
Abstract

A polymorphic type system for Prolog

Alan Mycroft
Dept of Computer Science

Edinburgh University

Richard O'Keefe
Dept of Artificial Intelligence

Edinburgh University

101-

We describe a polymorphic type scheme for Prolog which makes static type

checking posslble. Polymorphism gives a gooa degree of flexlblllty to the type

system. and makes it intrude very little on a user's programming style. The only

additions to the language are type declarations. which an interpreter can ignore if it

so desires. with the guarantee that a well-typed program will behave identically with

or without type checking. Our implementation is discussed and we observe that the

type resolution problem for a Prolog program is another Prolog < meta-> program.

1 Introduction

Prolog currently lacks any form of type checking. being designed as a language

with a slng·le type C the term> . While this is useful for learning it initially and for fast

construction of sketch programs, it has several deficiencies for its use as a serious

tool for building large systems.

We have observed that a theorem prover which reasons about Prolog programs

can be more powerful .if it has type information available. One indication as to why

this is so can be seen from the fact that the traditional definition of append has

append< nil. 3. 3) deducible from its definition.

One very good reason for a type system Is that it can provide a static tool for

determining whether all the cases In a Prolog predicate have been considered. For

example. a predicate defined by

type neg list< list< int> . list< int>>

neg list< cons<A. L>. cons(B. M> > .. negate CA. B>. neglist< L. M>

will never succeed. since we have probably omitted the clause

1

10 8
negllst< nil. nil> -

A type system would enable us to detect this by checking for exhaustive specificatior

of argument patterns tor a given data-type. Of course. if we really did want a

certain case to fail. then adding a clause such as

neg list< nil. nil) - fail

would be an explicit way of requesting such an event without leaving first-order logic

< and would facilitate tater reading of the program>.

Moreover. our type system can be used as the basis of an encapsulatior

providing an abstract data type facility. The ability to hide the internal details of c

given object greatly aids the reliability of a large system built from a library o

modules.

Finally. we note that static type checking cannot of itself provide a great increase

in speed of Prolog programs. due to the fact that term unification must still be

performed. as in the dynamic case. However. typed Prolog can improve the speec

of compiled clauses of a given predicate by using a mapping of data constructor~

onto small adjacent integers to enable faster selection of the clause(s> to be

invoked. By far the greatest gain is that of programmer time provided by earl~

detection of errors.

As far as we know this work is the first application of a polymorphic type schemE

to Prolog, but related work includes Milner's work (41 on typing a simple applicative

language which is used in the ML [31 type checker and the HOPE language whict

uses a version of Milner's algorithm extended to permit overloading. However. thi:

work differs from these In several respects. Firstly, the formulation of Prolog a:

clauses means that the problems of generic and non-generic variables are muct

reduced. All predicate and functor definitions naturally receive gener'::; polymorphic

types which can be used at different type instances within the program whilst al

variables receive non-generic types. Moreover. our formulation for Prolog removei

a restriction in Milner's scheme in which all mutually recursive definitions can only bE

used non-generically within their bodies. Thus in ML the (rather contrived> progran

2
109

let rec Ix= x

and f X = I (x+ l)

and g x = if l<x> then l else 2

would be ill-typed. Since all Prolog clauses are defined mutually recursively. this

restriction would have the effect of making the polymorphism useless.

2 Mathematics

We assume the notion of substitution. a map from variables < and terms by

extension> to terms. ranged over by 9 and t,. An invertible substitution is called a

renaming. If a term. u. is obtained from another. v. by substitution then we say

that u is an instance of v. and write u(v. We write usv if u(v and v(u. This means

that u and v only differ in the names of their variables and that the substitutions

involved are renamings. Also assumed is the notion of most-general unifier (MGU>

of two terms.

For any class of objects S. the notation s* will be used to indicate the class of

objects consisting of finite sequences of elements of S.

3 Prolog

The simple variant of Prolog we consider will be defined by the following syntax

C we assume the existence of disjoint sets of symbols called Var. Pred and Functor.

representing variables. predicates and functors symbols respectively>:

Term · · - Var I Functor< Term*>

Atom ::= Pred(Term*>

Clause : : = Atom ... Atom*

Sentence : : = Clause*

Program : : = Sentence: Atom

Resolvent : : = Atom•

By definition of clause form each. implicitly universally quantified. variable appears

In at most one clause. To make the formal description of typing simpler. we assume

that the textual names of variables also follow this rule. A program then is given by

a 1inite list of C Horn> clause declarations. followed by an Atom C short for atomic

formula) • called the query. to evaluate in their context. It specifies an initial

resolvent by taking the query and treating it as a· one-element list.

3 110

The evaluation mechanism for Prolog is very simple. and based on the notion 01

SLD-resolution as the computation step:

SLD-resolution is the one-step evaluation which transforms a Resolvent. Given a

resolvent

R = A1 An

we select an Atom. the selected atom. say Ak, < this Is often A1 In real Prolot

interpreters) and perform resolution with it and a matching clause. So. choose a

clause of the program. the selected clause. say Q, given by

C +- 8 1 , ...• Bm

and suppose that R has no variables in common with it < otherwise we must rename

Its C Q's> free variables since they are implicitly universally quantified for the clause> .

Now let 9 be MGU<Ak. C> if this exists. If it does. then we can rewrite R into R'

given by

9(A1 •...• Ak_1 • B1 , ..• Bm. Ak+-1 An).

The most common form of Prolog interpreter uses k=l when this expression simplifies

somewhat.

An answer is produced when the resolvent is rewritten into a sequence of zerc

atoms. The associated answer to such a rewriting sequence is the composition o

most-general unifiers encountered during the rewriting process. or rather it~

restriction to the variables in the query.

Observe that the above specification only told us how we could produce an answe1

(if one exists> from a Prolog program. For computation the choices above (the

selected atom and clause> must be incorporated into a deterministic tree saarchin~

algorithm. which we take time to explain below for the reader's benefit. However.

we would like to stress now that the results on type-checking given in section 5 wor•

for any order of evaluation <choices of atoms and clauses> of Prolog programi

< de c th-first/breadth-first/ coroutlning/ par alleD .

i

I

, I
!

4

111
3. 1 Digression: SLD-trees

The Idea of SLD-resolutlon above. leads to the Idea of an SLD-tree: whenever

we are forced to select a clause then. instead of Irreversibly choosing a given

matching clause. we construct a tree of resolvents Can SLO-tree> where a resolvent

has a son resolvent for each clause which matches with the selected atom. A

sensible computation (the standard implementation of Prolog> is then to search this

tree in depth-first left-right manner.

Some branches die out. in that no clause matches the selected atom. whereas

· others have more than one subtree contribute to the answer. This is often referred

to as the non-determinacy of Prolog.

Finally. we remark that there is never any need to seek alternatives to the

selected atom - In fact doing so would merely lead to duptlcatlon of answers exhibited

elsewhere in the SLD-tree. < For more details on this aspect see (1)).

4 Types

The scheme of types < Type> we allow are given by the following grammar and are

essentially the same as those which occur in ML (31. We assume disjoint sets of type

constructors CTcons. ranged over by roman words) and type variables (Tvar. ranged

over by greek letters like a. P. 'Y>. These are also assumed to be disjoint from Var.

Pred and Functor.·

Type : : = Tvar I Tcons< Type*>

Type will be ranged over by paT . ..

variables. Otherwise it Is a polytype.

A type is called a monotype if it has no type

For examples. we suppose that Tcons Includes the nullary constructor int and the

unary list. Example types are then

list(a>. int. list< list< int>> • etc.

Note that the third type is an instance of the first.

5

11 ~
4. l Digression: the Unary Predicate Calculus

The type systems used in r. 3.ny Al programs are variants or restrictions of th,

Unary Predicate Calculus. However. UPC is not adequate as the single type sys ten

tor an Al programming language. Rules such as

C"I N. U integerCN> & int_listC U =:::r int_list<cons<N. U >

< V U int_list< U ==:a (L=nil V integer(car< U))

cannot be expressed In it.

5 Well-typing of Prolog

This section contains the central definition of a Prolog program being well-typed

together with precursor and auxiliary definitions. Many. of the ideas appear in {4

where a polymorphic applicative language is typed. but our formulation for Proto,

poses new problems and simplifies old ones as we discussed in the introduction.

Let Q the clause c~s, Bm and P be a finite subset of VarUPredUFuncto

containing all the symbols of Q. We define a typing P of P to be an association c

an extended type to each symbol occurring in Q. The types are members of a give

algebra as defined . in section 4. Predicates and Functors are associated wit

extended types as given below. Types and extended types will be written as

superscript on the object they are associated with. ai and T will represent < non

extended) types. For each variable X occurring in a. P will contain an element c

mu mrm ~T, r{U QAt:m PfQfllAi;JlQ i;J AT ijfllY K rn Q, p WIii QArtli;Ufl ijfl QIQfflQnl m m

form a0 P • · • • 0 k. For each functor f of arity k in Q, P will contain an element of th

Term ,ca,.··· .ak>--r,

Similarly. the clause Q will be written as a typed clause Q by the writing of a typ

on each term < this includes variables> .

As an example of a clause and its typing consider the clause Q. given by

appCconsCA. U, M, cons CA. N)) - appC L. M. N>

The set P = CA, L. M. N. app. cons} gives its set of symbols. and a typing < which wi

turn out to be a well-typing considered later> can be given by P:

6

113

where T Is used for a shorthand for list< a> and the associated clause typing a given

by:

P _will be called the typed premise of Q due to the relation to theorem proving.

Fortunately. it will turn out that most of the mess of types written above are inter

dependent and the above expression can be well-typed much more succinctly - see

later.

We will now define Q to be a · well-typing of Q under P. written P t- Q if the

following conditions hold:

l . P t- CA ... 8 1 ••..• Bm> if

A = a<t[1 •...• t{k> and aP E:P
with (r, Tk) S!p

and P I- t{1 C 1 (i<k>

and P t- 8 1 < l (i(m) .

2. P I- A if A is an Atom and

A - (tT1 t.Tk) d Pp - a 1 •...• 'I(an a E:

with (T1 •••.• Tk) (p

and P t- tt1 < 1 (i(k) .

:,, p t- u0 IT u IB a Term ana
T T p -

U = Ht1 1, • , , , \ k) ana T E:P

with ((T 1 • •••• T k) --o) (p
- T ana P >- t1 1 < 1 <l'-'O •

4. P t- xo If x0 E: P.

Now. we will define a program to be well-typed under a typed premise P if each

7

of its clauses is well-typed under P and if its query atom Is.

well-typed if each of its atoms are.

Similarly a resolvent i~

Well-typing as a mathematical concept is of little use. unless we relate it 1<

computation. This we will now do. under the motto ·well-typed programs do not gc

wrong'".

6 Well-typed programs do not go wrong

What we desire to show. is the semantic soundness condition that if a progran

can be well-typed. then one step of SLD-resolution will take a well-typed resolven

into a new well-typed resolvent. Thus any SLD-evaluation of a well-typed progran

will remain well-typed. It is trivially the case that the initial resolvent is well-typed i

the program is. Moreover. we should show that the variables in the query can onl'

be instantiated to terms specified by their types given by the well-typing.

The first condition is simply proved: Let R be the resolvent A 1 •...• An and let C

be a clause C ... B1 •...• Bm which has no variables in common with R C the cas,

where Q and R have variables in common will be discussed later> . Without loss o

generality <symmetry> let A 1 be the selected atom and suppose 8=MGUCA1. c:

exists. The resolvent produced by one-step evaluation is R' given by

We will now show hew to well-type this from the well-typing of R.

Let us suppose that there is a P with typing P and associated well-typings R an1

Q such that P I- R and P I- Q C note this provides well-typings Ai, C. Bi>. Moreover

let us suppose that R and Q have no type variables In common C again. we wt

discuss this later. but note that the typing rules never rely on the · absolute' names c

the type variables> .

Let the type of the predicate symbol of C in P be cP1• ···,Pk. Now the well-typini

determines that C can be written cc s?'1 •...• sfk> and A1 as cc ti 1 •...• t[k) where

(0'1 • · · · • ok) '!!! (P1 · · · · • Pk)

(T 1 • ...• T k) ~ (p 1 • ..•• pk) .

I I
. I

8
115

This means that there Is a substitution t, on type variables < actually

t,&rMGU((a, •••.• ak). (T, Tk))) such that (T, Tk) = t,(ca, •...• ak)).

The claim Is that

gives a well-typing of A'. where applying t> < a type substitution> to a typed atom

means that it is to be applied to the type variables in types associated with terms

occurring within that atom.

We now address the problem of there being variables. or type variables. in

common between A and Q. These are really the same problem (the perennial one

of renaming in Prolog>. A simple solut_ion is the following: Whenever we come to

perform resolution between a clause Q and a resolvent A we rename Q such that all

its variables (using a renaming ,-> and all its type variables < using a renaming 71)

are distinct from the variables <and type variables> in A and the other clauses. This

can always be done since A can only contain a finite number of different variables.

Moreover this does not change the meaning of Q. This strictly breaks the type

scheme. since the new variables appearing in Q do not appear in P. However. a

almpte addition to P or 1'< X> 71 <T> ror each vartabto x In tno or1g1na1 Q which appGarQd

as xr In P serves to correct this and preserve the typing. we are now back In the

case where Q and R have no variables or type variables in common.

We now return to the problem of showing that a well-typed program can only

instantiate the variables of its query to values having types as dictated by the typed

premise. To see that this is the case. it is merely necessary to observe that each

resolution step <as above> Is performed between an Atom. A. and a (type> Instance

of a clause C ... 8 1 •...• Bm. such that the types ot A and this instance ot C are

Identical except for the names of type variables. Thus variables in A can only be

instantiated to Terms < possibly other variables> having identical types. The whole

result is proved by induction on the length of computation leading to a refutation.

9

116
7 Specification of the type information to Prolog

We suggest that the type specification be performed by annotations to the Prolog

system. The well-typing required three sets of information to be supplied:

- the types of the predicates

- the types of the functors

- the types of the variables.

We suggest that declarations be supplied which give the type of the first two but the

type of variables can easily be determined from them. This can be seen b-y

observing that a well-typed Atom or Term labels the type of each argument Term.

and so each variable is labelled with a type. The most-general unifier of all the

types associated with a single variable C if it exists> gives a type for that variable.

<This is also convenient since the scope of variables in Prolog is a single clause.

whereas the other objects have a global scope.>

It is convenient to specify the names of types along with the functors which create

them from other types. This has been demonstrated by HOPE [21 and we do no1

expect to better this idea.

So one of the declarations. or meta-commands is one of the form

Declaration : : = 'type' TconsCTvar*> '=>' Functor<Type*>*.

Examples would be C the second somewhat improper>

type llsHa> => nit. cons<a. lfst<a> >
type int => 0. 1. -1. 2. -2. 3. -3.

The second declaration specifies the type of predicates. Suggested syntax is

Declaration : : = 'pred' Pred(Type*>.

and an example for the 'equal' function defined by

equalCX.X> ...

would be

ored equal< a. a>.

10
111-

We note here. that. given the types of the functors. then would seem possible to

determine the types of the predicates involved without any great amount of work c as

in ML l41> . However. this seems to depend on an analysis of the whole program at

once. rather than any form of interaction. 1 We would also claim that the

documentation provided b~ the written form of the types facilitates human

understanding of programs in much the same way that explicit specification of mode

information C input/output use of parameters> for predicates does.

7. 1 Abstract data types

We observe that the above declarations furnish a form of abstract data typing.

Providing a 'module' construct and . exporting from it a given type name. and

predicates which operate on that type. but not the constructor functors for that type.

enables us to use a type. but not to determine anything about its representation.

HOPE has such a construct. and we think it would greatly benefit Prolog.

8 Overloading

The above discussion has centred on a formalism for well-typing Prolog.

However. it does not allow for one feature which we have found to be useful. and

which is very easy to build into the type system. This feature is overloading and

appears in a similar form in HOPE l2l.

The observation. is. that quite often. we may wish a given function. predicate or

functor name to stand for more than one distinct operation. This Is common In

mathematics and computer science. where an operator C eg '+') may be used to

denote a different function at different types. In Prolog this can be useful too. For

example. we may wish to have types specified by

list<a> => nil. cons<a.listCa>>

treeCa> => nil. leaf<a>. cons<tree<a>. tree<a> >

where the constructors nil and cons<_._> have different meanings according to

whether they act on lists or trees. C Of course we could give them different names.

1 Moreover there is a small technical problem concerning recursive definitions which makes checking ot
type specifications of such definitions much easier than their: derivation.

11

but this is not always helpful to the programmer.>

Similarly. we may want certain predicate symbols to refer to different predicate

according to the type of their arguments. A typical example would be some sort c

'size' predicate.

We formalise this by permitting the typed premises used above to contain mor1

than one type associated with any given 1unctor or predicate symbol.

9 Implementation

We have built such a system in Prolog which implements the overloaded typ1

checker by backtracking. Note that this is not particularly difficult since our well

typing rules given in section 5 are essentially Horn clauses. There are merely tw,

points to observe. Firstly, the ·occur-check' of unification <which Is often omitted b

Prolog implementations> is essential for this typechecking scheme. Secondly. th,

use ot (can be simulated by instantiation of a copy of the functor or predicate typ

and the use of a! by a common meta-linguistic predicate < numbervars> whic

instantiates variables in a term to ground terms to avoid their further instantiation

Copies of the code can be obtained from the authors or could be included as a

appendix.

That the well-typing rules < which define when a given program has a given type

can be used to determine the type of a given program is a simple consequence c

the Horn clause input/ output duality. Moreover. when the well-typing rules are use

in the fashion on a given program. T say, then the standard SLD-resolution wi

produce a terminating evaluation giving the most-general types associated with T

The basic Idea is that If the well-typing problem has no solution. tu. the program i

ill-typed. If it has exactly one ff$dhe program is well-typed. and if it has more tha

one then some overloaded operator is ambiguous.

10 Higher order objects

This section is much more tentative and more in the manner of suggestion tha

the rest of the paper and we would be grateful for any comments on its inclusion c

its contents., It is included because we want to discuss the well-typing of objects whic

12

11~
do not form part of first-order Prolog. jn particular the calf and univ operators.

The definition of call is based on the fact that most Prolog implementations use

the same set of symbols for predicates and functors < this causes no syntactic

ambiguity> and thus a Term has a naturally corresponding Atom. Hence call is

de1ined to be that predicate such that call< X> is equivalent to Y where Y is the Atom

corresponding to the Term X. Thus call provides a method of evaluating a Term

which has been constructed In a program and is accordingly related to EVAL In LISP.

We would like to argue that such a predicate is more powerful than is required and

. Indeed encourages both bad programming style and Inefficient code. It Is certainly

the case that most uses of call are used in the restricted case of applying a certain

functor passed as a parameter to arguments determined locally C as in mapping

predicates> . Functions or predicates like EVAL or call do not appear to have

sensible types and are thus generally omitted from strongly typed languages in favour

of some form of APPLY construct.

We would like then to change our definition of Prolog and its typing to introduce

this construct. To do this we introduce a family of abstract data types. called

predCa). predCa.,8). predCa • .S.x>

and a family of predicates with types given by

pred appfy<predCa>. a>. apptyCpredCa. IJ>. a.lJ>.

The only way to Introduce object of type pred is by a special piece of syntax given by

Term : : = 'Pred

which has the effect of associating the definition of the given predicate with Term.

which then receives the type pred < a 1 •.••• an> if th~ predicate has type (a 1 •••.• an> .

< It may be desirable to use such syntax as • foo/3 or • fooC_. _. _) if several

predicates of different arities have the name foo. > Such values can only be used in

apply and have the effect of using the associated predicate value together with Terms

as arguments to produce an Atom to evaluate. It can be shown that such a scheme

is type secure. For example. the map predicate can be defined and used by:

13

F j

mapCF.consCA.L>.consCB.M» .. applyCF.A.B>. mapjL.M>

map(F. nil. nil) ..

neglistCX. Y> - map(· negate. X. Y>

J ,<.C

assuming tnat nGgate Is defined as a dladlc predicate. The type of map so defined

would be < pred(a. /J). list<a>. list<.B> >.

The other higher-order object frequently used is the univ predicate (often writter

·= .. ') which can be used to transform a Term Into a ltst of Terms derived from the

farmer's top-level substructure. <This is typically used for analysing terms read with

input functions.> Thus

univ(f(gCX.a>. Y>. U.g<X.a>. Y])

is true. As it stands this clearly breaks the type-scheme we are proposing since the

elements of the list represented by the second parameter need not be of the same

type. We observe again. that such a predicate is not commonly used in its full

generality. but rather to allow arbitrary terms to be input. As such. we suspect tha1

introducing a new type 'input_term' which specifies the type of objects generated b~

input routines and giving univ the type < input_term. list< input_term> > • together with c

notation for treating a Term as an input_term would give much of the power of uni\

within a strong typing discipline.

The difficulty of typing univ arise from the conflation of object and meta levels ir

one language. which requires the same object to simulatenously possess at least twc

types. in a stronger sense than overloading. A satisfactory resolution of thif

problem waits on the introduction of an explicit meta-level or the construction of c

genuinely reflective Pro log [51.

11 Conclusions and further work

We have shown how to well-type that subset of Prolog described by flrst-orde1

logic and indicated how this might be extended to allow higher order objects. It is ar

interesting result that the well-typing problem for a Prolog program can itself be

regarded as a Prolog meta-program.

14

1Z1
12 Acknowledgments

This work was supported by the British Science and Engineering Research

Council.

13 References

(11 Apt. K. R. and van Emden. M. H.
Contributions to the theory of logic programming.
Journal of the ACM 29<3>: 841-862. 1982.

[21 Burstall. R. M .• MacQueen. D. and Sannella. 0. T.
HOPE: an Experimental Applicative Language.
In Conference Record of the 1980 LISP Conference. 1980.
Also internal report CSR-62-80. Dept. of Computer Science. Edinburgh

University.

(31 Gordon. M. J.C .• MIiner. A. J. R. G .• Morris. L., ·Newey. M. and
Wadsworth. C.
A Metalanguage for Interactive Proof in LCF.
In Proc. 5th ACM Syrnp. on Principles of Programming Languages.

Tucson. Arizona. 1978.

[41 Milner. A.
A Theory of Type Polymorphism in Programming.
Journal of Computer and System Sciences 17<3>: 348-375. December.

1978.

Smith. B. C.
Reflection and Semantics in a Procedural Language.
PhD thesis. MIT LCS. 1982.

l Introduction
2 Mathematics
3 Prolog

3. l Digression: SLD-trees
4 Types

Table of Contents

4. 1 Digression: the Unary Predicate Calculus
5 Well-typing of Prolog
6 Well-typed programs do not go wrong
7 Specification of the type information to Prolog

7. l Abstract data types
8 Overloading
9 Implementation
10 Higher order objects
11 Conclusions and further work
12 Acknowledgments
13 References

1ll

