems.

19

community news & events

c . Interfacing Predicate Logic Programs and
Large Databases

Artific ial Intel ligence programs wi ll have to
interface effectively with la rge database. The
AIDBRL has addressed problems involved in
interfacing pred icate log ice programs w ith
relational da tabases . In Chakravathy et al.
[1981, 1982] alternative methods of inter
facing a predicate logic program with relational
database in a system such as PROLOG are
described. Approaches discussed are modifica
tions to PROLOG interpreters and meta-level
constructs.

In Grant and Minker [1981, 1982, 1983] the
optimization of compi led deductive searches
that do not include recursion is considered.
A branch-and-bound type algorithm is used
that takes advantage of a database that is
indexed, the number of responses anticipated,
and performs the un ion of a set of conjuncts
in an optimal fashion.

4. Deductive (Logic) Databases

It is our bel ief that logic provides the appro
priate context in which to investigate data
bases. The fol lowing summarizes some of the
activit ies in the Al and Database Research
Laboratory.

a. Survey of Logic and Dataud~es

In collaboration w ith Herve Gallaire of Labora
tories de Marcoussis, France, and Jean Marie
Nicolas of ONERA-CERT, Toulouse, France,
this w riter has written a comprehensive survey
describing the various ways in which logic has
been used in databases (Ga lla ire et al. [1983]).
The paper On deductive Relat ional databases,
(Minker [1983]) also provides a survey of
deductive databases.

b. Generalized Closed World Assumption

The Closed World Assumption, as named
by Rei ter, and discussed by Nico las and by
Clarke fo r Horn clauses, has been generalized
in "On Indefinite databases and the Closed
World Assumption for Non-Horn Clauses"
(m inker [.1982]). A proof theoret ic and a
model theo retic definition is provided of the
general ized closed world assumption, and it is
shown that the definitions are equ ivalent. The
generalized closed world assumption leads to
a non-monotonic logic. A paper in preparation
by Grant and Miker wil l address how one can
compute answers to queries using the gene
ral ized closed world assumption .

20

c. Recursive Axioms

When recu rsive axioms are part of a dedu
ctive database, problems may arise with res
pect to termination. A number of researchers
have investigated how to handle recursion
includ ing Chang, Reiter, Shapiro, Henschen,
and Naqvi. In "On recurs ive Axioms is Dedu
ctive Databases" (Minker and Nicolas [1981])
and "On recurs ive Axioms in Relationa l Data
bases" (Minke r and Nicolas [1983]) it is
shown how one can obtain termination condi
tions for classes of clauses that contain re
cursive axioms.

d. Theories of Databases

Depending upon the types of clauses in a
database one obtains different theories which
handle different phenomena. In "On Theories
of Definite and Indefinite Databases", Minker
[1983] precise theories are given that des
cribe different phenomena in a database. An
open world definite database is a first-order
theory where negative data must be specified
explicitly. A closed world definite database is
characterized by another set of assumptions,
and, in particular, by Horn clauses and the use
of negation by la ilure . Indefin ite databases
lead to another theory wh ich, itself, has to
modified to ha_nd le the "null va lue" problem in
databases. Using logic captures the theories

_ precisely.
The notion of numerical dependencies is

introduced in Grant and Minker [1983] It
formalizes the constraint that w ith an element
of an attribute, or set of attributes, at most k
elements of another attribute can be associa
ted . The uses of numerical dependencies in
database design are considered via generalized
normal forms.

5. Research Directions

The major research di rections in the labora
tory over the coming year w il l be devoted to
the fol lowing areas:

(1) Implementation of PRISM on ZMOB,
(2) Experimentation using PRISM,
(3) Control structure investigations,
(4) Expert systems and PRISM,
(5) Theories of databases,
(6) Non-monotonic logic, and
(7) Parallel problem solving and arch itecture

issues.

6. References

1. Chakravarthy, U., Minker, J. and Tran, D. [1981]
" Interfacing Predicate Logic Languages and Relationa l
Databases", Technica l Report 1019, Computer Science
Center, University of Maryland, February 1981.

2. Chakravarthy, U., Minker, J. and Tran, D. [1982]
"lnterfacing Predicate Logic Languages and Relational
Databases", Proceedings of Logic Programming Confe
rences, Marsei lles, France, September 1982.

3. Chakravarthy, U., Kasif, S., Minker, ·J .. Kohli, M. and Cao,
D. [1982] - "Parallel Logic Processing and ZMOB",
1982 International Conference on Parallel Processing,
August 1982.

4. Eisinger, N., Minker, J. and Kasif, S. [1981] - "Logic
Programming : A Parallel Approach", Techn ical Report
1124, Computer Science Center, University of Maryland,
December 1981 .

5. Eisinger, N., Minker, J. and Kasif, S. [1982] - " Logic
Programming: A Parallel Approach", Proceedings of the
First International Logic Programming Conference,

September 14-17, 1982, Faculte des Sciences de Luminy
Marseille, France, 71-77.

6. Gallaire, H., Minker, J. and Nicolas, J. M. [1983] - "An
Overview and Survey of Logic and Databases", Com

puter Science Department, Un iversity of Mary land,
January 1983.

7. Grant, J. and Minker, J. [1981]- "Optimization in Dedu
ctive and Conventional Relational Data Base Systems",
In : Advances in Data Base Theory, Volume 1, Plenum
Publish ing Co., New York, 1981, 195-234.

8. Grant, J. and Minker, J. [1983] - "On Optimizing the
Evaluation of a Set of Expressions", to appear Interna
tional Journal of Computer and Information Systems
(1983)

9. Grant. J. and M inker, J. [1982]- "A Set Optimizing
Algorithm", Proceedings of the CISS, Princeton, New
Jersey, May 1982.

10. Grant, J. and Minker, J. [1982]- "Numerical Depende
nices", Proceedings Workshop in Logical Bases for Data
bases, ONERA-CERT, Tou louse, France, 1982, pp. 13-1
to 73-48.

11. Kasif, S., Kohl i, M. and M inker, J. [1983] - "Control
Structure of PRISM : A Para llel Inference System for
Problem Solving", to appear in Proceedings of the Logic
Programming Workshop, Albufeira, Portugal, June 1983.

12. Kasif, S., Kohli , M. and Minker, J. [1983]- "A Parallel
Inference System for Problem Solving", to appear in Pro
ceedings of IJCAI, Karlsruhe, West Germany, August

1983.
13. Kasif, S., Minker, J. and Kohli, M. [1 983] - " PRISM - A

Para llel Inference System Based on Logic", Technica l
Report, Computer Science Department, University of
Maryland, February 1983.

14. Kohli, M. and M inker, J . [1983]- "Intelligent Control
using Integrity Constraints", to appear in Proceedings

of the National Conference on Artificial Intelligence,
Washington, D. C., August 1983.

15. Kohli, M. and Minker, J. [1983] - "A Theory of Intel
li gent Forward and Backward Tracking", Techn ical
Report, Computer Science Department, University of
Maryland, March 1983.

16. Kohli, M . and M inker, J. [1983] - "Control of Logic Pro
grams Using lntegry Constraints", to appear in Proceed
ings of the Logic Programming Worshop, Albufeira, Por
tugal, June 1983.

17. Minker, J., Cao, D., Chakravarthy, U., Csoeke-Poeckh, A.,
Kasif, S. and Kohli, M., Piazza, R. and Wang, d. [1983]-

community news & events

"Paral lel Problem Solving on ZMOB", Proceedings,
Trends and Applications 83.

18. M inker, J. [1982]- "On Deductive Databases", to
appear in Journal New York Academy of Sciences,
Summer 1983, also Techn ica l Report 1184, Computer
Science Center, University of Maryland, 1982.

19. Minker, J. [1982]- "On Indefinite Databases and the
Closed World Assumption", Proceedings of the CADE-6
Conference, New York, 1982, also Technical Report
1076, Computer Science Center, University of Maryland,
Ju ly 1981 .

20. Minker, J. [1983] - "On Theories of Definite and Inde
fin ite Databases", Technical Report, Computer Science
Department, University of Maryland, February, 1983.

21. Minker, J. and Nicolas, J. M. [1981]- "On Recursive
Axioms in Relational Databases", Technical Report 1119,
Computer Science Center, University of Maryland, July
1981.

22 . M inker, J. and Nicolas, J. M. [1983]- "On Recursive
Axioms in Deductive Databases", in Information Sys

tems, Vol. 7, No. 4 (1983).
23. Minker, J., Aspe r, C., Cao, D., Chakravarthy, U. S.,

Choeke-Poeckh, A., Kasif, S., Kohli, M. and Piazza, R.
[1982]- " Functional Specif ication of the ZMOB Parallel
Problem Solving System", techn ica l Note Z-1, August

1982.

MU-PROLOG RELEASE

The MU-PROLOG system is now avai lable,
for educationa l and resea rch purposes, at a
cost of $100. It is w ritten in C and is espe
cially suitable for UN IX environments. It is
currently running, unde r UNIX, on a VAX
11 /780, a Perk in Elmer 3240 and an
MC68000-based machine.

Features

(1) all UNIX PROLOG and most DEC-10
PROLOG facilit ies are provided.

(2) There are extra cont ro l faci lities, which
enable coroutining. User-defined procedures
may have wait declarations, which can delay
calls to these procedures. Cal ls to many sys
tem predicates may also be delayed.

(3) Three sound forms of negation are pro
vided: not (-), not equals (- =) and if-then
else. Calls to these predicates are delayed if
t hey are insufficiently instantiated.

(4) W ith Berkeley UN IX (at least), MU
-Prolog save files are executable. They can
also access the command line arg uments,
w ith the argv predicate.

For more informat ion, contact:

The Secretary
Department of Computer Science
University of Melbourne
Parkville 3052
Australia

JOBS AT EDINBURGH
IN PROLOG IMPLEMENTATION/

DEVELOPMENT

At Ed inburgh we hope short ly to have two
resea rch posts avai lable for work in Pro log
Development, one sponsored by Internationa l
Computers Ltd ., and one by the Science and
Eng ineeri ng Research Council .

If anyone has [studens about to f inish
courses or research degrees and who have]
interests in this area.

Please contact :

Dr. David Bowen
Department of Artificial Intel ligence
Forrest Hi ll
Edinburgh, UK

INTERNATIONAL FEDERATION
FOR INFORMATION PROCESSING

WGS.2 Working Conference
on Knowledge Engineering
in Computer-Aided Design

11-14 September 1984
Budapest, Hungary

CALL FOR PAPERS

The conference

IFIP's Working Group 5.2 on Computer-Aided
Design is organ izing a working conference on
Knowledge Engineering in Computer-Aided
Design to be held neas Budapest, Hungary, as
part of its conference series. These working
conference explore some CAD topics in detail.
The language of the conference w ill be English.

Aims

The Working Conference aims to provide a
foru m for t he exchange of ideas and expe
rie nces related to knowledge eng ineering
in computer-aided design, to present and
explore the state-of -t he-a rt of knowledge
eng ineering in comp uter-aided design, ·to
promote further development and to del ineate
futu re directions.

Papers

The conference w ill have two prima ry
themes:

(a) state-of-the-art research in knowledge
engineering in CAD, and

(b) state-of-the-art practice of knowledge
eng ineering in CAD.

The papers with the discussion w ill be pu
blished by the North-Hol land Publ ishing Com
pany under the t itle of the conference.

Call for papers

Intend ing autho rs are invited to subm it
papers within the themes of the conference -
particularly within the following topic areas :

(i) Expert Systems in CAD
- as part of analysis
- as part of design

(ii) Encoding Design Knowledge for CAD
(iii) Knowledge Engineering Methodologies

Used in CAD
- knowledge representation
- knowledge acqu isition
- control methods to guide use

(iv) Knowledge Engineering and CAD Graphics
(v) Knowledge-Based Simulation
(vi) Knowledge-Based representation of Arti

facts
(vi i) Appl icable Software

- knowledge engineering
- konwledge-based CAD systems

(vi ii) Implications of Knowledge Engineering
for CAD Design Process

(ix) User Experience of Knowledge-Based
CAD Systems

Timetable

Intending authors should submit their pro
posals as soon as practicable.

1. Fu ll paper (four copies) submitted to the
address below no later than

24 February, 1984
2. Notification of authors of selected papers

by 30 April, 1984
3. Conference brochure ava ilable

1 May, 1984
4. Fina l copy of selected papers in repro

ducible form from authors by
1 July, 1984

5. Close of conference registration
1 August, 1984

6. Preprints sent to reg istrants
August, 1984

7. Conference 11 - 14 September, 1984

Conference format

1. The conference is schedu led for four days
w ith a restricted number of pa rticipants.

21

community news & events

2. About twenty to twenty-five papers will
be selected for presentation. It is assumed
that the selected authors will attend the
conference.

3. The papers will form the conference pre
prints which will be mailed to all partici
pants.

4. Papers will be presented with conside
rable time available for discussion which
will be recorded to form the conference
proceedings.

5. The official language of the conference is
English.

THE NEW SOUTH WALES

INSTITUTE OF TECHNOLOGY

Australia

SENIOR LECTURER

Faculty of Mathematical

& Computing Sciences

School of Computing Sciences

of Computer Science. Applicants must have

a higher degree and should have teaching

competence and strong research records in

one of more of the following areas: artificial

intelligence, logic programming, and theoretical

computer science. Other research interests of

the Department include microprocessor arrays,

systems architecture, languages and processors,

performance evaluation, computer graphics, and

programming techniques.

Address for all correspondence The School of Computing Sciences offers a

Bachelor's Degree, a Postgraduate Diploma,

a Master's Degree by research and thesis and

a Master's Degree by coursework and report.

The School has extensive computing facilities

including a 3MB Prime 750 and a WICAT 200

as well as numerous microcomputers. It is

also the major academic user of the lnstitute's

Honeywell network based on duplexed Level

66/60 systems supporting 200 terminals. The

school is active in research and consulting to

industry.

Further information concerning the above

position may be obtained from Dr. J. R.

Quinlan, Head of Computing Sciences, on (02)

218 9428, quoting reference No. 83/108.

All papers, queries and correspondence
should be addressed to:

22

Professor John S. Gero
Department of Architectural Science
University of Sydney
Sydney N.S.W. 2006
AUSTRALIA
Telex : AA20056 GERO-ARCHSCI
Phone : (61)-(2)-908 2942 or

(61)-(2)-692 2328

CHANGE OF ADDRESS

William F. Clocksin has moved to:

Computer Laboratory
University of Cambridge
Corn Exchange Street
Cambridge CB2 3OG
England

The School is divided into two Departments,

Computer Science and Information Sciences,

with a total academic establishment of 40.

Students of the highest calibre are attracted

to the School's courses.

The successful candidate will be appointed

to a Senior Lectureship in the Department

MARSEILLE CONFERENCE (September 82)

Salary for this position will be in the range

of $30,096 to $35,077

Written applications should include: address,

telephone number, personal particulars, evi

dence of qualifications, work experience, re

search work undertaken, publications, and the

names and addresses of three referees from

whom confidential resports may be obtained.

Closing date for applications is October 14,

1983, and should be addressed to :

Appointments Officer

NSW Institute of Technology

PO Box 123 Broadway, · NSW 2007

Australia

By courtesy of Martin Nilsson, from Uppsala, here is a photo of the friday evening dinner participants ,
immediately prior to the staging of Shakespeare's Ju lius Ceaser - A Meta-Play

new journals & books

ANNOUNCING
THE JOURNAL OF LOGIC PROGRAMMING

AN INTERNATIONAL JOURNAL DEVOTED
TO THE SUBJET OF LOGIC PROGRAMMING

Published by the Logic Programming Research Center, Syracuse
University

Logic programming is one of the most active and rapidly growing
areas of research in computer science today. The Journal of Logic
Programming is intended to serve the international logic programming
research community by publishing contributions on all aspects of logic
programming. The Journal will publish original research papers together
with survey articles, reviews and tutorial expositions aimed at a more

general readership.

The programming language PROLOG has demonstrated the elegance

and power of logic programming and has stimulated a flood of inves
tigations into the theory, application, implementation and scope of this

novel deductive computational method. The recent adoption of logic

programming as one of the central design ideas of Japan's Fifth

Generation Computer Systems Project has called the world's attention

to its potential technological importance.

The Fifth Generation Computer Systems Project has recently started
its own journal, New Generation Computing. It will cover all research

areas related to the Project. The two journals together form a natural

pair, one dealing with logic programming in general, the other particu

larly concerned with the role of logic programming within the Fifth

Generation Computer Systems Project. The editorial organizations
of the two journals have twelve members in common, thus ensuring a

close, cooperative relationship.

Editorial Organization

Editor-in-Chief

J. A. Robinson, Syracuse University, USA (a)

EDITORIAL ADVISORY BOARD

K. A. Bowen, Syracuse University, USA
K. L. Clark, Imperial College, UK
A. Colmerauer, University of Marseille, France (b)
K. Fuchi, ICOT, Japan (c)
H. Gallaire, Marcoussis, France
A. Hansson, Uppsala University, Sweden
K. M. Kahn, Uppsala University, Sweden
J. Komorowski, Harvard University, USA
R. A. Kowalski, Imperial College, UK (b)

J. W. Lloyd, Melbourne University, Australia
J. McCarthy, Stanford University, USA
C. S. Mellish, Sussex University, UK
U. Montanari, University of Pisa, Italy (b)
F. Pereira, SRI International, USA
P. Roussel, University of Marseille, France

E. E. Sibert, Syracuse University, USA
S. A. Tarnlund, Uppsala University, Sweden (b)
M. H. van Emden, University of Waterloo, Canada (b)
M. Bruynooghe, Leuven University, Belgium
W. F. Clocksin, Cambridge University, UK
V. Dahl, Simon Fraser University, Canada
K. Furukawa, ICOT, Japan (e)
C. C. Green, Kestrel Institute, USA
P. J. Hayes, University of Rochester, USA
H. Kanoui, University of Marseille, France
P. Koves, SZKI, Hungary
G. Levi, University of Pisa, Italy
F. G. McCabe, Imperial College, UK
M. McCord, IBM Yorktown Heights, USA
J. Minker, University of Maryland, USA
T. Moto-oka, Tokyo University, Japan (d)
L. M. Pereira, University de Lisboa, Portugal (b)
E. Y. Shapiro, Weizmann Institute, Israel (b)
P. Szeredi, SZKI, Hungary

M. van Caneghem, University of Marseille, France
D. H. D. Warren, SRI International, USA (b)

(a) Member, Overseas Advisory Board, New Generation Computing

lb) Member, Overseas Editorial Board, New Generation Computing
(c) Associate Editor, New Generation Computing

(d) Editor-in-Chief, New Generation Computing

(e) Member, Editorial Board, New Generation Computing

• The Journal of Logic Programming wil l be published quarterly.
• Approximately 100 pages per issue.
• First issue scheduled for January 1984.
• Price: $60 per year (individuals); $100 per year (institutions).
• Subscriptions are entered by prepayment only.
• All payments in US dollars. Checks or International Money Orders

should be made payable to Syracuse University.

SUBSCRIPTION ORDER FORM

To: The Journal of Logic Programming
Syracuse University
Syracuse, New York 13210, USA

Please enter my subscription to The Journal of Logic Programming

Name:

Address: ______________________ _

Signature:

Date: ------------------------

23

new journals & books

Logic Programming Worshop'83 Proceedings

The 630 page proceedings can be obtained Air Mail by sending a
cheque (personal will do), money-order, etc ., for 2,000 escudos or
equ ivalent, in name of

LUfS MONIZ PEREIRA
Dept. de Informatica
Universidade Nova de Lisboa
2825 Monte da Caparica
Portugal

Algorithmic Program
Debugging

Ehud Y. Shapiro

This book formulates and explores a potentially productive new
subarea of computer science that combines elements of programming
languages and environments, logic, and inductive inference. It devises
a theoretical framework for program debugging and develops tech
niques that will partly mechanize this activity. In particular, it formalizes
and validates algorithmic solutions to finding and then fixing program

bugs.
The author first develops interactive diagnostic algorithms that iden

tify a bug in a program that behaves incorrectly, as determined by the
execution of the program through a list of sample inputs that should
produce known outputs. He then integrates these diagnostic algo
rithms with correction algorithms to form an interactive debugging
system. Moreover, this system can also be used as an inductive
inference algorithm for the synthesis of programs from examples of ·
their input/output behavior, by specifying an empty an empty initial
program. The book develops a number of incremental strategies for
such inductive program synthesis.

The algorithms are written in the logic programming language
Prolog. Because Prolog is a functional language with a simple and
powerful semantics, Or. Shapiro was able to discover elegant implemen
tations of his debugging system, including algorithms that query the
user about the intended meaning of the program, or that pinpoint the
cause of an incorrect output, a missing output, or a stack overflow.
This implementation results in a functioning system that is both
useable and almost exactly parallel to the author's theoretical descrip
tion.

Ehud Y. Shapiro is in the Department of Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel. He took his doctorate
at Yale University.

24

June 1983- 208 pp. - 8 illus. - $30.00
ISBN 19218-7 SHMH
MIT PRESS
The ACM Distinguished Dissertation Series

NEW GENERATION COMPUTING

An International Journal
on Fifth Generation Computers

Editor-in-Chief T. Moto-oka, The University of Tokyo

Associate editor K. Fuchi, ICOT

Aims and Scope

Computer science is now at the threshold of a new stage of
development. Conventional computer architectures established by
Turing and van Neuman have begun to encounter numerous difficulties.
Of these, low software productivity, insufficient processing power
on non-numeric data, and poor man-machine interface are the most
evident and thus require the most rapid solutions. However, promising
results from fundamental studies in fields such as artificial intelligence,
software engineering, computer architecture and data base, imply the
possibility of creating a new generation computer which will overcome
these difficulties using a new set of principles.

More specifically, this advance is being technically supported by the
maturity of Lisp and Prolog and the development of new software
technology such as data abstraction and object-oriented programming.
Recent developments in highly parallel computer architecture, like data
flow and reduction and advanced VLSI technology, are also making
significant contributions towards this end.

Various research projects being conducted into new application
fields such as natural language processing and knowledge engineering
for Lisp or Prolog are also being aggressively pursued. These may be
viewed as the final goals of the new generation computers.

Cognizant of the situation confronting computer science today, this
journal, drawing support from various international groups involved in
research on the fifth generation computer, as well as from the world's
leading experts on new generation computer science, aims to encou
rage the activities and contribute to the exchange of the latest results
among the people involved in creating new generation computers.

Major Fields

Basic Theory

Computation Model, Programming Language Semantics, Parallel
Computation Model, Problem Solving, Theorem Proving.

Programming Language

Logic Programming, Functional Programming, Object-oriented Pro
gramming, Intelligent Programming Environment.

Computer Architecture

Parallel Machine (Data Flow Machine, Reduction Machine), High
level-language Machine, Inference Machine, Knowledge Base Machine.

VLSI Design Technology

VLSI Architcture, VLSI CAD.

Knowledge Information Processing

Knowledge Representation, Knowledge Base, Expert System,
Natural Language Processing, Cognitive Science.

new journals & books

Authors Information

Prospective authors are encouraged to submit manuscripts within
the scope of the Journal. To qualify for publication, papers must be
written in English, previously unpublished and not be under considera
tion for publication elsewhere. All material should be sent in three
copies to: Dr. T. Moto-oka, Editor-in-Chief, New Generation Computing,
c/o Ohmsha, Ltd., 1-3 Kanda Nishiki-cho, Chiyoda-ku, Tokyo 101,

Japan All manuscripts will be assessed by anonymous referees.
When preparing the manuscript please follow the "Instructions to

Authors" available on request from the publisher.
Fifty (50) offprints of each paper will be supplied free of charge.

Up to one hundred (100) additional copies may be ordered at set prince
at the time when proofs are returned.

Editorial Board

JAPAN

M. Amamiya, ECL
K. Furukawa, ICOT
Y. Futamura, Hitachi, Ltd.
K. Hirose, Waseda University
T. ltoh, Tohoku University
F. Mizoguchi, Science University of Tokyo
K. Murakami, ICOT
M. Nagao, Kyoto University
R. Nakajima, Kyoto University
S. Ohsuga, The University of Tokyo
N. Suzuki, The University of Tokyo
H. Tanaka, The University of Tokyo
H. Tanaka, ETL
Y. Tanaka, Hokkaido University
J. Tsujii, Kyoto University
T. Yokoi ICOT A. Yonezawa, Tokyo Institute of Technology

OVERSEAS

F. Bancilhon, Univ. of Paris-Sud/lNRIA (France)
K. Berkling, Gesellschaft fur Mathematik u. Datenverarbeitung. ISF (FRG)
W. Bibel, Technischen Universitiit Munchen (FRG)
D. G. Bobrow, XEROX (USA)
A. Colmerauer, Group d'lntell igence Art ificielle (France)
J. Darlington, Imperial College of Sci. & Tech. (UK)
R. Davis, MIT (USA)

P Deutsch, XEROX (USA)
D. P. Friedman, Indiana University (USA)

G. Huet, INRIA (France)
R. Kowalski, Imperial Col lege of Sci. & Tech. (UK)

U. Montanari, University of Pisa (Italy)

L. M. Pereira, Universidade Nova de Lisboa (Portugal)

E. Y. Shapiro, Weizmann Institute of Science (Israel)
P D. Treleaven, University of Newcastle upon Tyne (UK)

D. A. Turner, University of Kent (UK)

Sten-Ake Tarnlund, Uppsala University (Sweden)

M. van Emden, University of Waterloo (Canada)

D. H. D. Warren, SRI (USA)
T. Winograd, Stanford University (USA)

Advisory Board

JAPAN

H. Aiso, Keio University
k. Amo, Toshiba Corp.
Y. Anraku, Oki Electric Ind. Co., Ltd.
H. Enomoto, Tokyo Institute of Technology
T. Fukumura, Nagoya University
E. Goto, The University of Tokyo
Y Hatano, Hitachi, Ltd.
H. !nose, The University of Tokyo
Y. Mizuno, NEC Corp.
Y. Ohno, Kyoto University
H. Ohta, Mitsubishi Electric Corp

T. Sakai, Kyoto University
K. Tanaka, Fujitsu, Ltd.
I. Toda, NTT
H. Yamada, Fujitsu Lab., Ltd.

OVERSEAS

J. Allen, MIT (USA)
J. Backus, IBM (USA)
F. Bauer, Technischen Universitiit Munchen (FRG)
G. Bell, Digital Equipment Corp. (USA)
C. A. R. Hoare, Oxford University (UK)
J. L. Lions, INRIA (France)
J. A. Robinson, Syracuse University (USA)
D. Scott, Carnegie-Mel lon University (USA)

25

Definite Clause Translation Grammars

Harvey Abramson

Department of Computer Science
University of Bristh Columbia

Vancouver, B. C. Canada

In this paper we introduce Definite Clause

Translation Grammars, a new class of logic
grammars which genera lizes Defin ite Clause

Grammars and which may be thought of as a
logical implementation of Attribute Grammars.

Definite Clause Translation Grammars permit
the specification of the syntax and semantics

of a language: the syntax is specified as in
Definite Clause Grammars; but the semantics

is specified by one or more semantic ru les in
the form of Horn clauses attached to each
node of the parse tree (automatical ly created

during syntactic analysis), and which control

traversal(s) of the parse tree and computation
of attributes of each node. The semantic rules'

attached to a node constitue therefore, a local
data base for that node. The separation of
syntact ic and semantic rules is intended
to promote modu larity, simpl icity and clarity
of definition, and ease of modificat ion as
compared to Def inite Clause Grammars,
Metamorphosis Grammars, and Restriction
Grammars.

Algebraic Semantics of Logic Programming:
the Reduction Method

G. Marque-Pucheu

tcole Normale Superieure
45, rue d'Ulm 75005 Paris, France

This paper describes a new theoretical
framework to deal with the semantics of pure
logical programming: the algebra ic semantics.
This semantics is derived from fixpoint sema
ntics by the defin ition of the least fixpo int as
the solution of a system of equations in the
set of tuples of ground terms. The careful
analysis of the algebraic structure of the
substitutions (considered as operators on the
set of tuples of ground terms) enables the
algor ithmic definition (w ith the help of a
Knuth-Bendix like completion algorithm) of a
large class of syntactical ly simple programs.
This class conta ins some classes of theoretical

26

abstracts

interest (clausal form of decidable subclasses
of the first order predicate ca lculus) and some
classical list manipulation programs. For these
classes, the fo llowing three properties hold:

- The least model has a simple algebraic
structure.

- The halting problem is decidable.
- Each logic program is equ iva lent to a

logic program running in goal-size linear
non-determin istic time.

Unfortunately, this optimisation in non
deterministic time cannot be used in practical
implementation, the number of clauses in the
improved program being exponentia ly large.
Th is fact can lead to an "improved" program
with a worst deterministic running time.

Real-Time Functional Queue Operatings
Using the Logical Variable

W F. Clocksin

Programming Research Croup
University of Oxford

Keble Road, Oxford OX1 3OD, UK

Hood and Melville describe an efficient
functional (no side-effects) implementation
of FIFO queue operations, in which it is not
necessary to copy the entire queue for each
insertion operation. The implementation allows
constant time access to both ends of the
queue, but the withdrawal of an element from
the queue requires the reversa l of a list of
lebgth k when k insertions have been per
formed since the previous withdrawal. Burton
has independently described a sim ilar functional
implementation which uses essentially the
same trick of deferring reversa ls. Hood and
Melvil le also suggest but do not demonstrate
the existence of a more complicated real-time
version, which would require the list reversal
to be distributed over a number of operations.

The logical variable, a device avai lable to
practitioners of logic programming, permis a
very simple functiona l implementation of the
queue operations: no reversals or copyings
are required, and at most two conses are
performed per operation. By criteria given by
Hood and Melville th is would constitute a rea l
time implementation.

The Personal Sequental Inference Machine
(Sim-P or PSI)

Outline of its Architecture
and Hardware System

S. Uchida, M. Yokota, A. Yamamoto, K. Taki,
H. Nishikawa, T Chikayama, T Hattori

ICOT, Japan

In the framework of the fifth generation

computer project, the development of soft
ware and hardware tools are planned . One

of the most important tools is the sequential
inference mach ine (SIM). SIM is considered

as a personal computer and several SIMs are
planned to be developed in the in itia l stage of

the project.
Since SIM is planned to be used for soft

ware research such as a natura l language

understanding system and an expert system,

it is desirable that SIM can run very fast and
process large programs. For this kind of

purposes, super personal machine shou ld be

appropriate. On the other hand, interactive

use of a computer is often important in the
development of various experimental pro

grams. For this purpose, a medium perfor
mance machine, wh ich is relatively cheap and

can be copied to share it by a few users, is
more appropriate.

In the course of the development, two types
of SIM are planned. One of them is the per
sonal sequential inference machine which is
cal led "PSI" or "SIM-P". another one is the
super personal model of SIM which is called
"Super PSI" or "SIM-C".

PS I is designed to be a med ium perfor
mance personal machine which supports the
logic programming language KL0 which is also
ca lled the version 0 of FGKL (Fifth Generation
Kernel Language). And PS I is designed to
attain about 20-30 K-LIPS (Logical Inference
Per Second). On the other hand, Super PSI
will be designed to be a high performance
machine which is planned to attain 1 00K-1 M
LIPS.

In this document, functional specification of
the machine architecture (PSI or SIM-P arch i
tecture) is described. As this document is a
tentative report of the machine design, the
content wil l be changed in the course of detail
design and implementation processes.

Toward a New Generation Computer
Architecture

S. Uchida

!COT, Japan

This paper outlines the research and develop
ment plan for the Fifth Generation Computer
Project from the view point of computer archi
tecture. The architectural goal of this project
is to develop the basic technology to build
a highly parallel processor which supports a
logic programming language. As intermediate
goals, a parallel inference machine, a know
ledge base machine and a sequential infer
ence machine are considered.

In the paper, an approach to the goal is
introduced as well as motivations of the plan
ning and its technological background.

Inference Machine

S. Uchida

!COT, Japan

In this paper, the research and development
plan for computer architecture in the fifth
generation computer system project (FGCS
Project) is described, focusing on the research
on the inference machine.

Inference machines planned in this project
can be classified into two types. One is a
sequential inference machine and another is a
parallel inference machine.

The sequential inference machine is to be
developed to provide researchers with an effi
cient programming environment. It is designed
as a personal computer which supports a logic
programming language named KL0. This is an
immediate development target and its design
philosophy and machine characteristics are
described.

The parallel inference machine which is one
of the ultimate goals of this project is in a
basic research stage and thus, an abstract
discussion is made for introducing current
research status and future research direction.

APES: A User Manual

Peter Hammond

Imperial College, London, UK

APES (A Prolog Expert System Shell) is a

abstracts

su ite of modules which can be used to cons
truct domain dependent expert systems.

This report describes the facilities provided
in a micro-PROLOG implementation of APES
and its compatibi lity with the Simple front-end
to micro-PROLOG . The subcomponent in
APES which handles uncertain information is
not yet available but will be described in a
fu.ture version of this report.

Learning Algebraic Methods from Examples
- A Progress Report

Bernard Silver

Department of Artificial Intelligence
University of Edinburgh, UK

This paper describes LP, a program that
learns new methods of solving equations from
worked examples. The program is intended

to be part of a self-improving algebra system.
The paper also indicates possible future

directions for development of LP, and dis
cusses its relationship to other systems.

LP is implemented in PROLOG.

The Role of Truth Maintenance
in Expert Systems

Stephen J. Todd

Marconi Research Centre
Great Baddow

Essex CM2 8HN, England

An important feature of "real world" pro
blems is that they often involve the use of
knowledge which is either incomplete or likely
to change. In many applications, a key per
formance criterion for an Expert System is its
ability to produce "robust" plans or advice
that can be quickly updated. These factors
place great emphasis on designing flexible
systems that can deal effectively with incre
mental changes in information. This paper
compares work by Doyle and McAllester on
Truth Maintenance Systems and. considers
their use as a basis for building flexible pro
blem-solving systems.

Programming Meta-Logical Operations
in Prolog

R. A. O'Keefe

Department of Artificial Intelligence
University of Edinburgh, UK

This paper presents some common meta
logical operations and shows how they may
be coded in Prolog. It may be regarded as an
appendix to "Programming in Prolog".

Protocol Verification via Executable
Logic Specifications

Deepinder P. Sidhu

Research and Development Division
SDC 6 A Burroughs Company

Paoli, PA 19301, USA

This paper discusses the use of logic pro
gramming techniques in the specification and
verification of communication protocols. The

protocol specifications discussed are formal
and directly executable. The advantages of
executable specifications are: (1) the specifica
tion is itself a prototype of the specified sys
tem, (2) incremental development of specifica
tions is possible, (3) behavior exhibited by the
specification when executed can be used to
check conformity of specification with require
ments. We discuss Horn clause logic, which
has a procedural interpretation, and the pre
dicate logic programming language, PROLOG,
to specify and verify the functional correc
tness of protocols . The PROLOG system
possesses a powerful pattern-matching

feature which is based on unification.

PARLOG: A Parallel Logic
Programming Language

Keith L. Ckack & Steve Gregory

Imperial College
London, UK.

PARLOG is a logic programming language in
the sense that nearly every definition and
query can be read as a sentence of predicate

27

· . abstracts

logic. It differs from PROLOG in incorporating
parallel modes of evaluation. For reasons of
efficient implementation, it distinguishes and
separates and-parallel and or-parallel evaluation.

PAR LOG relations are divided into two
types: and-relations and or-relations. A se
quence of and-relation calls can be evaluated
in parallel with shared variables acting as
commun ication channels . On ly one solution to

each ca ll is computed.
A sequence of or-relation calls is evaluated

sequential ly but all the solutions are found by
a parallel exploration of the different evaluation
paths. A set constructor provides the main
interface between and-relations and or-rela

tions. This wraps up all the so lutions to a
sequence of or-relation calls a list The solu- ·
t ion list can be concurrently consumed by an

and-relation call.
The and-paral lel definitions of relations that

w ill only be used in a single functional mode
can be given using conditional equations. This
gives PARLOG the syntactic conven ience of

functiona l expressions when non-determinism
is not required. Functions can be invoked
eagerly or lazily; the eager evaluation of
nested function cal ls corresponds to and
parallel evaluation of conjoined relation calls.

This paper is a tutorial introduction and
semi-formal definition of PARLOG. It assumes
familiarity with the general concepts of logic

programming.

Algebraic Semantics of Logic Programming:
The Reduction Method

G. Marque-Pucheu

tcole Normale Superieure
45, rue d'Ulm 75005, Paris, France

In this paper, we introduce a formalism for

explicit definition of least models of Horn
theories. This formalism enables the charac
terisation of these models for a large (algo
rithmicaly defined) class of logic programs,
including both theoretical examples (Horn
formulas in so lvable classes like extended
Skolem class) and small practical ones.

28

A Query-The-User facility
for Logic Programming

Marek Sergot

Department of Computing

Imperial College of Science and Technology

University of London

180 Queen's Gate

London SW7 2BZ England

With the aim of providing declarative input

output for logic programs, a facility is presen

ted which allows a computer system to extract

information from the user in the same way

the user extracts information from the sys

tem. All man-machine communication is con

ducted in a single language. Sample dialogues

illustrate the potential of this facility in a

number of application areas, particularly for

education and for the construction of expert

systems. The approach is criticized to identify

directions for future work.

A Simple Dialogue in Polish: Interactive
Railway Guide

Stanislaw Szpakowicz

l_nstitute of Informatics

Warsaw University

P.O.B. 1210, 00-90 Warszawa Polland

Marek $widzinski

Institute of Polish Language

Warsaw University

Krakowskie Przedmiescie 26/28,

00-325 Warszawa, Poland

A simple train timetable information system

has been implemented in the Prolog program

ming language. It is a case study in dialogue

systems design, in Prolog programming and in

the processing of Polish texts. In this paper,

the latter aspect of the experiment is brought

into focus. The programs is the first one to·

perform what can be called a full analysis of
Polish sentences.

Object Oriented Programming
in Concurrent Prolog

Ehud Shapiro

Department of Applied Mathematics
Weizmann Institute of Science

Rehovot 76100, Israel

Akikazu Takeuchi

Research Center
Institute for New Generation

Computer Technology
Mita-Kokusai buildinf, 21 F.

4-28, Mita 1-chome, Minato-ku, Tokyo 108
Japan

It is shown that the basic operations of
object-oriented programming languages -
creating an object, sending and receiv ing
messages, modifying an object's state, and
forming class-superclass hierarchies - can be

implemented naturally in Concurrent Prolog. In
addition, a new object-oriented programming
paradigm, called incomplete messages, is
presented. This paradigm subsumes stream
communication, and greatly simplifies the
complexity of programs defining communica
tion networks and protocols for managing
shared resources. Several interesting programs
are presented, including a multiple-window
manager. All programs have been developed
and tested using the Concurrent Prolog inter
preter described.

Interprocess Communication
in Concurrent Prolog

Akikazu Takeuchi, Kouichi Furukawa

Research Center
Institute for New Generation Computer

Technology
Mita-Kokusai Building, ?1 F.

4-28, Mita 1-chome, Minato-ku, Tokyo 108
Japan

Concurrent Prolog is a logic-based concurrent
programming language which was designed
and implemented on DEC-10 Pro log by E.
Shapiro. In this paper, we show that the parallel
computation in Concurrent Prolog is expres
sed in terms of message passings among

distributed activities and that the language can
describe parallel phenomena in the same way
as actor-formalism does. Then we examine
the expressive power of communication
mechanism based on shared log ica l variables
and show that the language can express both
unbounded buffer and bounded buffer stream
communication only by read-only annotation
and shared logical variables. Finally the new
feature on Concurrent Prolog is presented,
which will be very useful in describing the
dynamic formation and reformat ion of com
munication network.

ESP
as a Preliminary Kernel Language

of Fifth Generation Computers

Takashi Chikayama

Institute for New Generation Computer Technology
Research Center

Mita Kokusa i Building, 21 F.
4-28, Mita 1-chome, Minato-ku, Tokyo 108

Japan

In the first three-year development stage of
the fifth generation computer systems project,
a series of high-performance personal compu
ters called sequentia l inference machines are
being developed at ICOT Research Center.
The machines have a high-level machine lan
guage called KL0, which is a PROLOG-based
logic language w ith various extensions. In the
software development of the sequential infer
ence machines, ESP, a software-supported
yet higher level language copiled into KL0, is
used instead of directly using KL0. This paper
describes the design the language system of
sequential inference machines. Description
wil l be centralized on ESP with an overview
of KL0.

Learning Equation Solving Methods
from Examples

Bernard Silver

Department of Artificial Intelligence
University of Edinburgh, UK

This paper describes LP, a PROLOG pro
gram which learns new techniques for solving

abstracts

symbolic equations. LP learns the new techni
ques by examining worked examples. These
techniques can then be tested on some new
problems.

The equations used by LP are taken from A
level mathematics papers (A levels are exams
taken at 18 and are used for university selec
tion). Other work in this field has concentrated
on much simpler equations.

LP uses techniques from the planning field,
as well as more trad itiona l learning methods.

The Personal Sequential Inference Machine
(PSI) : Its Design Philosophy and Machine

Architecture

Hiroshi Nishikawa, Minoru Yokota,
Akira Yamamoto, Kazuo Taki, Shunichi Uchida

Institute for New Generation Computer Technology
Mita-Kokusai Bu ild ing, 21 F.

4-28, Mita 1-chome, Minato-ku, Tokyo 108
Japan

As a software development tool of the Fifth
Generation Computer Systems (FGCS) project,
a personal sequential inference machine is
now being developed. The machine is inten
ded to be a workbench to produce a lot of
software indispensable to our project. Its
machine architecture is dedicated to effectively
execute a logic programming language,
named KL0, and is equ ipped with a large main
memory, and devices for man-machine com
munication. We estimate its execution speed
is about 20K to 30K LIPS. This paper presents
the des ign objectives and the architectural
features of the personal sequential inference
machine.

The Proposal of Prolog Machine Based
on Reduction Mechanism

R. Onai, H. Shimizu, N. Ito, K. Masuda

First Research Laboratory
Research Center

ICOT, Japan

When we look at the executing process of
a Prolog program, we find the close similarity
between the process and graph reduction.

Therefore, we design the Prolog machine
based on graph reduction mechanism.

There are two kinds of parallel execution.
One is And-parallel execution and the other is
Or-para llel execution. In And-parallel execution,
if there is a variable shared among And-literals,
we have to check the consistency in solutions
of the shared variable . This check is complica
ted .. On the other hand, there happens re
source explos ion in Or-para llel. Though we
should consider the both paral lel execution, in
the beginning we realize Or-paral lel execution
by picking up control of the reducib le packets
and the swapping control.

This memo proposes the reduction machine
which executes Prolog programs in Or-para llel.

The machine features are as follows:

(1) Packet (with tag) commun ication method
is adopted in order to realize highly distributed
computation.

(2) Or-literals are executed in para llel and
And- litera ls are executed sequential ly.

(3) A processor and a memory are divided
into some banks for highly pa rallel processing.

This memo describes

(1) four kinds of memories for packets,
caluse information, and structure data

(2) two kinds of subunits for unification
(3) three kinds of networks
(4) one simple execution example.

Using Proof Plans to Control Deduction

Lincoln Wallen

Department of Artificial Intelligence
Edinburgh, UK

This paper describes aspects of MT; an
experimental theorem proving system deve
loped to investigate ways of controlling the
process of deduction, Proof plans, constructed
on the basis of properties of the conjecture to
be proved, provide the system with guidance
at two distinct fevels. At the global level the
proof plan indicates how the main proof may
be decomposed into several component proofs,
each carried out in a separate proof module.
At the loca l level the proof plan introduces
constraints on the form of proof tree genera
ted within each proof module. This reduces
the complexity of the proofs required and

29

allows or the application of special purpose
methods to isolated areas of the main proof.
An example proof plan for a simple proof by
induction is developed to illustrate how useful
patterns of control may be specified within
the system.

A Subset of Concurrent Prolog
and Its Interpreter

Ehud Y Shapiro

Department of Applied Mathematics
The Weizmann Institute of Science

Rehovot 76100, ISRAEL

Concurrent Prolog is a variant of the pro
gramming language Prolog, which is intended
to support concurrent programming and parallel
execution. The language incorporates guarded
command indeterminacy, dataflow-like syn
chronization, and a commitment mechanism
similar to nested transactions.

This paper reports on a subset of Concurrent
Prolog, for which we have developed a wor
king interpreter. It demonstrates expressive
power of the language via Concurrent Prolog
programs that solve benchmark concurrent
programming prob lems. It describes in full
detail an interpreter for the language, written
in Prolog, which can execute these programs.

Prolog Compared With LISP ?

R. A. O'Keefe

DAI Edinburgh, UK

In the recent ACM Symposium on LISP and
Functional Programming, there was a paper
with the title "Prolog Compared With LISP".
In it, Gutierrez presents a program in LISP,
and a related program in Prolog, and uses the
inferior performance of the latter to suggest in
strong terms that advocates of Prolog may
have over-stated its performance. However,
his program makes very poor use of Prolog. In
this article, I point out which features of
Prolog have been misused and give guidelines
for their proper use. I also compare a new
Prolog and LISP program performing a similar
task, and find that the execution times are
comparable. This is in accord with earlier
results.

30

abstracts

Outline of PSI

S. Uchida, et al.

ICOT, Japan

PSI is a personal computer system being
developed as a tool for providing researchers

with an efficient programing environment. It

directly supports a logic programming lan

guage, KL0 (Fifth Generation Kernel Language,

Version 0), with firmware and hardware.
Its interpreter is implemented in the firm

ware and several hardware mechanisms are

provided to attain almost the same levels
of performance as the DEC-10 Prolog on

DEC2060. It also provides the user w ith a
large memory space, 40 bits X 2 to 16 MW,

which is essential for developing actual appli

cation programs like as expert system.

To make efficient man-machine interaction

possible, such input and output devices as

bit-map display, pointing device are key-board
are provided. A local area network is also beis

developed to build a distributed system.

A relational Database Machine "Delta"

Shigeki Shibayama, Takeo Kakuta, Nobuyoshi
Miyazaki, haruo Yokota, Kunio Murakami

Institute for New Generation
Computer Technology

Japan

Japan's Fifth Generation Computer System

(FGCS) project is scheduled to be a ten-year

long activity. Knowledge Base Machine is one

of its expected achievements in that research

period. When completed, KBM (Knowledge

Base Machine) will be seen as an Intelligent

Knowledge store, which co-operates inter

actively with the inference-based new archi

tecture computers, to provide users with

natural and intelligent interfaces to the conso

lidated system.

In our first-stage three-year project, the pri

mary object of KBM (Knowledge Base Machine)

Group is to provide a working Relationa l Data

base Machine which serves multiple of

Sequential Inference Machine (SIM) users via

a local area network (LAN). Investigation for

the methods to amalgamate database manage

ment system (DBMS) and logic programming

language, represented now by Prolog, is also

an important subject which we are now greatly

interested.

Japan's Fifth Generation Computer Project

- A trip report

Ehud Y Shapiro

Department of Applied Mathematics

Weizmann Institute of Science

Rehovot 76100, Israel

Last April Japan's Ministry of International

Trade and Administration (MIi:I), in cooperation

with eight leading computer companies, laun

ched a resea rch project to develop computer

systems for the 1990's. The pro ject, called

the Fifth Generation Computers Project, will·

span 10 years Its ultimate goal is to develop

integrated systems - both hardware and soft

vvare - suitable for the major computer appli

cation for the next decade, identified by the

Japaneses as "Knowledge Information Pro

cessing". Even though it may ultimately have

applicable results, the current focus of the

project is basic research , rather than the

development of commercial products.

In addition to bringing Japan into a leading

position in the computer industry, the project

is expected to elevate Japan's prestige in the

world. It will refute accusations that Japan

is only exploiting knowledge imported from

abroad, without contributing any of its own to

benefit the rest of the world. Hence the pro

ject aims at original research , and plans to

make its results available to the international

research community.

I was the first non-Japanese researcher

invited for a working visit to ICOT, the Insti

tute for New Generation Computer Technology,

which conducts the project. Due to the nature

of the project I was given explicit permission,

even encouragement, to report on everything

I saw and heard during my visit; hence this

report.

LOFE: A Language for Virtual
Relational Data Base

J. K. Debenham and G. M. McGrath

School of Computing Sciences
NSW Institute of Technology

P.O. Box 123, Broadway
NSW 2007, Austra lia and Telecom. Australia

It is assumed that the reader will be familiar
with logic as a data base language, as dis
cussed for example by Gal laire, M inker and
Nicholas (1978) of Dahl (1982).

In this paper we describe our front end lan
guage; LOFE, which is based on logic and
designed for virtua l relational data base. It is
well-known that data base up-dates, deletes
and integrity checks can be phrased in logic
(Galla ire, Minker and Nicholas, 1978): we wi ll
not discuss them. We will concentrate solely
on the query fac ilities in our language.

First, we discuss the role of front end lan
guages in data base, and note criteria for their
design. We then define LOFE, a powerfu l data
base query language for the high level user.
A declarative interpretation of LOFE is given;
this is illustrated w ith examples. Then the
imperative interpretation is discussed and
comments are made on an experimental
implementation. Finally we show that a natu
ral restrict ion of LOFE provides an adequate
and simple language for the low level user,
and that this restriction will prevent inefficient
usage.

Protocol Verification via Executable
Logic Specifications

Deepinder P. Sidhu

Research and Development Division
SDC - A Burroughs Company

Paoli, PA 19301, USA

This paper discusses the use of logic pro
gramming techniques in the specification and
verification of communication protocols. The
protocol specifications discussed are formal
and directly executable. The advantages of
executable specifications are : (1) the specifi
cation is itself a prototype of the specified
system, (2) incremental development of speci
fications is possible, (3) behavior exhibited by
the specification when executed can be used

abstracts

to check conformity of specification with re
quirements. We discuss Horn clause log ic,
which has a procedural interpretation, and
the predicate log ic programming language,
PROLOG, to specify and verify the functional
correctness of protocols. The PROLOG sys
tem possesses a powerful pattern-match ing
feature which is based on unification.

Logic and Programming Methodology

E W. Elcock

Department of Computer Science
The University of Western Ontario
London, Ontario, Canada N6A 5B9

The intent of the paper is to expose and
compare different methodologies in the
context of the weell-know and pedagogically
attractive eight-queens problem. In particu lar,
the paper attemps to exhibit the richness of
the space of logical transforms of the problem
specification and illustrates how suchrichness
might be exploited to obtain different metho
dologica l objectives

Although few of the threads are novel, the
author hopes that the fabric will be found
pleasing

Goal Selection Strategies in Horn Clause
Programming

E W. Elcock

University of Western Ontario
Canada

It is arguable that knowledge representation
and use should be founded on a complete
system. For example, if the knowledge repre
sentation language is to be first order logic,
then we would like to express the knowledge
K under the assumption that we have available
a sequenthood procedure which is complete
in the sense that any true sequent K =< G is
demonstrably true by the procedure. For
example, our knowledge system might be
based on f in ite clausal sequents for which
there is indeed a procedure using resolution
which has the completeness property

For resolution systems it is well known that
selection strategies play a vital ro le in deter-

mining the pragmatics of such systems and
design of strategies has been an ongo ing
research activity.

Over the last decade an incomplete system
called Prolog has been elaborated and has
become hidely used. Prolog has intriguing
analogies with Absys - an assertive program
ming system developed in 1968 by Foster and
Elcock. This note attemps to illustrate some
issues of incompleteness by comparing some
aspects of the two systems.

On Database Systems Development
Through Logic

Veronica Dahl

Buenos Aires University, Argentina

The use of logic as a single tool for forma
lizing and implementing different aspects of
database systems in a uniform manner is dis
cussed. The discussion focuses on relationa l
databases with deductive capabilities and very
high-level querying and defining features. The
computational interpretation of logic is briefly
reviewed, and then several pros and cons
concerning the description of data, programs,
queries, and language parser in terms of logic
programs are examined. The inadequacies are
discussed, and it is shown that they can be
overcome by the introduction of conven ient
extensions into log ic programming. Final ly, an
experimental database query system with a
natural language front end, implemented in
PROLOG, is presented as an illustration of
these concepts. A descript ion of the latter
from the user's point of view and a sample
consultat ion session in Spanish are included.

Translating Spanish into Logic
through Logic

Veronica Dahl

Department of Mathematics
University of Buenos Aires

Buenos Aires, Argentina

We discuss the use of logic for natural (NL)
processing, both as an internal query language
and as a programming tool. Some extensions
of standard predicate calculus are motivated

31

by the first of these roles. A logical system
including these extensions is informally des
cribed. It incorporates semantic as wel l as
syntactic NL features, and its semantics in a
given interpretation (or data base) determines
the answer-extraction process. We also
present logic-programmed analyser that trans
lates Spanish into this system. It equates
semantic agreement with syntactic well
formedness, abd can detect certain presup
positions, resolve certain ambiguities and
reflect relations among sets.

Automatic Generation of Explanations
of Results from Knowledge Bases

Adrian Walker

I BM Research Laboratory
San Jose, California 95193, USA

It has been pointed out that advice from a
knowledge base may only useful if the reasons
for the advice can be explained. For example,
given the advice "sell all your stock and invest
in Corporation X", most people would want
reasons.

We cons ider knowledge based programs
written in the language Prolog, and we give a
source-source transform which causes such
programs to produce explanations of their
own results. The transform, which is itself
written in Prolog, can reduce or eliminate the
programming which is norma lly needed to
provide explanations. Control is provided over
the level of detail in an explanation. A maxi
mum-detai l explanation is a proof. We give an
example in the domain of airline flight booking.

Towards a Programming Language
Based on the Notion of Two-Level Grammar

Jan Maluszvnski

Software Systems Research Center
Link6ping University

581 83 Link6ping, Sweden

I nstitut of Computer Science
Polish Academy of Sciences

00-901 Warsaw PKln P.O. Box 22, Poland

The paper deals with the problem of com
puting re lations from their abstract non-alga-

32

abstracts

rithmic specifications. The formalism under
consideration is that of two-level grammars,
introduced original ly for defin ing languages. In
this formalism the intuitions behind the formal
definition can be directly expressed by the
grammatical rules, which may have a form
close to the statements of natural language.
A notion of the relation specified by a two
leve l grammar is introduced and computability
of such relations is discussed . For a class of
two-level grammars, called the transparent
grammars, an algorithm is outlined for compu
ting the relations specified by the grammars
of this class. The transparent grammars tum
out to be a generalization of the formal ism of
Horn clauses, and the algorithm is based on
unification. The language generated by a two
level grammar can be used as an additional
tool for controlling computations A trans
parent two- level grammar can be considered a
non-algorithmic program specifying an input/
/output relation. The computational algorithm
defines an operationa l semantics of such pro
grams

Grammatical Unification

Jan Maluszvnski

Software Systems Research Center
Link6ping University

581 83 Link6ping, Sweden

Institute of Computer Science
Polish Academy of Sciences

00-901 Warsaw PKIN P.O. Box 22, Poland

Jorgen Fischer Nilsson

Department of Computer Science
Technical University of Denmark

Building 343 and 344
2800 Lyngby, Denmark

This paper presents a generalization of the
concept of unification introduced by Robinson
for resolution logic. Unification is the central
procedure for performing manipulation of
symbo li c structures in resolution theorem
proving . Our interest in unification relates
however in particular to Horn clause logic pro
gramming and more specif ical ly to Prolog
systems.

The structures unified in logic programming
systems are atoms and terms constructed in

the standard way from predicates and func
tors. The Herbrand universe of a given logic
program can be specified by an unambiguous
context-free grammar constructed in a stan
dard way.

This grammar dtermines also the syntax of
non-ground terms in a sense made clear
below. The generalized unification discussed
in this paper, called grammatica l unification,
applies to strings whose structure is deter
mined by an arbitrary unambiguous context
free grammar. It is shown that grammatical
unification can be reduced to usual unification.
This makes it possible to define a version
of Prolog in which the syntax of atoms and
terms for some particular application could be
specified by the user by means of an arbitrary
unambiguous context-free grammar. In this
case a logic program could apply to the
specific data representat ions used in the
application area.

Derivation de Programmes Prolog a Partir
de Specifications Algebriques

P. Deransart

lnria
Domaine de Voluceau

BP 105
78153 Le Chesnay, France

Une methode de derivation systematique
cle programme PROLOG a partir de specifica
tion algebriques dites canoniques est pre
sentee. Les programmes obtenus ont un
comportement equivalent a celui de la specifi
cation. Ceci permet soit de prouver des pro
prietes du programme derive, soit de prevoir
le comportement du programme, en particulier
dans les cas delicats ou la "resersibilite" du
programme est requise.

LISLOG
Programmation en Logique

en Environnement LISP

S. Bourgault, M. Dincbas, D. Feuerstein

CNET - Lannion/SLC, France

LISLOG se compose d'un interpreteur du
langage PROLOG etendu, ecrit en LISP ainsi

qu'un editeur de clauses permettant, sous
LISLOG, la creation ou la modification des
bases de conna issances, clauses, litteraux ou
termes. En outre, LISLOG offre la possibil ite
d'appeler des programmes LISP a l'interieur
des clauses PROLOG.

Ce papier presente brievement le langage
et !'utilisation du systeme.

Problemes de Gestion de Memoire
dans les lnterpreteurs Prolog

Y Bekkers, B. Canet, L. Ungaro

INRIA - IR ISA Rennes, France

.Apres une breve presentation du langage
Prolog (ampute des predicats eva luables),
nous exposons les problemes de represen
tation et de recuperat ion de memoire.
L'accent est mis sur la complexite introduite
par l'indetermin isme.

Presentation de PROLOG/CNET
Version Pascal/Multics

G. Barberye, T Joubert, M. Martin

Centre National d'ttudes des Telecommunications
92131 lssy-les-Moulineaux, France

Dans le cadre des etudes sur les langages
de specification et outils associes, le CNET
Paris .A s' interesse depu is maintenant deux
ans aux systemes PROLOG developpes par le
GIA de Marseille-Luminy.

L' out ii recherche par I' equipe eta it alors un
systeme interact if capab le d'effectuer du
"calcul formel'' sur des "arborescences".

Au debut de l'annee 80, l'equipe s'est fam i
liarisee avec PROLOG dans son implementa
t io n FORTRAN / IRIS 80; ce t te ve rsion a
permis de voir les bons cotes du langage et
les moins bons qui pouvaient facilement etre
mis sur le "compte" de !'implementation.

Ainsi, nous avons acquis une version plus
recente de PROLOG fonctionnant sur Exorciser
Motorola et int roduit un certain nombre de
facilites sur cette dern iere version .

C'est a l'aide de ce "systeme" que nous
avons developpe un outil appele OASIS inte
g ra lement ecrit en PROLOG et sur leq uel
nous avons "traite" des specifications et des
representations de types abstraits.

Le systeme de developpement Exo rciser II
se montrant insuffisant pour la poursuite de

· abstracts

nos investigations (volume memoire insuffi
sant, teinps de traitement trop longs ..) nous
avons dec id e de transporter !'application
OASIS et le langage qui lu i serva it de support:
PROLOG.

C'est de cette fa<;:on qu'est nee la version
PROLOG/PASCAL definie.

PROLOG : A Tutorial Introduction

R. A. Sammut and C A. Sammut

Department of Mathematics
and Computer Science
St. Joseph's University

5600 City Road, Philadelphia, PA 19131, USA

PROLOG is a language which realizes the
concept of us ing pred icate logic as a pro
gramming language. Since its first implemen
tat ion approximately ten years ago, it has
found applications in a variety of "symbol pro
cessing" areas such as natural language
processing, deductive information retrieval,
compiler writing, symbolic algebra, computer
aided design and robot problem-solving.

This paper introduces the fundamental
concepts which are unique to programming in

, PRO LOG by developing and ana lyzing a series
of smal l programs for deductive information
retrieval, the solution of the "N-queens" pro
blem and a simple exercise in computer-aided
design.

Optimal Fixedpoints of Logic Programs

J.-L. Lassez and M. J. Maher

Department of Computer Science
University of Melbourne

Parkville, Victori a, 3052, Austra lia

From a declarative programming point of
view, Manna and Shamir's opt imal fixedpoint
semantics is far more appealing than the least
fixedpoint semantics. However in standard
formalisms of rec ursive programm ing the
optimal fixedpoint is not computable while the
least fixedpoint is. In the context of logic pro
gramming we show that the optimal fixed
point is equal to the least fixedpo int and is
computable. Furthermore the optima l fixed
point semantics is consistent w ith Van Emden
and Kowa lski 's semantics of logic programs

An Approach to Proving Properties
of Non-Terminating Logic Programs

Paolo Ciancarini, Pierpaolo Degano

ISi - Univers ita di Pisa
Pisa , Italy

Th is paper concerns proving properties of
first order logic processes, i. e. programs that
perform non-terminating computations on infi
nite data structures. It is based on the concept
of symbolic computation cycle, and states that
a property holds when it is invariant with
respect to a symbol ic computation cycle .

Experimenting on Euclidean Domains With
a Non-Deterministic Programming Language

Based on First Order Logic: PROLOG

Regina Llopis de Trias

Division de Matematicas

Universidad Aut6noma
Canto Blanco

Madrid 34, Spain

Blanca Ortega de Zubizarreta

Departamento de Matematicas Y Ciencia
de la Computaci6n

Univers idad Simon Boliva r
Caracas, Venezuela

The programming language PROLOG based
on f irst order log ic and its clausa l syntax can
be used in a natural fashion in a symbolic and
algebraic system in computers. Its bu ilt-in
.ASSERT and ABO LI SH procedures can create
an environment for the notions of algebraic
doma ins and categories. An initial algebraic
modular system was created working with the
euclidean domains integers and polynomia ls.

A multivariate polynomial manipulator was
defined using PROLOG clauses which are
more readable than LISP defined lambda-func
tions. Factorisation in the eucl idean domains
?Z and O [x] was done by means of simi lar
algorithms using the non-determin istic capabi-
1 ities of PROLOG. berlekamp's polynomial
factorisation algorithm was implemented and
compared with the "non-deterministic" one
on polynomia ls of smal l degree over the
Galois Fields ?Z 2 and ?Z 3.

33

· abstracts ··

The Description in Logic of Large Commercial
Data Bases: A Methodology Put to the Test

J. K. Debenham Nswit and G. M. McGrath

Telecom., Australia

First-order predicate logic may be inter
preted as a programming language: at present
there are a variety of interpreters and compilers
for this language, PROLOG, as well as a rapidly
growing community of users. First-order pre
dicate logic may also be interpreted as a data
base language: a so called Virtual Relational
Data Base or VRDB. This second interpreta
tion has not attracted as much interest as the
former because (i) there was no complete
methodology available, and (ii) there are no
direct implementations of VRDB's available for
general use at present.

In this paper we refine the data base inter- ·
pretation of logic explicitly in terms of existing
DBMS : thus making practical experimentation
possible. A database design methodology is
presented. This methodology may be used to
systematically design models of data specified
in logic and convert from specifications to
implemented data bases. The methodology
has been employed in the design of two large
data bases.

Results of these experiments are indicated.

Completeness and Confluence Properties
of Kowalski's Clause Graph Calculus

Gert Smolka

Universitat Karlsruhe
Fakultat fur lnformatik

Postfach 63 80, D 7500 Karlsruhe
West Germany

This internal report consists of two parts.
The first part outlines the main results of my
thesis. Further results and the full proofs are
given in the second part which is a reprint of
the thesis in German language.

As main result it is shown that R. Kowalski's
connection graph proof procedure terminates
with the empty clause for every unit-refutable
clause set, provided that an exhaustive search
strategy is employed. This result holds for
unrestricted tautology deletion, whereas sub
sumption requires certain precautions.

The results are shown for an improved ver
sion of the connection graph resolution rule

34

which generates fewer links than the original
one. The new inference rule not only leads to
a smaller search space but it also permits a
more efficient, implementation.

The proofs are based on refutation trees
and are applied immediately at the general
level. Hence the unsolved problems resulting
from the classical lifting techniques in the
context of clause graphs are avoided.

Several counterexamples are presented at
the propositional level. For instance it is shown
that unrestricted deletion of tautologies des
troys completeness for non-unit-refutable
clause sets. This also holds. if tautology
deletion is restricted as proposed by Bibel.

Finally the confluence of Kowalski's calculus
at the propositional level is shown. This proof
is based on Sibel's spanning property.

Intelligent Backtracking
in Plan-Based Deduction

Stanislaw Matwin, Tomasz Pietrzykowski

Universities of Ottawa and Acadia
Canada

This paper develops a method of mechanical
deduction based on graphical representation
of the structure of proofs. Attempts to find
refutation(s) are recorded in the form of plans,
corresponding to a portion of AND/OR graph
search space and representing purely deductive
structure of derivation .

This method can be applied to any initial
base (set of non-necessarily Horn clauses).
Unlike the exhaustive (blind) backtracking
which treats all the goals deducted in the
course of proof as equally probable source of
failure, this approach detects the exact source
of failure.

In this algorithm on ly a small fragment of
solution space is kept on disk as a collection
of pairs, each of which consists of a plan and
a graph of constraints. The search strategy
and the method of non-redundant processing
of individual pairs which leads to a solution (if
it exists) is presented. This approach is com
pared - on a special case - with blind back
tracking and an exponential improvement is
demonstrated.

Some important implementation problems
are discussed and top-level design of the sys
tem is presented.

It is proven that the algorithm is partially
complete in the following sense: if for a given
base a refutation exists, then - provided the
algorithm terminates - this refutation is found.

Machine PROLOG pour les Applications
d'lntelligence Artificielle: Gestion

de Memoire

Y Bekkers, B. Canet, 0. Ridoux, L. Ungaro

IRISA
Avenue du General Leclerc

35042 Rennes Cedex, France

Ce papier etudie les problemes de repre
sentation d'information et de gestion de
memoire dans les interpreteurs PROLOG.
L'accent est mis sur la recuperation. Des solu
tions sont presentees comme etude prelimi
naire a la realisation d'une machine PROLOG
pour les applications d'intelligence artificielle.

Combinatorially Implosive Algorithms

William A. Kornfeld

MIT Al LAB
Cambridge, MA, USA

Applications of parallel processing languages
to reducing the average time behavior of
search algorithms are discussed. It is argued
that a parallel algorithm can dramatically
reduce the average time behavior even if the
algorithm is run in a time-slicing fashion on a
single processor. A language is developed
with primitives to facilitate the construction of
algorithms of this type.

Equality for Prolog

William A. Kornfeld

MIT Artificial Intelligence Laboratory
545 Technology Square

Cambridge, Massachusetts 02139, USA

The language Prolog has been extended by
c1llowing the inclusion of theorems about
uquality. When a unification of two terms that
clo not unify syntactically is attempted, an
E ·quality theorern may be used to prove the

two terms equal. If it is possible to prove
that the tgwo terms are equal the unification
succeeds with the variable bindings introduced
by the equality proof. It is shown that this
mechanism significantly improves the power
of Prolog. Sophisticated data abstraction with
all be advantages of object-oriented program
ming is available. techniques for passing par
tia I ly instantiated data are described that
extends the "multi-use" capabilities of the
language, improve the efficiency of some pro
grams, and allow the implementation of arith
metic relations that are both general and
efficient. The modifications to standard Prolog
are simple and straightforward and in addition
the computational overhead for the extra
linguistic power is not sign ificant. Equality
theorems will probably play an important rol@
in future logic programming systems.

Logic for Natural Language Analysis

Fernando Pereira

Artificial Intelligence Center
Computer Science and Technology Division

SRI International, USA

Th is work investigates the use of formal
logic as a practical tool for describing the
syntax and semantics of a subset of English,
and building a computer program to answer
data base queries expressed in that subset.

To achieve an intimate connection between
logical descriptions and computer programs,
all the descriptions given are in the definite
clause subset of the predicate calculus, which
is the basis of the programming language
Prolog. The logical descriptions run directly as
efficient Prolog programs.

Three aspects of the use of logic in natural
language analysis are covered: formal repre
sentation of syntactic rules by means of a
grammar formalism based on logic, extra
position grammars; forma l semantics for the
chosen English subset, appropriate for data
base queries; informal semantic and prag
matic rules to translate analysed sentences
into their formal semantics.

On these three aspects, the work improves
and extends earlier work by Colmerauer and
others, where the use of computational logic
in language analysis was first introduced.

abstracts -

Implementing Clauses Indexing in
Deductive Database Systems

John W. Lloyd

Department of Computer science
University of Melbourne

Australia

The paper presents a file design for handling
partial-match queries which has wide applica
tion to knowledge-based artificial intelligence
systems and relational database systems. The
advantages of the design are simplicity of
implementation, the ability to cope with
dynamic files and the ability to optimize per
formance with respect to the average number
of disk access required to answer a query.

Partial-Match Retrieval for Dynamic Files

John W. Lloyd, K. Ramamohanarao

Department of Computer Science
University of Melbourne

Australia

This paper studies file designs for answering
partial-match queries for dynamic files. A par
tial-match query is a specification of the va lue
of zero or more fie lds in a record. An answer
to a query consists of a listing of all records in
the file satisfying the values specified.

The main contribution is a general method
whereby certain primary key hashing schemes
can be extended to partial-match retrieval
schemes. These partial-match retrieval designs
can handle arbitrarily dynamic files and can be
optimized with respect to the number of page
faults required to answer a query.

We illustrate the method by considering in
detail the extension of two recent dynamic
primary key hashing schems.

The file designs have application to clause
indexing in deductive databases.

Dynamic Hashing Schemes

K. Ramamohanarao, John W. Lloyd

Department of Computer Science
University of Melbourne

Australia

In this paper, we study two new dynamic
hashing schemes for primary key retrieval.
The schemes are related to those of Scoll,

Litwin and Larson. The first scheme is parti
cularly simple and elegant and has certain per
formance advantages over earlier schemes.
We give a detailed mathematical analysis
of this scheme and also present simulation
results. The second scheme is essentially that
of Larson. However, we have made a number
of changes which considerably simplify his
scheme.

The file designs have application to clause
indexing in deductive databases.

Partial-Match Retrieval Using Hashing
and Descriptors

K. Ramamohanarao, John W. Lloyd,
James A. Thom

Department of Computer Science
University of Melbourne

Australia

This paper studies a part ial-match retrieval
scheme based on hash functions and descri
ptors. The emphasis is placed on showing
how the use of a descriptor file can improve
the performance of the scheme. Records in
the file are given addresses according to hash
functions for each field in the record. Fur
thermore, each page of the file has associated
with it a descriptor, which is a fixed length bit
string, determined by the records actual ly pre
sent in the page. Before a page is accessed
to see if it contains records in the answer to a
query, the descriptor for the page is checked.
This check may show that no relevant records
are on the page and hence, the page does not
have to be accessed. The method is shown to
have a very substantial performance advantage
over pure hashing schemes, when some fields
in the records have large key spaces. A
mathematical model of the scheme, plus an
algorithm for optimizing performance, is given.

The file design has application to clause
indexing in deductive databases.

An Introduction to
Deductive Database Systems

J. W. Lloyd

Department of Computer Science
University of Melbourne

Australia

This paper gives a tutorial introduction to
deductive database systems. Such systems

35

have developed largely from the combined
application of the ideas of logic programming
and relational databases. The elegant theoretical
framework for deductive database systems is
provided by first order logic. Logic is used as
a uniform language for data, programs, queries,
views and integrity constra ints. It is stressed
that it is possible to build practical and effi
cient database systems using these ideas.

Completeness of the Negation
as Failure Rule

Joxan Jaffar, Jean-Louis Lassez,
John W Lloyd

Department of Computer Science
University of Melbourne

Australia

Let P be a Horn clause logic program and
comp(P) be its completion in the sense of
Clarck. Clark gave a justification for the nega
tion as failure rule by showing that if a ground
atom A is in the finite failure set of P, then "A
is a logical consequence of comp(P), that is,
the negation as fa il ure rule is sound. We
prove here that the converse also holds, that
is, the negation as failure rule is complete.

A Qualitative Model of the Heart
for a Medical Expert System

I. Mozetic, I. Bratko, N. Lavrac, T Zrimec

Institute Jozef Stefan,
Jamova 39, Ljubljana, Yugoslavia
Faculty of Electrical Engineering,

Trzaska 25, Ljubljana
Iskra, Trzaska 2, Ljubljana

The paper describes the diagnostic part of
an expert system for the diagnosis and treat
ment of heart arrhythmias. The ECG interpre
tation module includes a qua litative model of
the heart. The model was used to automati
cally generate a rul e-base which re lates an
exhaustive dictionary of phis iological ly
possible combinations of heart arrhythmias
to their corresponding ECG descriptions. In
addit ion to the applicabil ity of this knowledge
base in the expert system, this resu lt is of
interest for the systemat isation of medica l
knowledge.

36

abstracts -

Expert Systems and Prolog

I. Bratko, Josef Stefan

Institute, Ljubljana, Yougoslavia

The basic features of rule-based systems,
pattern-directed, architecture, and PROLOG
are discussed, and their uses in the design
and implementation of Expert Systems are
assessed. The rule-based representation of
knowledge is examined with particular refer
ence to "if-then" ru les. Rule systems are
close ly related to a relatively new architecture
of software systems ca ll ed pattern-directed
systems and these are discussed in detail.
PROLOG, a non-procedural programming lan
guage, is well suited to solving prob lems
involv in g objects and re lations between
objects and examples are given in order to
il lustrate the nature of PROLOG programming.
Finally, some implementation and applications
of PROLOG are given.

Location of Logical Errors
in PASCAL Programs with an Appendix

on Implementation Problems in Waterloo
PROLOG/C

Scott Renner

Semester Report - Fall 1981
Computer Science 397, Section DM

University of Illinois, USA

The KBPA Research Project includes among
its objectives the development of programs to
aid in the location of logica l errors in PASCAL
programs. We describe some of the research
done in this area in the Fall 1981 semester,
and present poss ible plans for further work
next semester.

Trials of one of the main algorithms were
made in Waterloo PROLOG/C and problems
encountered in this otherwise conven ient sys
tem are listed in Appendix A.

A Comparison of PROLOG Systems Available
at the University of Illinois

Scott Renner

KBPA Project
University of Ill inois, USA

In this report we will summarize our findings
from our study of four Prolog systems which

are avai lable to members of the KBPA project.
We are particularly interested in how usefu l
these systems are in implementing Ehud
Shapiro's bug locating algorithms (Shapiro,
1981). A f if th Pro log system, Water loo
PRO LOG/IBM 370, has beeen acquired by
the project. As of th is date, it has not been
tested, and so it is not included in this report.

Logic Programs With Uncertainties:
A Tool for Implementing Rule-Based Systems

Ehud Y Shapiro

Department of Applied Mathematics
The Weizmann Institute of Science

Rehovot 76100, Israel

One natural way to implement rule-based
expert systems is via logic programs. The
rules in such systems are usually definite
clauses, or can easi ly be expressed as such,
and the inference mechanisms used by such
systems are built into the Prolog interpreter,
or can be implemented in Prolog without
much effort.

The one component of expert systems
which is not read ily avai lable in logic programs
is a language fo r specifying certainties of rules
and data, and a mechanism for comput ing
certa inties of conclusions, given certainties of
the premises. Clark and McCabe suggest an
implementation techn ique for solving this pro
blem. They augment each predicate in the
ru le-l anguage w ith an additiona l argument,
whose value is the certa inty of the solut ion
returned in this predicate, and augment the
condit ion of each clause with an additional
goal, whose purpose is to compute the cer
tainty of the conclusion of the clause, given
the certaint ies of solutions to the rest of the
goals in the condit ion of the clause.

In this paper we propose a different way of
implementing rule-based expert systems within
Prolog, in which evaluat ion of certainties of
solutions is carried out at the metalevel,
with in the logic program interpreter itself. This
resulting framework, called logic programs
with uncertainties, has the following proper
ties:

• It is amenable to theoretical analysis. In
part icular, a prec ise semanti cs ca n be
given to logic programs with uncertainties.

• Standard logic programs are a special case
of logic programs with uncertainties. If al l

certainty factors are 1, then the seman
tics defined and the interpreters deve
loped degenerate to the standard seman
tics and the standard interpreter for logic
programs.

• Since the semantics of logic programs
w ith uncertainties is simple, it is easy to
apply the debugging algorithms deve
loped.

An Intelligent Backtrack Algorithm
for the Communicating

Processes of TS-PROLOG

Ivan Fut6

Inst. for Coordination of Computer techn.
H-1368 Budapest, POB.224, Hungary

An intelligent backtrack algo rithm under
implementation for the communicating pro
cesses of the Al system TS-PROLOG is pre
sented. TS-PROLOG is a PROLOG based
discrete simulation and problem solving sys
tem. Models in TS-PROLOG are defined using
Horn-clauses and a model consists of compo
nents and elementary components having their
own goa ls and activities. To every component
a process is assigned and during the problem
solving these processes communicate w ith
each other. If deadlock si tuation occurs or
data are missing the processes return to a
previous state to try new possible alternatives.
Th is backtrack is organised in an intelligent
way, only those processes are involved wh ich
were in explicitly or implicitly commun ication
with the originally fai led one. This decreases
considerably the search space of the problem.

Building Libraries in Prolog

Alan Feuer

Bell Laboratories
Murray Hill, New Jersey 07974, USA

While Prolog has proven useful for writing
programs in a variety of domains, it suffers
from its lack of support for modularity, particu
larly for bu ilding libraries of routines and data.
This paper po ints out some problems with
standard Prolog that make libraries inconve
nient. It then describes a solution to those
problems based on the concepts of modules
and database views.

abstracts

Knowledge representation in Prolog/KR

Hideyuki Nakashima

Wada Lab., Information Engineering Course
University of Tokyo, Graduate School

Bunkyo-ku, Tokyo, 113 Japan

In knowledge representation, we must repre
sent both data objects and a reasoning system
working on them. Represented data them
se lves are not knowledge. The reasoning sys
tem wh ich manipu lates those data given · it
meaning. Therefore, a knowledge representa
t ion system must have cohe rent semantics
both in representation and manipulation. In
cu rrent knowledge representation languages,
however, reasoning system and procedural
know ledge are often described in another
procedural language.

Logic, with its declarative and procedura l
interpretation, is a good candidate as a base
fo r the coherent semantics. A logic program
ming language Prolog seems promising. Never
theless, Prolog is current ly far from what is
required for a knowledge representation sys
tem. It lacks faci lities to modu larize know
ledge, to construct hierarch ies of concepts, to
deal w ith incomplete knowledge, and so on.

Pro log/KR prov ides the m ult iple world
mechan ism, wh ich f ills the gap between
Pro log and knowledge representation. With
the mechanism, predicate def in itions are
grouped into worlds to form concepts. Worlds
are then combined to form a hierarchy of
concepts .

In this pape r, the multiple world mechanism
and its usage to form conceptual hierarchy are
presented.

"Logal": r>_rolog plus Algorithmic Control
Structures

D. C. Dodson, A. L. Rector, J. B. Booke

Department of Community Health
University of Nottingham Medical School

Queens Medica l Centre
Nottingham NG7 2UH

In practical app licat ions of Prolog, many
predicates involve difficult and opaque uses of
control primitives. To relieve these difficult ies,
a preliminary set of structured (or high-level)
control predicates have been developed.

Two specific technical goals are guiding this
work . The f irst of these is to bring together
the structu red control faci lities found desirable
in conventional languages and cast them into
a logic-programming form . The second is to
provide convenient high-level structures for
specifying all the sorts of algorithmic routines
that can sensibly be performed with in a
Prolog clause.

Apart from their distinct benefits in _w ri ti ng
Prolog applications, the structures described
may help to sell Prolog to prospective users
by making a deliberately algorithmic program
ming style w ithin Prolog more respectable and
convenient.

Logic Programming in Metalog

M. J. Schoppers, M. T. Harandi

University of Illinois at Urbana-Champaign
Department of Computer Science

1304 W . Springfied Ave
Urbana, IL 61801, USA

MetaLog is a new logic programming lan
guage. It entirely elimi_nates the "cut", sepa
rates decla rative and imperative code, and
separates rule selection predicates from pro
blem rduction predicates. MetaLog also intro
duces severa l new features, such as a multi
goal priority in conflict resolution, a differentia
tion of rule types, and a dynamically modifiable
schedu le for subgoal solution.

A PROLOG Basis Expert System

Fumio Mizoguchi, Kazuhiro Miwa

Department of Industrial Administracion
Science University of Tokyo

Noda, Chiba 278, Japan
Phone 9471 -24-1501 ex. 256

Koichi Furukawa

Inst. For New Generation Computer Technology
Mita 1-4-28, Minatoku

Tokyo 108, Japan

We have described a PROLOG basis expert
system implementation named PBES in the
framework of rule-based systems. The points

37

· abstracts

are a follows; the first point in PBES consist
of rule-driven, backward and forward reasoning
system. That is, the control of reasoning is
dependent on the rule driven process which

decides the next premise parts described in
Horn Clause. Thus, PBES is implemented in

the unified control strategies which facilities
both forward and backward reasoning The

second point of this study is to compare the

system comparisons which developed in the

past. In the case of PROLOG basis system,
the control strategy is more flexible than

EXPERT and EMYCIN in a sense that the user
can select whether the reasoning is backward
or forward.

The third point is to apply PBES into the
realistic situation such as reactor fault diag
nostic system. The results of 20 case studies
have whown the good agreements with
human expert judgements.

Exeter Prolog - An Experimental Prolog
Interpreter Based on Standard · Lisp

G. Belovari

Kent State University
Kent, Ohio, USA

R. Fogelholm

Royal Institute of technology
Stockholm, Sweden

Exeter Prolog originally referred to the name
of a city in devon, England where some of the
major initiatives to this work were made in
the early eighties. From here onwards, Exeter
stands for Experimental Interpreter (to let
those oor founders of the city of Exeter be
drawn into the computer age).

We present a preliminary report on our
Prolog Standard Lisp project which aims at a
throrough understanding of the inner workings
of a Prolog evaluator in the context of Lisp.
Lisp was found to be as an extremely flexible
implementation language: it offers built-in
management of identifiers, rich tools for the
construction of arbitrary data structures, and
the automatic recycling of discarded pieces of
data. The Prolog system is expected to run on
any other Standard Lisp system, and possibly
on other Lisp systems, as well, after some
interfacing work.

38

Our project used mainly the VAX 11 /780
computer, under the UNIX operating system.

The report is available from Dr. Fogelholm,
R. I. T. Stockholm. Sweden.

PROLOG on the DADO Machine:
A Parallel System for High-Speed

Logic Programming

Stephen Taylor, Christopher Maio,
Salvatore J. Stoffa, David E Shaw

Department of Computer Science
Columbia University

New York, NY 10027, USA

DADO is a highly-parallel, VLSI-based, tree
structured machine designed to provide signi
ficant performance improvements in the exe
cution of large production system programs.
In this paper, we describe current research
aimed at implementing PROLOG w ithin the
parallel framework which DADO provides. The
implementation allows parallel satisfaction
of both disjunctions and conjunctions which
occur in the goal tree generated during the
execution of a PROLOG program. Local unifi
cation routines in each processor allow parallel
satisfaction of disjunctive goals while a parallel
relational join operation provides a framework
to solve conjunctive subgoals. An overview of
the techniques currently being implemented
and their relationship to the architecture is
presented.

DADO:
A Tree-Structured Machine Architecture

for Production Systems

Salvatore J. Stoffa, David E Shaw

Department of Computer Science
Columbia University

New York, NY 10027, USA

DADO is a parallel tree-structured machine
designed to provide significant performance
improvements in the execution of large
Production Systems. The DADO machine
comprises a large (on the order of a hundred
thousand) set of processing elements (PE's),
each containing its own processor, a small
amount (2K bytes, in the current design) of

local random access memory, and a specia

lized 1/0 switch. The PE's are interconnected
to form a complete binary tree.

This paper describes a general procedure
for the parallel execution of production sys

tems on the DADO machine, and outlines in
general terms how this procedure can be

extended to include commutative and mul
tiple, independent production systems.

ACE : An Expert System
Supporting Analysis and Management

Decision Making

Salvatore J. Stoffa

Columbia University

Gregg T Vesonder

Bell Laboratories

Department of Computer Science
Columbia University

New York, NY 10027, USA

ACE, a system for Automated Cable Exper
tise, is a Knowledge-Based Expert System

designed to provide trouble-shooting reports

and management analysis for telephone cable

maintenance in a timely manner. Many design

decisions faced during the construction of

ACE were guided by recent successes in
expert systems technology, most notably
R1 /XCON, the Digital Equipment Corporation

Vax configuration program. The most signifi
cant departure from "standard" expert sys

tems architectures is ACE's use of a conven

tional data base management system as its

primary source of information. Its primary

sources of knowledge are the expert users of

the database system, and primers on mainte
nance analysis strategies The coupling of

"knowledge-base" and "data-base" demons

trates in a forceful way the manner in which

an expert system can significantly enhance

the throughput and quality of data processing

environments supporting business manage

ment. However further difficult problems

must be solved before the expert system

approach becomes a standard technique in

the data processing industry.

Architecture and Applications of DADO:
A Large-Scale Parallel Computer

for Artificial Intelligence

Salvatore J. Stoffa, Daniel Miranker,
David Elliot Shaw

Dept. of Computer Science
Columbia University

New York, NY 10027, USA

As part of our research on parallel archi
tecture and VLSI systems, we have been
investigating machine architectures specially
adapted to the highly efficient implementation
of Al software. In the course of our research
we designed DADO, a high ly-paral lel, VLSI
based, tree-structured machine, and imple
mented an optimal running t ime algorithm for
Production Systems on a simulator for DADO.
Subsequent research has convinced us that
DADO can support many other Al applications
including the rapid execution of PROLOG pro
grams, as well as a large share of the sym
bolic processing typical of knowledge-based
systems.

In this briet" report, we outline the hardware
design of a moderate size DADO prototype,
comprising 1023 processing elements, curren-

. abstracts

t ly under construction at Columbia University.
We then sketch the software base being
implemented on a small 15 element system,
which wil l very soon be operational, includ ing
severa l applications written in PPL/M, a high
level language designed for specifying para llel
computation on DADO. Severa l applications
actively under investigation are then briefly
described.

Knowledge Retrieval as Limited Inference

Alan M. Frisch, James F. Allen

Computer Science Department
The University of Rochester
Rochester, NY 14627, USA

Artificial intelligence reasoning systems
commonly employ a knowledge base module
that stores declarative knowledge and pro
vides retrieval facilities. A retriever could
range from a simple pattern matcher to a
complete logical inference system. In practice,
most fall in between these extremes, provi
ding some forms of inference but not others.
Unfortunately, most of these retrievers are
not precisely defined.

We view knowledge retrieval as a limited
form of inference operating on the stored
knowledge. This paper is concerned with our
method of using first-order predicate calculus
to forma lly specify a limited inference mecha
nism and to a lesser extent with the techni
ques for producing an efficient program that
meets the specification. Our ideas are illus
trated by developing a simplified version of a

retriever used in the knowledge base of the
Rochester Dialog System. The interesting
property of this retriever is that it performs
typical semantic network inferences such as
inheritance but not arbitrary logical inferences
such as modus ponens.

Some Issues of Problem Specification
in First-Order Logic

E. W Elcock

Department of Computer Science
The University of Western Ontario
London, Ontario, Canada N6A 5B9

Informal overview of the logical space of
the queens problem.

39

