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We describe a polymorphic type scheme for Prolog which makes static type 

checking posslble. Polymorphism gives a gooa degree of flexlblllty to the type 

system. and makes it intrude very little on a user's programming style. The only 

additions to the language are type declarations. which an interpreter can ignore if it 

so desires. with the guarantee that a well-typed program will behave identically with 

or without type checking. Our implementation is discussed and we observe that the 

type resolution problem for a Prolog program is another Prolog < meta-> program. 

1 Introduction 

Prolog currently lacks any form of type checking. being designed as a language 

with a slng·le type C the term> . While this is useful for learning it initially and for fast 

construction of sketch programs, it has several deficiencies for its use as a serious 

tool for building large systems. 

We have observed that a theorem prover which reasons about Prolog programs 

can be more powerful .if it has type information available. One indication as to why 

this is so can be seen from the fact that the traditional definition of append has 

append< nil. 3. 3) deducible from its definition. 

One very good reason for a type system Is that it can provide a static tool for 

determining whether all the cases In a Prolog predicate have been considered. For 

example. a predicate defined by 

type neg list< list< int> . list< int>> 

neg list< cons<A. L>. cons( B. M> > .. negate CA. B>. neglist< L. M> 

will never succeed. since we have probably omitted the clause 
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negllst< nil. nil> -

A type system would enable us to detect this by checking for exhaustive specificatior 

of argument patterns tor a given data-type. Of course. if we really did want a 

certain case to fail. then adding a clause such as 

neg list< nil. nil) - fail 

would be an explicit way of requesting such an event without leaving first-order logic 

< and would facilitate tater reading of the program>. 

Moreover. our type system can be used as the basis of an encapsulatior 

providing an abstract data type facility. The ability to hide the internal details of c 

given object greatly aids the reliability of a large system built from a library o 

modules. 

Finally. we note that static type checking cannot of itself provide a great increase 

in speed of Prolog programs. due to the fact that term unification must still be 

performed. as in the dynamic case. However. typed Prolog can improve the speec 

of compiled clauses of a given predicate by using a mapping of data constructor~ 

onto small adjacent integers to enable faster selection of the clause( s> to be 

invoked. By far the greatest gain is that of programmer time provided by earl~ 

detection of errors. 

As far as we know this work is the first application of a polymorphic type schemE 

to Prolog, but related work includes Milner's work (41 on typing a simple applicative 

language which is used in the ML [31 type checker and the HOPE language whict 

uses a version of Milner's algorithm extended to permit overloading. However. thi: 

work differs from these In several respects. Firstly, the formulation of Prolog a: 

clauses means that the problems of generic and non-generic variables are muct 

reduced. All predicate and functor definitions naturally receive gener'::; polymorphic 

types which can be used at different type instances within the program whilst al 

variables receive non-generic types. Moreover. our formulation for Prolog removei 

a restriction in Milner's scheme in which all mutually recursive definitions can only bE 

used non-generically within their bodies. Thus in ML the ( rather contrived> progran 
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let rec Ix= x 

and f X = I ( x+ l ) 

and g x = if l<x> then l else 2 

would be ill-typed. Since all Prolog clauses are defined mutually recursively. this 

restriction would have the effect of making the polymorphism useless. 

2 Mathematics 

We assume the notion of substitution. a map from variables < and terms by 

extension> to terms. ranged over by 9 and t,. An invertible substitution is called a 

renaming. If a term. u. is obtained from another. v. by substitution then we say 

that u is an instance of v. and write u(v. We write usv if u(v and v(u. This means 

that u and v only differ in the names of their variables and that the substitutions 

involved are renamings. Also assumed is the notion of most-general unifier ( MGU> 

of two terms. 

For any class of objects S. the notation s* will be used to indicate the class of 

objects consisting of finite sequences of elements of S. 

3 Prolog 

The simple variant of Prolog we consider will be defined by the following syntax 

C we assume the existence of disjoint sets of symbols called Var. Pred and Functor. 

representing variables. predicates and functors symbols respectively>: 

Term · · - Var I Functor< Term*> 

Atom ::= Pred(Term*> 

Clause : : = Atom ... Atom* 

Sentence : : = Clause* 

Program : : = Sentence: Atom 

Resolvent : : = Atom• 

By definition of clause form each. implicitly universally quantified. variable appears 

In at most one clause. To make the formal description of typing simpler. we assume 

that the textual names of variables also follow this rule. A program then is given by 

a 1inite list of C Horn> clause declarations. followed by an Atom C short for atomic 

formula) • called the query. to evaluate in their context. It specifies an initial 

resolvent by taking the query and treating it as a· one-element list. 
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The evaluation mechanism for Prolog is very simple. and based on the notion 01 

SLD-resolution as the computation step: 

SLD-resolution is the one-step evaluation which transforms a Resolvent. Given a 

resolvent 

R = A1 ..... An 

we select an Atom. the selected atom. say Ak, < this Is often A1 In real Prolot 

interpreters) and perform resolution with it and a matching clause. So. choose a 

clause of the program. the selected clause. say Q, given by 

C +- 8 1 , ...• Bm 

and suppose that R has no variables in common with it < otherwise we must rename 

Its C Q's> free variables since they are implicitly universally quantified for the clause> . 

Now let 9 be MGU<Ak. C> if this exists. If it does. then we can rewrite R into R' 

given by 

9(A1 •...• Ak_1 • B1 , ..• Bm. Ak+-1 ... .. An). 

The most common form of Prolog interpreter uses k=l when this expression simplifies 

somewhat. 

An answer is produced when the resolvent is rewritten into a sequence of zerc 

atoms. The associated answer to such a rewriting sequence is the composition o 

most-general unifiers encountered during the rewriting process. or rather it~ 

restriction to the variables in the query. 

Observe that the above specification only told us how we could produce an answe1 

(if one exists> from a Prolog program. For computation the choices above ( the 

selected atom and clause> must be incorporated into a deterministic tree saarchin~ 

algorithm. which we take time to explain below for the reader's benefit. However. 

we would like to stress now that the results on type-checking given in section 5 wor• 

for any order of evaluation <choices of atoms and clauses> of Prolog programi 

< de c th-first/breadth-first/ coroutlning/ par alleD . 
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3. 1 Digression: SLD-trees 

The Idea of SLD-resolutlon above. leads to the Idea of an SLD-tree: whenever 

we are forced to select a clause then. instead of Irreversibly choosing a given 

matching clause. we construct a tree of resolvents Can SLO-tree> where a resolvent 

has a son resolvent for each clause which matches with the selected atom. A 

sensible computation ( the standard implementation of Prolog> is then to search this 

tree in depth-first left-right manner. 

Some branches die out. in that no clause matches the selected atom. whereas 

· others have more than one subtree contribute to the answer. This is often referred 

to as the non-determinacy of Prolog. 

Finally. we remark that there is never any need to seek alternatives to the 

selected atom - In fact doing so would merely lead to duptlcatlon of answers exhibited 

elsewhere in the SLD-tree. < For more details on this aspect see (1)). 

4 Types 

The scheme of types < Type> we allow are given by the following grammar and are 

essentially the same as those which occur in ML (31. We assume disjoint sets of type 

constructors CTcons. ranged over by roman words) and type variables (Tvar. ranged 

over by greek letters like a. P. 'Y>. These are also assumed to be disjoint from Var. 

Pred and Functor.· 

Type : : = Tvar I Tcons< Type*> 

Type will be ranged over by paT . .. 

variables. Otherwise it Is a polytype. 

A type is called a monotype if it has no type 

For examples. we suppose that Tcons Includes the nullary constructor int and the 

unary list. Example types are then 

list( a>. int. list< list< int>> • etc. 

Note that the third type is an instance of the first. 
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4. l Digression: the Unary Predicate Calculus 

The type systems used in r. 3.ny Al programs are variants or restrictions of th, 

Unary Predicate Calculus. However. UPC is not adequate as the single type sys ten 

tor an Al programming language. Rules such as 

C"I N. U integerCN> & int_listC U =:::r int_list<cons<N. U > 

< V U int_list< U ==:a ( L=nil V integer( car< U)) 

cannot be expressed In it. 

5 Well-typing of Prolog 

This section contains the central definition of a Prolog program being well-typed 

together with precursor and auxiliary definitions. Many. of the ideas appear in {4 

where a polymorphic applicative language is typed. but our formulation for Proto, 

poses new problems and simplifies old ones as we discussed in the introduction. 

Let Q the clause c~s, .... Bm and P be a finite subset of VarUPredUFuncto 

containing all the symbols of Q. We define a typing P of P to be an association c 

an extended type to each symbol occurring in Q. The types are members of a give 

algebra as defined . in section 4. Predicates and Functors are associated wit 

extended types as given below. Types and extended types will be written as 

superscript on the object they are associated with. ai and T will represent < non 

extended) types. For each variable X occurring in a. P will contain an element c 

mu mrm ~T, r{U QAt:m PfQfllAi;JlQ i;J AT ijfllY K rn Q, p WIii QArtli;Ufl ijfl QIQfflQnl m m 

form a0 P • · • • 0 k. For each functor f of arity k in Q, P will contain an element of th 

Term ,ca,.··· .ak>--r, 

Similarly. the clause Q will be written as a typed clause Q by the writing of a typ 

on each term < this includes variables> . 

As an example of a clause and its typing consider the clause Q. given by 

appCconsCA. U, M, cons CA. N)) - appC L. M. N> 

The set P = CA, L. M. N. app. cons} gives its set of symbols. and a typing < which wi 

turn out to be a well-typing considered later> can be given by P: 
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where T Is used for a shorthand for list< a> and the associated clause typing a given 

by: 

P _will be called the typed premise of Q due to the relation to theorem proving. 

Fortunately. it will turn out that most of the mess of types written above are inter­

dependent and the above expression can be well-typed much more succinctly - see 

later. 

We will now define Q to be a · well-typing of Q under P. written P t- Q if the 

following conditions hold: 

l . P t- CA ... 8 1 ••..• Bm> if 

A = a<t[1 •...• t{k> and aP E:P 
with ( r, ..... Tk) S!p 

and P I- t{1 C 1 (i<k> 

and P t- 8 1 < l (i(m) . 

2. P I- A if A is an Atom and 

A - (tT1 t.Tk) d Pp - a 1 •...• 'I( an a E: 

with ( T1 •••.• Tk) (p 

and P t- tt1 < 1 (i(k) . 

:,, p t- u0 IT u IB a Term ana 
T T p -

U = Ht1 1, • , , , \ k) ana T E:P 

with ( ( T 1 • •••• T k) --o) (p 
- T ana P >- t1 1 < 1 <l'-'O • 

4. P t- xo If x0 E: P. 

Now. we will define a program to be well-typed under a typed premise P if each 
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of its clauses is well-typed under P and if its query atom Is. 

well-typed if each of its atoms are. 

Similarly a resolvent i~ 

Well-typing as a mathematical concept is of little use. unless we relate it 1< 

computation. This we will now do. under the motto ·well-typed programs do not gc 

wrong'". 

6 Well-typed programs do not go wrong 

What we desire to show. is the semantic soundness condition that if a progran 

can be well-typed. then one step of SLD-resolution will take a well-typed resolven 

into a new well-typed resolvent. Thus any SLD-evaluation of a well-typed progran 

will remain well-typed. It is trivially the case that the initial resolvent is well-typed i 

the program is. Moreover. we should show that the variables in the query can onl' 

be instantiated to terms specified by their types given by the well-typing. 

The first condition is simply proved: Let R be the resolvent A 1 •...• An and let C 

be a clause C ... B1 •...• Bm which has no variables in common with R C the cas, 

where Q and R have variables in common will be discussed later> . Without loss o 

generality <symmetry> let A 1 be the selected atom and suppose 8=MGUCA1. c: 

exists. The resolvent produced by one-step evaluation is R' given by 

We will now show hew to well-type this from the well-typing of R. 

Let us suppose that there is a P with typing P and associated well-typings R an1 

Q such that P I- R and P I- Q C note this provides well-typings Ai, C. Bi>. Moreover 

let us suppose that R and Q have no type variables In common C again. we wt 

discuss this later. but note that the typing rules never rely on the · absolute' names c 

the type variables> . 

Let the type of the predicate symbol of C in P be cP1• ···,Pk. Now the well-typini 

determines that C can be written cc s?'1 •...• sfk> and A1 as cc ti 1 •...• t[k) where 

( 0'1 • · · · • ok) '!!! ( P1 · · · · • Pk) 

( T 1 • ...• T k) ~ ( p 1 • ..•• pk) . 
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This means that there Is a substitution t, on type variables < actually 

t,&rMGU( (a, •••.• ak). ( T, .. ... Tk))) such that ( T, .. ... Tk) = t,( ca, •...• ak)). 

The claim Is that 

gives a well-typing of A'. where applying t> < a type substitution> to a typed atom 

means that it is to be applied to the type variables in types associated with terms 

occurring within that atom. 

We now address the problem of there being variables. or type variables. in 

common between A and Q. These are really the same problem (the perennial one 

of renaming in Prolog>. A simple solut_ion is the following: Whenever we come to 

perform resolution between a clause Q and a resolvent A we rename Q such that all 

its variables ( using a renaming ,-> and all its type variables < using a renaming 71) 

are distinct from the variables <and type variables> in A and the other clauses. This 

can always be done since A can only contain a finite number of different variables. 

Moreover this does not change the meaning of Q. This strictly breaks the type 

scheme. since the new variables appearing in Q do not appear in P. However. a 

almpte addition to P or 1'< X> 71 <T> ror each vartabto x In tno or1g1na1 Q which appGarQd 

as xr In P serves to correct this and preserve the typing. we are now back In the 

case where Q and R have no variables or type variables in common. 

We now return to the problem of showing that a well-typed program can only 

instantiate the variables of its query to values having types as dictated by the typed 

premise. To see that this is the case. it is merely necessary to observe that each 

resolution step <as above> Is performed between an Atom. A. and a (type> Instance 

of a clause C ... 8 1 •...• Bm. such that the types ot A and this instance ot C are 

Identical except for the names of type variables. Thus variables in A can only be 

instantiated to Terms < possibly other variables> having identical types. The whole 

result is proved by induction on the length of computation leading to a refutation. 
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7 Specification of the type information to Prolog 

We suggest that the type specification be performed by annotations to the Prolog 

system. The well-typing required three sets of information to be supplied: 

- the types of the predicates 

- the types of the functors 

- the types of the variables. 

We suggest that declarations be supplied which give the type of the first two but the 

type of variables can easily be determined from them. This can be seen b-y 

observing that a well-typed Atom or Term labels the type of each argument Term. 

and so each variable is labelled with a type. The most-general unifier of all the 

types associated with a single variable C if it exists> gives a type for that variable. 

<This is also convenient since the scope of variables in Prolog is a single clause. 

whereas the other objects have a global scope.> 

It is convenient to specify the names of types along with the functors which create 

them from other types. This has been demonstrated by HOPE [21 and we do no1 

expect to better this idea. 

So one of the declarations. or meta-commands is one of the form 

Declaration : : = 'type' TconsCTvar*> '=>' Functor<Type*>*. 

Examples would be C the second somewhat improper> 

type llsHa> => nit. cons<a. lfst<a> > 
type int => 0. 1. -1. 2. -2. 3. -3. 

The second declaration specifies the type of predicates. Suggested syntax is 

Declaration : : = 'pred' Pred( Type*>. 

and an example for the 'equal' function defined by 

equalCX.X> ... 

would be 

ored equal< a. a>. 
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We note here. that. given the types of the functors. then would seem possible to 

determine the types of the predicates involved without any great amount of work c as 

in ML l41> . However. this seems to depend on an analysis of the whole program at 

once. rather than any form of interaction. 1 We would also claim that the 

documentation provided b~ the written form of the types facilitates human 

understanding of programs in much the same way that explicit specification of mode 

information C input/output use of parameters> for predicates does. 

7. 1 Abstract data types 

We observe that the above declarations furnish a form of abstract data typing. 

Providing a 'module' construct and . exporting from it a given type name. and 

predicates which operate on that type. but not the constructor functors for that type. 

enables us to use a type. but not to determine anything about its representation. 

HOPE has such a construct. and we think it would greatly benefit Prolog. 

8 Overloading 

The above discussion has centred on a formalism for well-typing Prolog. 

However. it does not allow for one feature which we have found to be useful. and 

which is very easy to build into the type system. This feature is overloading and 

appears in a similar form in HOPE l2l. 

The observation. is. that quite often. we may wish a given function. predicate or 

functor name to stand for more than one distinct operation. This Is common In 

mathematics and computer science. where an operator C eg '+') may be used to 

denote a different function at different types. In Prolog this can be useful too. For 

example. we may wish to have types specified by 

list<a> => nil. cons<a.listCa>> 

treeCa> => nil. leaf<a>. cons<tree<a>. tree<a> > 

where the constructors nil and cons<_._> have different meanings according to 

whether they act on lists or trees. C Of course we could give them different names. 

1 Moreover there is a small technical problem concerning recursive definitions which makes checking ot 
type specifications of such definitions much easier than their: derivation. 
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but this is not always helpful to the programmer.> 

Similarly. we may want certain predicate symbols to refer to different predicate 

according to the type of their arguments. A typical example would be some sort c 

'size' predicate. 

We formalise this by permitting the typed premises used above to contain mor1 

than one type associated with any given 1unctor or predicate symbol. 

9 Implementation 

We have built such a system in Prolog which implements the overloaded typ1 

checker by backtracking. Note that this is not particularly difficult since our well 

typing rules given in section 5 are essentially Horn clauses. There are merely tw, 

points to observe. Firstly, the ·occur-check' of unification <which Is often omitted b 

Prolog implementations> is essential for this typechecking scheme. Secondly. th, 

use ot ( can be simulated by instantiation of a copy of the functor or predicate typ 

and the use of a! by a common meta-linguistic predicate < numbervars> whic 

instantiates variables in a term to ground terms to avoid their further instantiation 

Copies of the code can be obtained from the authors or could be included as a 

appendix. 

That the well-typing rules < which define when a given program has a given type 

can be used to determine the type of a given program is a simple consequence c 

the Horn clause input/ output duality. Moreover. when the well-typing rules are use 

in the fashion on a given program. T say, then the standard SLD-resolution wi 

produce a terminating evaluation giving the most-general types associated with T 

The basic Idea is that If the well-typing problem has no solution. tu. the program i 

ill-typed. If it has exactly one ff$dhe program is well-typed. and if it has more tha 

one then some overloaded operator is ambiguous. 

10 Higher order objects 

This section is much more tentative and more in the manner of suggestion tha 

the rest of the paper and we would be grateful for any comments on its inclusion c 

its contents., It is included because we want to discuss the well-typing of objects whic 
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do not form part of first-order Prolog. jn particular the calf and univ operators. 

The definition of call is based on the fact that most Prolog implementations use 

the same set of symbols for predicates and functors < this causes no syntactic 

ambiguity> and thus a Term has a naturally corresponding Atom. Hence call is 

de1ined to be that predicate such that call< X> is equivalent to Y where Y is the Atom 

corresponding to the Term X. Thus call provides a method of evaluating a Term 

which has been constructed In a program and is accordingly related to EVAL In LISP. 

We would like to argue that such a predicate is more powerful than is required and 

. Indeed encourages both bad programming style and Inefficient code. It Is certainly 

the case that most uses of call are used in the restricted case of applying a certain 

functor passed as a parameter to arguments determined locally C as in mapping 

predicates> . Functions or predicates like EVAL or call do not appear to have 

sensible types and are thus generally omitted from strongly typed languages in favour 

of some form of APPLY construct. 

We would like then to change our definition of Prolog and its typing to introduce 

this construct. To do this we introduce a family of abstract data types. called 

predCa). predCa.,8). predCa • .S.x> .... 

and a family of predicates with types given by 

pred appfy<predCa>. a>. apptyCpredCa. IJ>. a.lJ>. 

The only way to Introduce object of type pred is by a special piece of syntax given by 

Term : : = 'Pred 

which has the effect of associating the definition of the given predicate with Term. 

which then receives the type pred < a 1 •.••• an> if th~ predicate has type ( a 1 •••.• an> . 

< It may be desirable to use such syntax as • foo/3 or • fooC_. _. _) if several 

predicates of different arities have the name foo. > Such values can only be used in 

apply and have the effect of using the associated predicate value together with Terms 

as arguments to produce an Atom to evaluate. It can be shown that such a scheme 

is type secure. For example. the map predicate can be defined and used by: 
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mapCF.consCA.L>.consCB.M» .. applyCF.A.B>. mapjL.M> 

map( F. nil. nil) .. 

neglistCX. Y> - map(· negate. X. Y> 

J ,<.C 

assuming tnat nGgate Is defined as a dladlc predicate. The type of map so defined 

would be < pred(a. /J). list<a>. list<.B> >. 

The other higher-order object frequently used is the univ predicate ( often writter 

·= .. ') which can be used to transform a Term Into a ltst of Terms derived from the 

farmer's top-level substructure. <This is typically used for analysing terms read with 

input functions.> Thus 

univ(f(gCX.a>. Y>. U.g<X.a>. Y]) 

is true. As it stands this clearly breaks the type-scheme we are proposing since the 

elements of the list represented by the second parameter need not be of the same 

type. We observe again. that such a predicate is not commonly used in its full 

generality. but rather to allow arbitrary terms to be input. As such. we suspect tha1 

introducing a new type 'input_term' which specifies the type of objects generated b~ 

input routines and giving univ the type < input_term. list< input_term> > • together with c 

notation for treating a Term as an input_term would give much of the power of uni\ 

within a strong typing discipline. 

The difficulty of typing univ arise from the conflation of object and meta levels ir 

one language. which requires the same object to simulatenously possess at least twc 

types. in a stronger sense than overloading. A satisfactory resolution of thif 

problem waits on the introduction of an explicit meta-level or the construction of c 

genuinely reflective Pro log [51. 

11 Conclusions and further work 

We have shown how to well-type that subset of Prolog described by flrst-orde1 

logic and indicated how this might be extended to allow higher order objects. It is ar 

interesting result that the well-typing problem for a Prolog program can itself be 

regarded as a Prolog meta-program. 
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