
1 

Some Reflexions on Implementation Issues of PROLOG 

INTRODUCTION 

M.Bruynooghe 

Departement Computerwetenschappen 
Katholieke Universiteit Leuven 

Celestijnenlaan, 200 A 
B 3030 HEVERLEE 

Current interest in PROLOG is high. This papers aims at opening 
a.discussion on implementation related issues which, in our opinion, can 
have ~ great impact on the acceptance of PROLOG as a valuable 
programming language. Our focus is on issues concerning users of todays 
PROLOG, not on implementation issues in current research on logic 
programming (parallellism, intelligent backtracking, special 
architecture, control). 

The issues are: 

the bad influence of cut on programming style but its necessity, in 
current implementations, to obtain efficient (time and space) 
execution of programs. 

Can/will everyone develop good (efficient) PROLOG programs or is this 
an art for a small club of skillful experts. 

an observed desire for standardisation. 

1 The influence of an implementation on programming style. 

The PROLOG community has gone a long way from the first PROLOG 
interpreters to current compilers promising to allow efficient execution 
without running out of space, even for infinite queries if they are 
determinate. 

In the first interpreters, we could distinguish two major work 
areas: 

a dictionary of clauses, spoiled but slowly because ·retract" does 
not free the space. 

2 an environmentstack ("trail" included or separate) which grows until 
backtracking liberates it. 



l 

This resulted in "dirty· programstyle, exemplified by the 
following: 

When you are affraid of running out of core, then: 

assert your useful results. 
fail and backtrack. 
restart, picking up your useful results and retract their assertion. 

It has been learned to separate the global/copystack from the 
environmentstack, to keep the environmentstack small by exploiting 
determinism and to apply garbage collection on the copystack. Also 
compilation techniques have been developped to obtain more efficiency. 

Does the combination of all these features provide the paradise 
for the purists among logic programmers willing to apply such an 
advanced programming technique as the usage of abstract data types? 

Let us look at a simple example: 

A procedure Partition(~. l, ll, 12) which separates a list l into a list 
11 of elements less than or equal to x, and a list 12 of elements 
greater than x. 

The datastructure can be implemented as follows: 

Empty(ll a test to see whether a list l is empty, also to initialize 
an empty list. 

A possible realisation is Empty(Nill <- (another one could be with 
difference lists: Empty(d(~.~ll <-

Select ll, ~. tail): a list 1 is separated into its first element x and 
its remainder (tail) (Fails for an empty list) 

Realisation: Select(~.l. ~. ll <-

Construct(~ . .iill,, ll: a list l is constructed with first element x and 
remainder tail 

Realisation: Construct(~. l, ~. ll <

Now Partition can be defined: 

Partition(~. l, l.1, ill <- Empty(ll, Empty(l.ll, Empty(ill 

Partition(~. l, l.1, ill <- Select(l, ~. l' ), ~ <= ~. 
Construct(~. l.1', ill, Partition(~. l', ll', ill 

Partition(~. l, ll, ill <- Select(1, ~. 1' l, ~ > K, 
Construct(~. ll', 12), Partition(K, 1·, ll, g·) 

To my knowledge, the best of all existing PROLOG systems cannot 
prevent that a heavy price is paid for this programming style: 



Efficiency: 
number of 
doubled. 

the recursive calls contain 4 calls instead of 2, the 
logical inferences required to obtain a solution is 

Space: current implementations are unable to recognize the 
determinism of the above program. Half of the calls will be 
considered as nondeterministic, backtrackpoints will be created and 
will stay on the environmentstack. Completion of a partition call 
will not free the environmentstack. As a consequence, references to 
the global/copystack are not removed and the potential for garbage 
collection is severely reduced. 

Preprocessing 
improve the situation. 
promising to automate 
arrive at: 

the calls to Empty, Select and Construct can 
A technique as ·partial evaluation" seems 

this. Doing the partial evaluation by hand, we 

Partition(x, Nil, Nil, Nil) <-
Partition(x, .i.-l.', .i.-l.1', ll) <- .i. <= K, Partition(x, l.', ll', ll) 
Partition(x, L.l,', l.1, Lil') <- .i. > X, Partition(x, l.', ll, ll') 

This solves the efficiency problem but not the space problem 
(to recognize the determinism of the base case (empty list), indexing on 
the second argument is necessary) 

To recognize determinism, a cut in the second clause is needed. 
At the same time, an experienced programmer will drop the condition in 
the third clause. We obtain: 

Partition(x, Nil, Nil, Nil)<-
Partition(lS,, §. . .J,,', §..li', 12') <- §. <= lS., I, Partition(,2i, .l', .ll', ill 
Partition(K, §..!,', ll, .i.-.!Z.') <- Partition(K, !,', l.1, ll.:J. 

This cut, an ugly feature to purists and beginners, changes the 
whole nature of the program. Now, the program Partition(x, !, ll, lll 
cannot be used to obtain all possible merges l of 11 and 12. This 
restriction on the use of Partition is not declared. As in most cases, 
it is the purpose of the cut to inform the execution mechanism about 
determinism, about the opportunity to optimise the execution of the 
program. At the same time, the possible use of the program is severely 
restricted. It is a sad fact that this guidance and its accompagnying 
restriction are not given on a more elegant and more explicit way. It is 
the obscurity of the cut which restricts the use of PROLOG, beyond toy 
examples, to skillful expert programmers having a good understanding of 
the underlying implementation. 

Actually, we can state two questions about the above program, 
(I am affraid that studying the manual of a particular implementation 
will not answer them): 

1 Is a cut needed in the first clause to recognize the determinism of 
the base case (Nil)? Not recognizing the base case as deterministic 
has a dramatic effect on memory usage, frames are locked on the 
stack! 



4 

2 Will tail recussion optimisation be obtained when the second clause 
is selected ? It cannot be applied at the time of unification with 
the heading because the call is nondeterministic (the third clause 
provides an alternative), it becomes deterministic only after 
execution of the cut; at that moment, the opportunity exists to 
collapse two stack frames into one. 

2 Applicability of PROLOG 

The application of PROLOG is rather limited. It is only used by 
skillfull experts, mainly in the field of artificial intelligence. Can 
it be applied to more conventional problem areas, where Fortran, Cobol, 
Basic or Pascal are used, i.e business applications? Recently, we 
conducted a few experiments. Our tools: a slow PROLOG interpreter 
written in Pascal (about 400 logical inferences per second on·a VAX 750) 
. the vendors Basic and Pascal compiler. 

Experiment 1 

A parser was developed by rather unexperienced programmer using a 
compiler generator system semantic actions hand-written. The result: 
2276 lines of Pascal. A parser which is roughly functionnally 
equivalent was written in PROLOG by an expert PROLOG programmer: 246 
lines of PROLOG (factor 9). Execution time (parsing the same file): 
52 s (seconds) with Pascal, 296 s with PROLOG (factor 5 - 6). 

Experiment 2 

A program with complex data structures. An unexperienced Pascal 
programmer: 2371 lines of code, a skillful PROLOG programmer: 136 
lines of PROLOG (factor 17). Both programs have roughly the same 
functional equivalence. Execution times: Pascal: 43 s, PROLOG: 119 s. 
(factor 3). 

Experiment 3 

A complex retrieval task involving 4 files on the vendors file system 
(RMS). A Basic program of 170 lines required an execution time of 
12.5 sec. A PROLOG program with exactly the same functionality 
required 70 lines (factor 12.5) and an execution time of 191 s. 
(factor .17). (Due to the experimental nature of the interface 
PROLOG-RMS, each call to the file system required a lot of additional 
logical inferences, also the program did more file accesses.). A, for 
PROLOG, simple optimisation (bringing a small part of 2 files in 
core) reduced the execution time to 47 s. (factor 4). 

Taking into account the slowness of the interpreter, an 



improvement of factor 5 to 10 (2000 - 4000 LIPS) seems not difficult to 
obtain, using compilation techniques, further improvements are 
possible.this suggests that PROLOG becomes a competitive language to be 
used on a large scale when: 

complex data structures are to be manipulated (making use of the full 
power of unification) 
a substancial amount of time is spend on file accesses. 

However, this require~: 

A robust interpreter, not running out of space while executing large · 
programs and sufficiently efficient. 

Easily extendible set of evaluable predicates, allowing to develop 
specific predicates for specific applications. e.g.: 

* connection with a particular file system or database 
* screen management functions 
* allowing to implement components with insufficient efficiency at a 

lower level. 

An environment allowing the development of good PROLOG programs by 
mediocre progranvners, this probably requires: 

* A cut free variant of PROLOG, making less an art of the writing of 
space efficient programs (see reflection 1) 

* An automatic optimiser based on partial evaluation techniques (see 
reflection 1) 

* Hore compile time verification (types, restrictions on the usage of 
procedures), (Preferably incremental and integrated in a syntax 
oriented editor) 

A lot of programming is involved with side effects which should be in 
a particular order. e.g. interaction with a terminal, producing a 
report. We need a well choosen set of metalevel predicates to control 
such side-effects. Some possibilites: 

* For_each <-'-2.D.d., actionl, e.g.: 
For_each (employee(x), compute_salary(x>> 

(Definition in Prolog : 
For_each(~.actionl <- ~. action, fail 
For_each(~.actionl <-

* Repeat_unt1l_exit(command), e.g.: 
Repeat_until_exit(Read_and_process(x)) 
The execution backtracks, reading commands until a special Nexit" 
call is executed and the infinite backtracking is destroyed. 

Although Prolog allows every expert to implement his own set of such 
metapredicates, some standardisation is desirable and integration of 



them in compiletime verification tools is needed. 

3 Portability of Prolog programs 

Currently, Prolog is not only a subject for research, but 
becomes accepted as a suitable language for implementing diverse 
applications (e.g. its role in the Japanese Fifth Generation Project and 
in the European ESPRIT project). This creates the problem of exchanging 
programs, of portability of programs. Although Edinburgh's OEC10 Prolog 
tends to be a de facto standard, different implementations exist and 
many more are likely to appear. Porting Prolog programs from one Prolog 
system to another is problematic due to : 

Differences in syntax. As far as the syntax is syntactical sugar for 
Horn clauses, automatic conversion seems not difficult. However, 
conversion to Horn clauses poses a problem when the syntax allows for 
alternatives (e.g. (P;Q) ) inside a clause, in cases where such an 
alternative contains different calls and one of them is a cut (scope 
of the cut). 
Differences 
extremely 
christmas 
high level 

in evaluable predicates. Although the core of Prolog is 
simple, manuals are becoming wieldy, they look like 
trees, full of evaluable predicates. Some have to do with 

control of the system, but others are extensively used 
inside programs. 

The observable desire to use Prolog as a programming language 
for large projects creates a need for standardisation of syntax and 
evaluable predicates. Is it possible to define a minimal set of 
evaluable predicates and to define all extensions as Prolog procedures? 
For reasons of efficiency, an implementor can provide these extensions 
at a lower level. Taking Edinburgh's Prolog as the de facto standard is 
probably not optimal, some reflection on the choice seems preferable. 




