
Control of Logic Programs Using Integrity Constraints 

Madhur Kohli Jack Minker 

Department of Computer Science 
University of Maryland 
College Park, MD 20742 

153 



15~ 
Abstract 

This paper presents a theory for the intelligent execution of function 
free logic programs. 

Generally, interpreters for logic programs have employed a simple search 
strategy for the execution of logic programs. This control strategy is 
'blind' in the sense that when a failure occurs, no analysis is performed to 
determine the cause of the failure and to determine the alternatives which may 
avoid the same cause of failure. 

When executing a logic program it is often_desirable to permit an arbi
trary selection function and to have several active nodes at any given time. 
It is also useful to be able to remember the causes of failures and use this 
information to guide the search process. 

In this paper we present a theory for using integrity constraints, 
whether user supplied or automatically generated during the search, to improve 
the execution of function free logic programs. Integrity constraints are used 
to guide both the forward and backward execution of the programs. The theory 
supports arbitrary node and literal selection functions and is thus tran
sparent to the fact whether the logic program is executed sequentially or in 
parallel. 



1 155 

1. Introduction 

1.1. ~ Problem 

This paper presents a theory for the intelligent execution of function 
free logic programs. 

Interpreters for logic programs have employed, in the main, a simple 
search strategy for the execution of logic programs. PROLOG (Roussel [1975], 
Warren [1979], Roberts [1977]), the best known and most widely used inter
preter for logic programs, employs a straightforward depth first search stra
tegy augmented by chronological backtracking to execute logic programs. This 
control strategy is 'blind' in the sense that when a failure occurs, no 
analysis is performed to determine the cause of the failure and to determine 
the alternatives which may avoid the same cause of failure. Instead the most 
recent node where an alternative exists, is selected. This strategy has the 
advantage that it is efficient in that no decisions need to be made as to what 
to select next and as to where to backtrack. However, the strategy is 
extremely inefficient when it backtracks blindly and thus repeats failures 
without analyzing their causes. 

Pereira [1982], Bruynooghe [1978] and others have attempted to improve 
this situation by incorporating the idea of intelligent backtracking within 
the framework of the PROLOG search strategy. In their work the forward execu
tion component remains unchanged, however, upon failure their systems analyze 
the failure and determine the most recent node which generated a binding which 
caused the failure. This then becomes the backtrack node. This is an 
improvement over the PROLOG strategy but still suffers from several drawbacks. 
Their scheme works only for a depth first search strategy and always back
tracks to the most recent failure causing node. Also, once the backtrack node 
has been selected, all information about the cause of the failure is dis
carded. This can lead to the same failure in another branch of the search 
tree. Pietrzykowski [1981] has considered intelligent backtracking in the 
framework of general first-order systems. 

A node in the search space is said to be closed when it has provided all 
the results possible from it. In most PROLOG based systems a node cannot be 
closed until every alternative for that node is considered. However, by using 
integrity constraints as will be shown later, a node can be closed once it is 
determined that exploring further alternatives for that node will not provide 
any more results. 

When executing a logic program it is often desirable to permit an arbi
trary selection function and to have several active nodes at any given time. 
It is also useful to be able to remember the causes of failures and use this 
information to guide the search process. 

In this paper we present a theory for using integrity constraints, 
whether user supplied or automatically generated during the search, to improve 
the execution of function free logic programs. Integrity constraints are used 
to guide both the forward and backward execution of programs. The theory sup~ 
ports arbitrary node and literal selection functions and is thus transparent 
as to whether the logic program is executed sequentially or in parallel. 



2 156 

In the rest of this section we define the class of logic programs to 
which this theory is applicable. In Section 2 we show how integrity con
straints can be used to guide the forward execution of the system. In Section 
3 we show how integrity constraints can be extracted from failure and pro
pagated up the search tree. In the Appendix we present the interpreter for 
this theory. 

1•£· Function~ Logic Programs 

1•£•1· Horn Clauses 

Horn clauses are a subset of the first order predicate calculus. The 
language of function free Horn clauses is defined below. 

A~ is a constant or variable. 

An atomic formula is a predicate letter of arity n > 1 whose arguments are 
terms, i.e., if Pis an n-ary predicate letter and t 1, ••• ,tn are terms then 
P(t 1, ••• ,tn) is an atomic formula. 

An atomic formula or its negation is a literal. The classical logical connec
tors - (not),/\ (and), V (or) and the universal quantifier V are used in con
structing clauses. 

A clause is a disjunction of literals all of whose variables are universally 
quantified. That is, B1 v ••• V 13ui V -A1 v ••• V -An is a clause. A clause can 
be written equivalently as (V xi) (B1 v ••• V Bm <- A1 /\. • ./\ An) where the xi' 
i=1, ••• ,k are all the variables in the atomic formulae Ai, Bj, i=1, ••• ,n, 
j:1, ••• ,m. Since all variables in a clause are universally quantified, the 
universal quantifier will be omitted in the rest of this paper. 

A Horn clause is a clause which has at most one positive literal, i.e., the 
clause above is Horn iff m < 1. 

A function free logic program is composed of function free Horn clauses 
as follows: 

1. Assertions are facts or general statements about the domain and are of 
the form 

2. Procedures are of the form: 
P{x 1, ••• ,~) <- P1( ••• ), ••• ,Pn( ••• ) 

which states that to solve P we must solve P1, ••• ,Pn. 

3. Goals or the problem to be solved are of the form 
<- P( ••• ),Q( ••• ), ••• ,S( ••• ) 

A function free logic program is defined in terms of the following: 

(1) Axioms 

(a) Domain Closure Axioms, which states that there is a finite set of 
constants c 1, ••• ,cn from which all constants in the knowledge base must 
be drawn. 



3 

(b) Unique Name Axioms, which state that the constants are unique i.e., 
(c 1,c2), ••• , (c 1,cn), ••• , (cn_,,cn) 

(c) Equality Axioms: 
reflexive (x = x) 
symmetric ((y = x) <- (x = y)) 
transitive ( (x = z) <- (x = y) /\ (y = z)) 
principle of substitution of equal terms 

P(y1,•••,Yn) <- P(x,, ••• ,Xn) /\ (x1=Y1> /\. • ./\(Xn = Yn) 
where Pis an n-ary predicate letter. 

(2) Assertions of the form 
P(x1, ••• ,Xn) <-

(3) Procedures of the form 
P(x1, ••• ,~) <- P1( ••• ), ••• ,Pm( ••• ) 

(4) A meta-rule: Negation as failure to prove positive literals. 
1978] and [Reiter 1978]). 

1.g.g. Integrity Constraints 

( [Clark 

An integrity constraint is an invariant that must be satisfied by the 
clauses in the knowledge base. That is, if T represents a theory of function 
free logic programs and IC represents a set of integrity constraints applica
ble to T, then TU IC must be consistent. 

Integrity constraints are closed function free Horn formulae of the form: 

(a) <- P1, ••• ,Pm, or 

(b) Q <- P1, ••• ,Pm, or 

(c) E1 V E2 V ••• V En<- P1, ••• ,Pm where the Ei, i:1, ••• ,n, are equality 
predicates i.e. each Ei is of the form xi= yi where at least one of the 
xi, Yi are variables. 

Thus, an integrity constraint of the form (a) above, represents negated 
data, in the sense that P 1 /\ P2 /\. • ./\Pm can never hold if T U IC is con
sistent. 

An integrity constraint of the form (b) above, states that if 
p 1 /\ P2 /\. • ./\ pm 

holds then Q must also hold. 

Integrity constraints of the form (c) above, represent dependencies 
between the arguments of P1,P2, ••• ,Pm. 
Consider the logic program: 

I P(x,y)<-F(x,y) I 
F(a,b)<- IT 

I 
I 

F(b,c)<-

and the associated integrity constraint 



4 

I 
I 

R(x,z)<-P(x,y),P(y,z)IIC 
I 
I 

In the above example, R(a,c) can be proven from T, by using negation by 
failure. P(a,b) and P(b,c) can be proven from T. R(a,c) can be proven from 
P(a,b) and P(b,c) and IC. Thus R(a,c) can be proven from TU IC. Thus TU IC 
is inconsistent. The above integrity constraint is violated by the logic pro
gram since TU IC is inconsistent. 

If, however, the clause: 
R(x,z) <- F(x,y),F(y,z) 

were added 
would not 
constraint 

to T, then TU IC would be consistent and the integrity constraint 
be violated. Similarly, one could leave the axiom as an integrity 

and add R(a,c) to the knowledge base and have a consistent theory. 

2. Goals and Integrity Constraints 

2.1. Integrity Constraints to Limit Forward Execution 

Though integrity constraints are not necessary for finding the solution 
of a given set of goals with respect to a given logic program (Reiter 
[1978]), they can greatly enhance the efficiency of the search process and 
thus improve the performance of the problem solver (McSkimin and Minker 
[1979], King [1981]). 

Integrity constraints enable the semantics of the given domain to direct 
the search strategy by enabling the problem solver to prune those alternatives 
which violate integrity constraints and thus focus the search. Thus, 
integrity constraints influence the forward execution of the problem solver by 
enabling it to detect which sets of goals are unsolvable. This avoids explor
ing alternatives which must fail after a, possibly lengthy, full search. 

Thus whenever a new set of subgoals is generated, this set can be tested 
to determine if it violates any integrity constraints. If so, the node in 
question can be discarded and another path considered. 

2.2. Implementation and Search Strategy 

There are several forms an integrity constraint may take (Section 1.2.2). 

Whenever a new set of goals is generated it must be tested to 
if it violates an integrity constraint. Though each of the forms 
and (c) above require slightly different treatments to determine if 
violated, the underlying mechanism for each is the same. 

determine 
(a), (b), 
they are 

Form (c) can be transformed into form (a) by moving the disjunction of 
equalities on the left into a conjunction of inequalities on the right, i.e., 

E1 V E2 V ••• V En<- P1, ••• ,Pm 
is equivalent to 



I I 
I 

5 159 

These inequalities can then be handled by using predicate evaluation rather 
than negation. 

Form (b) can be interpreted to mean that solving Q is equivalent to solv
ing P,, ••• ,Pm and thus P1, ••• ,Pm can be replaced by Qin the set of goals. 

Since all that is 
integrity constraint 
algorithm can be used. 
side of some integrity 

required, is to determine if the literals in the 
occur in the goal clause, an extremely straightforward 
It is only necessary to determine if the right hand 

constraint can subsume the goal clause. 

A clause C subsumes a clause D iff there exists a substitution o- such 
that 

Co-SD 

By Co-we mean the result of applying a substitution set o-, which is composed 
of pairs of the form a1;xi where the xi are variables of C and the a1 are 
variables or constants, to C, i.e. each occurrence of xi inc is replaced by 
ai. 

The subsumption algorithm executes in linear time and does not increase 
the complexity of the search. 

This algorithm (Chang and Lee [1973]) is presented below: 

Let C and D be clauses. 
Let Q = {a1tx1, ••• ,an/xn} be a substitution set, where x 1, ••• ,~ are all 
the variables occurring in D and a 1, ••• ,8n are new distinct constants not 
occurring in C or D (Skolem constants) and the constants ai is to be sub
stituted for the variable xi, wherever it appears inc. 
Suppose D = L1 V L2 V ••• V Lui, 
then DO= L,o V L20 v ••• v LuiO 
DQ is a ground clause since all variables in D have been replaced by 
Skolem constants. 
Thus , -og = -L 1 Q /\ -L2Q /\. • ./\ -Lmg 

1: Let w = {-L1o, ... ,-~Q} 

2: Let k = 0 and u0 = {C} 

3: If uk contains the null clause then terminate; C subsumes D 
else let uk+1 = {resolvents of c1 and c2 I c 1 ~ uk and c2 ~ W} 

4: If uk+1 is empty then terminate; C does not subsume D 
else set k to k+1; go to Step 3. 
Consider now, how the yarious forms of integrity constraints can be used 

to limit the forward execution. 

If a constraint is a form (a) constraint then all that is required is to 
apply the subsumption algorithm to the newly generated goal clause. If the 
constraint subsumes the goal clause, the goal violates the constraint and 
should be deleted from the search space. 

Whenever a literal is solved, it must be determined whether 
with any literal in the right hand side of a form (c) constraint. 

it unifies 
If so, the 



6 
160 

resulting substitution is applied to the constraint, the solved literal is 
deleted, and the resulting clause is added to the set of integrity con
straints. 
For example, if 

x1:x2 <- P(x,x1),P(x,x2) 
is a constraint and P(a,b) is solved then P(a,b) unifies with the right hand 
side of the above constraint with the substitution set {a/x, b/x1}. Applying 
this substitution to the above constraint, and noticing that P(a,b) has been 
solved permits the revised constraint 

X2=b <- P(a,x2) 
to be obtained. This is then added to the set of integrity constraints. 
Also, this allows any node containing P(a,x) to be considered as a purely 
deterministic node, since only one possible solution for P(a,x) exists. 

Finally form (b) constraints can be used as follows. If the right hand 
side of the constraint subsumes the goal then, the resulting substitution is 
applied to the left hand side of the constraint and a new alternative goal 
with the left hand side substituted for the right hand side of the constraint, 
is generated. For example, if 

Q(x,z) <- P1(x,y),P2(y,z) 
is a constraint, and the goal clause under consideration is 

<- R(a,u),P,(a,y),P2(Y,Z),S(Q,Z) 
then 

<- P1(x,y),P2(y,z) 
subsumes the goal with substitution {a/x}. Applying this substitution to <
Q(x,z) results in<- Q(a,z). Generating an alternative node with Q replacing 
P1,P2 then results in the above goal node being replaced by the following OR
node 

Parent Node 

R(a,u),P 1(a,x),P2(y,z),s(b,z) 

Whenever a violation of an integrity constraint occurs it is treated as a 
failure. This results in failure analysis and backtracking which are detailed 
in the next section. 

1· Local and Global Conditions 

Global conditions are integrity constraints which are applicable to every 
possible node in the search space. Local conditions are integrity constraints 
which are generated during the proof process and which are applicable only to 
the descendant nodes of some given node in the search space. 

In this section we show that both local and global conditions exist. We 
also show how implicit global and local conditions may be determined and how 
they can be used to improve the efficiency of a problem solver. We also show 
how both failure nodes and fully expanded nodes may be used to derive these 
conditions. 



1 

J•l· Failure 

The failure of a literal can provide valuable information for directing 
the search. A literal 'fails' when it cannot be unified with the head of any 
clause (intensional or extensional) in the knowledge base. Since this failure 
means that the literal cannot be proven in the current knowledge base, because 
of the assumption of failure by negation, the literal's negation can be 
assumed to hold. Thus, the negation of the literal can be viewed as an impli
cit integrity constraint, and the failure can be viewed as a violation of this 
integrity constraint. 

Thus, every failure can be viewed as a violation of some integrity con
straint, implicit or explicit. This allows us to extract useful information 
from every failure, and to use this information in directing the search. 
The possible causes of unification conflicts are: 

(a) The literal is a pure literal. That is, there is no clause in the 
knowledge base, which has as its head the same predicate letter as the 
literal selected. This implies that any literal having the same predi
cate letter as the selected literal, will fail anywhere in the search 
space. This information can be useful in terminating other branches or 
the search tree in which a literal containing this predicate letter 
occurs. Thus if P(a,x) is a pure literal, then all of its argument posi
tions can be replaced by distinct variables and the resulting literal can 
be added to the set of integrity constraints as a form (a) constraint, 
i.e., 

<- P(x,,x2) 
is added to the set of constraints. 

(b) There are clauses in the knowledge base which could unify with the 
selected literal, but which do not unify because of a mismatch between at 
least two constant names. This mismatch can occur in two ways: 

(1) one of the constant names occurs in the literal and the other occurs 
textually in the head of the clause with which it is being matched. 

(ii) both the constants, which are distinct, occur in only one of the 
literal or the clause head being matched, but are to be bound 
together by the repeated occurrence of a variable in the clause head 
or literal, respectively. 

In both cases (1) and (ii) it is obvious that the 
never succeed with that particular set of arguments. 
used as an integrity constraint by placing the literal 
straint. For example, if the selected literal is 

P(x,a,x) 
and the only P clauses in the knowledge base are 

P(nil,nil,nil) <-
P(z,z,b) <- P1(z,b),P2(z) 

selected literal can 
This information can be 
as a form (a) con-

then the unification fails and <-P(x,a,x) can be added to the set of integrity 
constraints. 



8 

1·£• Explicit and Implicit Integrity Constraints 

Integrity constraints may be either explicit or implicit. Explicit 
integrity constraints are those which are provided initially in the domain 
specification. These constraints affect the forward execution of the problem 
solver as detailed in Section 2. These constraints can also be used in the 
derivation of implicit constraints. 

Implicit integrity constraints are generated during the proof process, 
i.e., during the solution of a specific set of goals. These constraints arise 
out of the information gleaned from failure as shown in section 3.1, and from 
successes in certain contexts as will be shown in later sections. These 
integrity constraints may be considered to be implicit integrity constraints 
in the sense that they are not explicitly supplied integrity constraints but 
are derived from the proof process. 

l•l• Applicability of Integrity Constraints 

An integrity constraint may be globally or locally applicable. An 
integrity constraint is said to be globally applicable if it can be applied to 
any node in the search space. That is, it must be satisfied by every node on 
every success path in the proof tree. Explicit integrity constraints are 
always globally applicable since they are defined for the domain and are 
independent of any particular proof tree. Implicit integrity constraints may 
be either locally or globally applicable. 

A locally applicable integrity constraint is one which must be satisfied 
by a given node and all its children. Any node which is not part of the sub
tree rooted at the node to which the constraint is locally applicable, need 
not satisfy the constraint. Locally applicable integrity constraints are 
derived from the failure of some path in the search space. The analysis of 
the cause of the failure results in the generation of a locally applicable 
integrity constraint which is transmitted to the parent node of the failure 
node. This local integrity constraint·must then be satisfied by any alterna
tive expansions of the node to which it applies. This effectively prunes 
those alternatives which cannot satisfy the constraint. For example, consider 
the following logic program fragment, 

Logic Program: 
P(a,b) <-
Q(y,z) <- Q1(z,x), Q2(z,y) 
Q(y,z) <- Q3(z,y) 
Q1 (b,d) <-
Q2(b,b) <-
Q2(c,c) <-
Q2(c,b) <-
Q2(x,y) <- Q4(c,x) 
Q3(c,b) <-
Q4(x,x) <-

Query: 
<- P(x,y),Q(y,z) 



9 

Search Tree: 

( 1) 

<- f(!,z),Q(y,z) 

(2) l 
<- SC!~,.!> 

( 3) 

<- Q1 (z,x) <- S3<.!,E.> 

(4) 

<- g,cr~) (5) 

<- s, (E_,!_) 

l 
.Jess 

fail success 

fail 

From the proof tree, the following information can be exteracted. From node 
4, <- Q1(c,x) can be propagated as a global implicit constraint since<-
Q1(c,x) can never be solved. Also, z = c can be propagated as a local impli
cit constraint to node 3 and thus later prevent the generation of node 8. 
This constraint is local to node 3 and its children since that is the node 
that bound z to c. Thus, node 6 has inherited this local constraint and 
thereby prevents z from being bound to c. As can be seen from the example an 
alternative expansion of node 2 giving node 7 succeeds with z bound to c, 
which illustrates that z =cat node 3 is a local constraint. 

1•~• Fully Expanded Nodes 

Implicit integrity constraints can be derived not only from failures but 
also from fully expanded nodes. 

If the same local integrity constraint is generated by every expansion of 
a given node, then this constraint can be propagated globally, irrespective of 
whether or not some expansion of this node succeeded. Also any node which 
fails for every possible expansion, can be propagated as a global integrity 
constraint. 



10 

1•2· Generation and Propagation of Conditions 

Implicit integrity constraints are generated at the leaf nodes of the 
search space and are then propagated either globally or as locally applicable 
integrity constraints to some parent node of the leaf node. The rules for 
generating and propagating these dynamic constraints are detailed below. 

When a goal fails along all paths, then that goal along with its current 
bindings is propagated as a global integrity constraint. Thus, if 
P(d1 u2 ••• ,~), where the d1 , i = 1, ••• ,n are constants or variables, fails 
for 'every expansion of P, then<- P(dj u2 ••• ,dn) is a global integrity con
straint. This is because P(d 1 d 2 ••• ,dn)'can never succeed, given the current 
state of the knowledge base. ' ' 

Since that goal can never succeed with its current bindings, alternatives 
which give rise to different bindings for its arguments must be tried. Thus 
those nodes which created the failure causing bindings receive as local 
integrity constraints, the information that these bindings must not be 
repeated along alternative expansions of the nodes which created the bindings. 
That is, if P(d 1 u2 ••• ,dn) fails and there is some ancestor P' of P such 
that some di of Pi! b6und by some literal (other~!') in the clause con
taining P', then <- xi= di is a local integrity constraint for the clause 
containing P'. If there are several d. which have been bound in different 
clauses then the conjunction of these 5indings must be propagated to the bind
ing clauses. That is, if ~ ~ ••• ,p are constants, where ~- = d- i = 
1, ••• ,m; j = 1, ••• ,n, such taaf'pi wal bound by some ancestor pi 6f P,Jand if 
P1 is the most recent ancestor of P and Pm is the least recent ancestor of P, 
then<- x1 = ~1 is propagated to the clause containing P1 and<- x1 = ~1, x2 = 
p2, ••• ,xi= ~i is propagated to the clause containing Pi. This is because 
undoing the p1 binding at P1 may suffice to remove the cause of failure 
whereas at P2, undoing either of the p1 or ~2 bindings may suffice. We do not 
propagate <- x1 = ~1, x2 = ~2, ••• ,xi= ~i to every Pk since xi has been 
replaced by pi in Pi and thus does not occur in any Pk, k < i. 

Local constraints which are propagated to a node by a descendant of the 
node must then be propagated to all other descendants of that node. This is 
because, as was noted above, the binding of pi to xi in the node containing Pi 
was due to the selection of some atom other than Pi in that node. Thus, Pi 
will be present in every expansion of that node and the binding of pi to xi 
will cause Pi to eventually fail. 

Theorem: 

Consider a node P which has several children P1, P2, ••• , Pn. 
Associated with each Pi is a set of local integrity constraints generated 
by its descendent nodes. 
Let ICi be the set of local integrity constraints associated with each 
Pi. Then(')Ici is propagated to P. 

i 

Proof: 

Let !Ci be the set of local integrity constraints applicable to Pi, i.e., 



11 1 (;5 

ICi is the set of constraints generated by the descendents of Pi using 
the rules explained above. 
Let ICp be the set of local integrity constraints applicable to P, then 

f)rci~ICp• Let Y < (lrci, then Y < ICi "I/ i=1, ••• ,n and thus every Pi will 
fail for any bindingithat satisfies "'i. Thus since every P. fails, p must 

l. 
fail with any binding that satisfies 7. Thus Y<ICp i.e. 
'/ ~nrci => Y < ICp and0ICi :ICp• 

i l. 

4. Summary 

A theory has been developed for function-free logic programs to permit 
control of the search based both on domain specific information in the form of 
integrity constraints and on an analysis of failures. Integrity constraints 
limit search in the forward direction, while failures result in the creation 
of integrity constraints. Failure analysis is also used to determine back
track points which are more likely to succeed. The concepts of local and glo
bal constraints have been introduced and are to be used to inhibit exploring 
fruitless alternatives. Subsumption is employed to take advantage of the con
straints. A logic program is provided for an interpreter which will perform 
the above. 

We intend to incorporate these concepts into PRISM, a parallel logic pro
gramming system [Kasif,Kohli and Minker 1983], under development at the 
University of Maryland. 

2• Acknowledgements 

This work was supported in part by AF0SR grant 82-0303 and NSF grant 
MCS-79-:-19418. 



6. References 

[Bruynooghe 1978] 

12 

Bruynooghe, M., Intelligent Backtracking for an Interpreter of Horn 
Clause Logic Programs, Report CW 16, Applied Math and Programming Divi
sion, Katholieke Universiteit, Leuven, Belguim, 1978. 

[Chang and Lee 1973] 
Chang, C.L., and Lee, R.C.T., Symbolic Logic and Mechanical Theorem Prov
ing, Academic Press, New York, 1973. 

[Clark 1978] 
Clark, K.L., "Negation as Failure", in Logic and Databases, H. Gallaire 
and J. Minker, Eds., Plenum Press, New York, 1978, pp 293-322. 

[Kasif, Kohli, and Minker 1983] 
Kasif, s., Kohli, M., and Minker, J., PRISM: A Parallel Inference System 
for Problem Solving, Technical Report, TR-1243, Dept. of Computer Sci
ence, University of Maryland, College Park, 1983 •. 

[King 1981] 
King, J.J., Query Optimization by Semantic Reasoning, Ph.D Thesis, Dept 
of Computer Science, Stanford University, May 1981. 

[McSkimin and Minker 1977] 
McSkimin, J.R., and Minker, J., The Use of a Semantic Network in a Deduc
tive Question Answering System, Proceedings IJCAI-77, Cambridge, MA, 
1977, pp 50-58. 

[Pereira 1982] 
Pereira, L.M., and Porto, A., Selective Backtracking, in Logic Program
ming, K.L. Clark and S-A. Tarnlund, Eds., Academic Press, New York, 1982, 
pp 107-114. 

[Pietrzykowski 1982] 
Pietrzykowski, T., and Matwin, A., Exponential Improvement of Efficient 
Backtracking: A Strategy for Plan Based Desduction, Proceedings of the 
6th Conference on Automated Deduction, Springer Verlag, New York, June 
1982, pp 223-239• 

[Reiter 1978] 
Reiter, R., On Closed World Data Bases, in Logic and Databases, H. Gal
laire and J. Minker, Eds., Plenum Press, New York, 1978, pp 55-76. 

[Roberts 1977] 
Roberts, G.M., An Implementation of PROLOG, M.S. Thesis, University of 
Waterloo, 1977. 

[Roussel 1975] 
Roussell, P., PROLOG: Manuel de Reference et d'Utilisation. Groupe 
d'Intelligence Artificielle, Universite d'Aix-Marseille, Luminy, 1975. 

[Warren 1979] 
Warren, D.H.D., Implementing PROLOG: Compiling Predicate Logic Program, 
Department of Artificial Intelligence, University of Edinburgh. Research 
Reports 39 and 40, 1979. 



13 

Appendix: TI!! Interpreter 

In this appendix we describe the interpreter, for function-free logic 
programs, which implements the theory described in the previous sections. 

~: An open node is a node which has not been selected for expansion. 

~: An active~ is a node which has been selected for expansion but has 
not yet been fully solved. 

~: A closed node is a node which has been completely expanded. 

1. Interpreter Specification 

1. Initialise the search space with the initial goals. 

2. Select an open node from the search space. Mark it as active. 

3. If the selected node is subsumed by a global integrity constraint then go 
to step 15. 

4. Select an atom from the selected node. 

5. Unify the selected atom with all procedure heads which have the same 
predicate letter. 

6. Delete all procedures which require bindings which violate the local 
integrity constraints of the selected node, from the set of procedures 
which were selected in step 5. 

7. If the set of procedures obtained after step 6 is empty, go to step 14. 

8. Add the set of selected procedures to the set of all selected but uncon
sumed procedures generated so far. 

9. Select one or more procedures from the set of unconsumed procedures. 

10. For each of the procedures selected in step 8: generate descendant nodes 
of the node which was expanded to obtain these procedures. The descen
dants are generated by replacing the selected literal by the body of a 
matching procedure, and applying the substitution obtained from the unif
ication process to the newly generated node. Mark the newly generated 
node as open. 

11. If any of the newly generated nodes is empty (null clause), STOP. 

12. Initialise the local constraint sets for the newly generated nodes, with 
the local constraint sets of their parent node. 

13. go to step 2. 

14. Add the selected node with all its current bindings to the list of global 
integrity constraints. 

15. Mark the current node as closed. For each ancestor node which made a 
binding in the current node, add a local constraint which is the negation 
of the bindings. 

16. Propagate the local constrint set to all children of each affected node. 

17. Go to step 2. 



14 1 G 3 

2. Logic Program f2!: ~ Interpreter 

In this section we define the logic program for the interpreter described 
in the previous section. 

A node is a 3-tuple 
n(state,clause,localic) 

where, state is either open, active or closed; clause 
represented by this node; localic is the set of local 

A body is a 2-tuple, 
b(clause,sublist) 

is the set of goals 
integrity constraints. 

where, clause is the procedure body; and, sublist is the substitution set gen
erated by unification of the literal and the procedure head. 

solve(goals,prog,ic) <-
init(goals,tree), 
interpret(tree,prog,ic). 

init(goals,tree) <
inittree(n(open,goals,nil),tree). 

interpret(tree,prog,ic) <-
empty(tree). 

interpret(tree,prog,ic) <-
selectnode(tree,node,newtree1), 
expandnode(node,newtree1,prog,ic,newtree,newic), 
interpret(newtree,prog,newic). 

expandnode(node,tree,prog,ic,newtree,newic) <-
icok(node,ic), 
selectatom(node,atom), 
unify(atom,prog,bodies), 
checklocalic(node,bodies,newbodies), 
insertbodies(newbodies,node,atom,tree,ic,newtree,newic). 

expandnode(node,tree,prog,ic,newtree,ic) <
not(icok(node,ic)), 
failurenode(node,tree,newtree). 

icok(node,ic) <-
empty(ic). 

icok(node,ic) <
selectic(ic,oneic,restic), 
not(subsume(oneic,node)), 
icok(node,restic). 

checklocalic(node,nil,nil,ic,ic) <- • 
checklocalic(n(x,y,lic),b(z,subs).restbodies,b(z,subs).newbodies,ic,newic) <

checklicok(lic,subs), 
checklocalic(n(x,y,lic),restbodies,newbodies,ic,newic). 



16 

failurebindings(~,bindings) creates a list of bindings in~' undoing any 
one or more of which may undo the cause of failure. 

addlocalic(parents,bindings,newparents) updates the local integrity constraint 
sets for parents with those elements of bindings which are applicable, and 
creates the new node list newparents. 

propagatelocalic(parents,~,newtree) propagates the local integrity con
straint sets of each element of parents to every child of that node. It gen
erates a newtree with all the newly modified nodes. 

addic(~,ic,newic) adds~ to the set of global integrity constraints ic 
to generate the new global integrity constraint set newic. 

selectic(ic,singleic,restic) selects an integrity constraint singleic from the 
set of integrity constraints ic and creates the set restic which is ic -
singleic. 



15 

checklocalic(n(x,y,lic),b(z,subs).restbodies,newbodies,ic,newic) <
not(checklicok(lic,subs)), 
addic(z,ic,newic1), 
checklocalic(n(x,y,lic),restbodies,newbodies,newic1,newic). 

checklicok(nil,subs) <-
checklicok(lic.restlic,subs) <-

not(member(lic,subs)), 
checklicok(restlic,subs). 

insertbodies(bodies,node,literal,tree,ic,newtree,ic) <-
not(empty(bodies)), 
inserttree(node,literal,bodies,tree,newtree). 

insertbodies(bodies,node,literal,tree,ic,newtree,newic) <
empty(bodies), 
addic(node,ic,newic), 
failurenode(node,tree,newtree). 

failurenode(node,tree,newtree) <
bindingnodes(node,tree,parents), 
failurebindings(node,bindings), 
addlocalic(parents,bindings,newparents), 
updatetree(parents,newparents,tree,newtree1), 
propagatelocalic(newparents,newtree1,newtree). 

where, 

1 tO 

inittree(node,tree) creates~ with node as its root node. 

inserttree(node,lit~ral,bodies,tree,newtree) creates a newtree which is formed 
from tree by generating children nodes 9f node by replacing literal in node by 
the atoms in each of the bodies and applying the substitutions to the newly 
generated nodes. 

updatetree(nodes,newnodes,tree,newtree) modifies tree to produce newtree by 
replacing each element of nodes in the tree by the corresponding element in 
newnodes. 

selectnode(tree,~,newtree) selects an open node from tree and creates a 
newtree which has node replaced by a new node marked as active. 

selectatom(node,atom) selects an atom from node. 

unify(atom,_rn,bodies) selects those procedures from ,rn which have the same 
name as atom. It then applies the unification algorithm to each of these pro
cedure heads and forms a list of those bodies which match the given atom, 
along with the resulting substitution lists. 

subsume(ic,node) determines whether the integrity constraint ic subsumes node. 

member(element,set) determines if element is a member of set. 

empty(list) determines if list is empty(nil). 

bindingnodes(node,tree,parents) sets parents to be the list of all ancestors 
of node which created a binding in node. 




