
Submitted to the Logic Programming Workshop, Portugal, June 83

KBOl: A Knowledge Based Garden Store Assistant

Adrian Walker

I BM Research Laboratory
San Jose, California, USA

Antonio Porto

Universidade Nova de Lisboa
Lisboa, Portugal

252

PAGE ii L5-'!J

ABSTRACT

This paper describes a prototype knowledge based system which answers
English questions about some of the products supplied by a garden store.
The system answers questions such as

what can I use to kill snails ?

is there anything I can use that will fertilize my lawn ?

what can I use to kill weeds in my lawn in spring ? ·

does product A kill dandelions in less than 20 days ?

in less than one second each, and it produces a helpful phrase when it
cannot answer a question.

The syntax, semantics and knowledge needed by the system are written in
the language Prolog. The behavior of the system indicates that Prolog
appears to be a good language for the construction of practical knowledge
based systems which can answer questions in ordinary English.

1.

PAGE 1 25 4

1. INTRODUCTION

This paper describes KB01, a prototype knowledge based system which
answers English questions about some of the products supplied by a
garden store. The system matches, to a certain extent, the behavior of a
helpful, knowledgeable assistant in a store which sells products such as
domestic pesticides and weed-killers.

Some questions which produce brief, but useful and accurate answers,
are:

what products do you sell ?

what is each product that you sell for ?

what can I use to kill snails ?

is there anything I can use that will fertilize my lawn ?

what can use to kill weeds in my lawn in spring ?

what can use to kill weeds around my fence ?

do I need a sprayer to use product A ?

what is the response time of weeds to product A ?

does product A kill dandelions in less than 20 days ?

The present system only answers questions about certain house and
garden products. Questions which lie outside this scope, such as

is there a bus stop near here ?

are answered with a sentence such as

I'm sorry, I don't know the word: bus

The system has been written to explore the feasibility of building useful
knowledge bases in the programming language Prolog (1, 2). Prolog
appears promising as a notation for implementing knowledge based natural
language systems, since knowledge rules and grammar-like rules can be
written down and executed more or less directly (3, 4, 5).

In the case of our KB01 system, it was not necessary to write an
inference engine or a parser. Both of these items were covered by the use
of the built in inference method of Prolog. We have used an efficient
implementation of Prolog (7) on an I BM mainframe computer. In terms of
coverage of a part of English, our results are promising. In terms of
performance, we ·find that no question takes more than 1 second to
answer, even when our computer is heavily loaded with work by other
users. Our coverage and performance results are consistent with those
reported by (3, 5, 9), namely, that efficient Prolog programs can be
written for useful natural language access to knowledge bases.

PAGE 2 2.55

Section 2 of this paper describes the input-output behavior of the KBOl
system by means of some annotated examples. Section 3 outlines the
internal design of the syntactic and semantic components of the English
interface of KBOl, while Section 4 describes the knowledge base. Section
5 consists of conclusions and directions for future work.

PAGE 3

2. INPUT-OUTPUT BEHAVIOR OF KBO1

A user of the KBO1 system types English questions on a keyboard, and
gets answers on a screen. In the following example session, a question
starts after a prompt symbol ">>" and ends with a question mark "?".
The answer produced by the system follows the question. Comments
which we have added appear in parentheses after answers.

>>

what products do you sell ?

product A
product B
product C
product D
product E
product F

(the system has simply listed the products.
for examples with more products, it would print
just the kinds of products)

>>

what do you know about ?

product A kill weed
product B kill pest
product C kill pest
product D kill insect
product E kill insect
product F kill weed
product F fertHize lawn

(the system has listed the products in its knowledge base,
with one or more intended uses for each product. English
output generation is minimal)

>>

what is each product that you sell for ?

product A kill annualweed
product A kill perennialweed

product B kill garden pest

product C kill garden pest

product D kill crawlinginsect
product D kill flyinginsect
product D kill hop pi ngi nsect

156

product E kill crawlinginsect
product E kill flyinginsect
product E kill hoppinginsect

product F kill annualweed
product F kill perennialweed
product F fertilize lawn

>>

(this question has put more emphasis on intended use than
the last, so the system has answered in more detail)

when should I use product· F ?

spring
fall

>>
what can I use to kill snails ?

product B
product C

>>

what can I use to kill snails on my vegetables ?

product C

>>

(the product product B is not for use on food, and so is
not suggested in this answer)

what can I use to kill weeds ?

product A
product F

(these are the suitable products known to the system)

>>

what are the weeds ?

annualweed
perennialweed

PAGE 4 J._5 f

(the system has listed, without much detail, the kinds of weeds)

>>
what a re weeds ?

sorry, I don't know

(we have reached a limit of the knowledge in the system)

>>

what are the perennial weeds ?

bahiagrass
bull thistle
clover
dandelion
kentucky bluegrass
poison ivy
poison oak
yellow oxalis
oxalis

>>

(the system has understood this as a request for
a detailed answer)

is there anything I can use that will fertilize my lawn ?

product F

(a suitable product is suggested)

>>
what can I use to kill weeds in my lawn in spring ?

product F

(the same product can be used)

>>
what can I use to kill weeds around mv, fence ?

product A

PAGE 5

(product F is for lawns, but elsewhere we can use something stronger)

>>
do need a sprayer to use product A ?

yes

>>
can I use product A without a sprayer ?

sorry, no

>>
what are the precautions I should follow in using product A ?

avoid contact with eyes
keep children and pets away till spray has dried

PAGE 6

avoid contamination of food
if accidental spray then wash off with water

>>

what is the response time of weeds to product A ?

annualweed 5 days
perennialweed 15 days

>>

what is the response time of each product that kills annual weeds ?

product A 5 days
product F unknown

>>

what can I use on dandelions ?

product A
product F

>>

what can I use on dandelions that will kill them in less than 20 days ?

product A

>>

does product A kill dandelions in less than 20 days ?

yes

>>

does product A kill dandelions in less than 2 days ?

sorry, no

This session shows that the KBOl system has considerable knowledge of
the properties of a few products and their intended uses. As with all
knowledge bases known to us, there are limits to the domain which is
covered. However, when a question cannot be answered, the user sees
reasonable replies such as "I'm sorry, I don't know", or "I don't
understand the word: bus". Although the domain of competence is much
smaller than that of most adult people, these phrases carry about the
same information as an immediate reply from a person who does not know
the answer to a question.

It would appear worthwhile to extend KBOl so that it would explain its
answers when asked to do so. For example, it would be helpful to know
why product B cannot be used to kill snails on vegetables. The
techniques described in (8) could be used to do this.

159

PAGE 7

In this section, we have described the input-output behavior of KB01.
The next section outlines the design of the English interface, while
section 4 describes the knowledge base.

PAGE 8

3. THE ENGLISH INTERFACE

Our two main goals in designing the English interface were simplicity and
modularity. We wanted to keep the interface simple so as to be able to get
a system working within a short time. On the other hand, we made the
interface modular so that it can form a basis more elaborate English input
processing. The interface uses full dictionary lookup for every word in
the sentence. Thus it is distinct from a 'keyword' interface, in which
some words may simply be ignored.

Our main simplification is to make lexical analysis deterministic. This
means that only one morphological token is associated with each word, an
assumption which does not hold in general, but which which turns out not
to be a serious limitation in our present application. This simplifying
assumption allows us to complete the lexical analysis before starting a
syntactic parse. In a later version of the interface we would expect to
drop the deterministic assumption, but to retain modularity and efficiency
by using coroutining techniques in Prolog (6).

Some other design desicisions which we made to keep the English inteface
simple were as follows.

We only deal with fairly simple ellipsis, namely an elided subject in a
conjunction of verb phrases. We feel that any serious treatment of ellipsis
would need to manipulate information from several sentences in a dialog.
The present system works one ·sentence at a time.

We do not generate a syntactic tree.
representation directly during parsing.
checks are made early in the anaylsis
unfruitful parses.

Rather, we construct a semantic
This is efficient, since semantic

of a sentence, helping to prune

We do not treat extra position, although some common cases of left
extraposition can be handled by an easy extension of the present system.

We also do not make a syntactic check of gender and number agreement,
since we have found that it can only be used constructively in some rare
cases in which it may disambiguate an attachment problem. (Even then,
semantic checks may be enough.) In the same vein, no analysis is made of
verb tense.

We made the English interface modular by clearly separating a number of
functional components, and by classifying each component as either
specific to our present application, or general. The main components are:
a lexical analyser, a dictionary, a syntactic parser, semantic rules, and
an output package. The lexical analyser and the syntactic parser are
general purpose. The dictionary and the semantic rules each have a
general subcomponent and an application-specific subcomponent, while the
output package is application specific.

The lexical analyzer reads a question from the terminal, groups the
characters into words, and looks up the words in the dictionary to find
the corresponding morphological tokens (e.g. noun, verb, preposition).

PAGE 9

As mentioned above, the dictionary consists of a general and a specific
part. The general part contains entries that are likely to be needed in
any application in English, such as articles and the forms of the verb 'to
be'. The specific part contains entries for items such as product names
for the KBOl application.

The syntactic analyzer consists of a set of rules, written in the manner of
a definite clause grammar (4). The rules are executed top-down by
Prolog's built-in inference mechanism, hence there is no distinct syntactic
parser component in KBOl. The bodies of the grammar rules contain the
usual calls to nonterminal symbols, and also contain calls to the semantic
rules that construct a representation of the meaning of the sentence which
is being parsed. If a fruitless parse is being attempted, the calls to the
semantic rules will fail, causing a new parse to be sought before too much
effort has been wasted.

The function of the semantic rules is to translate groups of syntactic
items into a semantic representation of a question. The semantic
representation, which we describe in detail below,. is a Prolog statement
roughly equivalent to 'the set of all X such that p(X) is true in the
knowledge base', where X and p may be structured terms. In particular,
p may contain further set-formation terms. The general part of the
semantic rules component treats items such as quantification and the verb
'to be' which would be needed in most applications, while the specific part
deals with items such as the kinds of objects to which it is reasonable to
apply domestic chemical products.

The output component uses the information which is retrieved from the
knowledge base, together with syntactic information about the question
which caused the retrieval, to generate the answer that is diblayed on the / /"">
screen. r
Since KBO1 is designed to answer questions, the syntactic component of
the English interface only accepts questions. These may be wh-questions,
(such as 'what ... ', 'when ... ', 'how ... ' etc.) or nexus questions
('does ... ', 'is there ... ', etc). Verbs are accepted both in the active and
the passive forms, and they can be followed by any number of
complements. Nouns can be preceded by any number of adjectives, and
double nouns are accepted (e.g. 'poison ivy'). Nouns can have simple
complements ('persistence of product A') or double complements
('response of bluegrass to product A'). The syntax covers the usual
articles and prepositions, a few pronouns ('you', 'them', 'anything', ...)
and some auxiliary verb forms ('can', 'should', ...) . Relative clauses are
accepted, and there can be conjunctions of relative clauses, verb
phrases, or verb complements.

The concepts represented inside the parser are of two types, which we
call Entities and Properties. A complete meaning representation, in terms
of Entities and Properties, is constructed from the morphological token
stream by the syntactic and semantic rules. Entities are either Objects, or
sets of Objects, the latter being represented by 'set(Q, O)', where Q is a
quantifier ('each', or 'all') and O is an Object.

lG2

PAGE 10 .2..G:;,

Objects can be named, or can be defined. A named Object is represented
as 'T:X', where T is the name of the type of the Object. If X is a free
variable, then we say that the Object is abstract, that is, it is an
unspecified Object of type T. If X has a value, then we say that the
Object is concrete, and that X is its name. Thus 'perennialweed:X' is an
abstract Object, while 'perennialweed:clover' is a concrete Object.

Defined Objects have the form

Abstract_ Object ! Property

(read 'Abstract Object such that Property') where the Abstract Object is
T:X and X appears,in the Property. -

A simple Property is just a Prolog predicate. Properties may also be
quantified, in the form

for(Qantifier, Object, Property)

Conjunctions of Properties are also Properties.

Here are some concepts and their internal representations:

product_A

a weed

the weeds

all weed kilf ers

item: product_A

weed:X

set(each, weed:X)

set(all, item:I ! use(I, kill-weed:W, S))

persistence of each product
time:T ! for(each, 'item: I, use(I, *, persistence(T)))

There are semantic predicates that link concepts to form new concepts.
They link subject and verb, verb and object, verb and complement, and
adjective and noun. The domain-independent part of the definition of
these predicates deals with the handling of quantification and the verb 'to
be', while the domain-dependent part contains only quantifier-free
definitions .

. After a syntactic and semantic parse succeeds in producing a data
strucure corresponding to an input question, the data structure is
transformed into a Prolog query which can be applied to the knowledge
base. The essence of the transformation is to insert a call to the Prolog
meta-predicate 'all', which computes the set of all items which satisfy a
given property.

For example, for the question

'what is the response time of weeds to product A ?'

the query

PAGE 11)._ C:,'f

set(response):R !

all (T, use(product A, kill-weed: any, response(T)), R)

is generated. This query, when executed against the knowledge base,
retrieves the answer to the original question and binds the answer to the
variable R.

Special care was taken to give informative, rather than yes-no, answers
to nexus questions. To see that this is essential, rather than simply
desirable, consider the question

'do you sell anything that kills bluegrass ?'

Very few people would be satisfied with only the answer 'yes', so the
system generates the query

set(item):1 ! all(P, use(P, kill-weed:bluegrass, M), 1).

which retrieves a list of suitable products.

On the other hand, a yes-no question such as

'does product A kill dandelions in less than 20 days ?'

is translated into the query .

yesno ! use(product_A, kill-weed:dandelion, response(T)) &

typedlt(T ,20.days)

This section has described the design' of the parts of the KB01 system
that translate a question in English into a query for the knowledge base.
The next section describes the knowledge base.

PAGE 12 2.bS

4. THE KNOWLEDGE BASE

The last section described the mapping of an English question into either
a form

yesno ! p(X)

or a form
set(items): X ! p(X)

where p(X) is, in general, an abitrary Prolog goal expression. This
section describes the underlying knowledge base which provides answers
to the mapped queries.

The knowledge base consists of two components, both of which are
domain-specific. The first component contains an is-a hierarchy, while
the second contains knowledge about the products and how they may be
used.

The hierarchy contains assertions such as

setname(weed)
setname(annualweed)
weed(annualweed)
an n ualweed (bluegrass)

together with an immediate membership predicate 'mem', a transitive
membership predicate 'member', and an 'isa' predicate. Thus
mem(bluegrass, annualweed) holds, while mem(bluegrass, weed) fails, but
member(bluegrass, weed) holds. Similarly isa(bluegrass, bluegrass),
isa(bluegrass, annualweed), and isa(bluegrass, weed) all hold. The
'mem' predicate is also written in infix form as':', e.g.

mem(bluegrass, annualweed) '

is written annualweed: bluegrass.

The type-hierarchy is actually a directed acyclic graph rather than a
tree, as there are statements such as

homepest (fly)
flyinginsect(fly)

The hierarchy allows questions to be answered at an appropriate level of
detail. For example

'what can I kill with product A ?'

yields the answer 'weeds', while

'what weeds can I kill with product A ?'

yields

annual weeds
perennial weeds

PAGE 13 J_(:,~

The main body of knowledge about the products is stored in the second
component of the knowledge base. It consists of

(i) an input component, which maps sub-queries of the form

use(Subject, Verb-Object, Modifiers)

into calls to some basic clauses about the products,

(ii) the basic clauses themselves, e.g.

can_use(product_A, kill, weed:Y:Z) <- weed:Y:Z

and,

(iii) an output component which contains information about which kinds of
questions (yesno, set) require which kinds of answer format.

The knowledge base is used as follows. A query such as

'what should I use in spring to kill weeds in my lawn ?'

is presented to the knowledge base as

set(item) :X !
all(S, use(S, kill-weed:any,

environment(plant: lawn). season (spring)), X).

Here all (S, use(S,), X) returns in X the set of all subjects S such
that one can use S for the indicated purpose. The call

use(S, kill-weed: any, environment(plant: lawn). season(spring))

is mapped by the knowledge base into

can use(S, kill, weed:any) &
envTronment(S, kill, weed:any, plant:lawn) &
season(S, kill, weed:any, spring)

Thus a subject S is retrieved if it can be used to kill some Object 0, the
Object O matches weed: any in the type hierarchy, and the modifiers
environment and season are satisfied.

The knowledge base contains basic clauses such as

can use(product F, kill, weed:Y:Z) <- weed:Y:Z
envTronment(product F, kill, weed:*, plant: lawn).
season(product_F, *-;*, spring).

I ,

PAGE 14 2f>f

which cause the original call to use(S, ...) to succeed with S =
product_F.

As mentioned above, the general form of an internal query to the
knowledge base is

use(Subject, Verb-Object, Modifiers)

where Modifiers is a list made up from some of the predicates:
environment, season, persistence, response (e.g. response time of a weed
to a weed-killer), ingredient, assume, precaution, directions (i.e.
directions for use, and how (precautions and directions). The modifiers
in the list may be negated, and the list denotes a,conjunct.

The predicates for how, precaution and direction are special in that they
store English text which can be retrieved, but which cannot be checked
in detail. Thus one can ask 'what are the directions for· using product A
?' which yields the query

set(direction): S !
all(D, use(product_A, V-O, direction(D), S)

and the answer

apply with hand trigger sprayer
one application kills most weeds
less effective if rain within 24 hours

However the question 'does product A kill most weeds in one application ?'
yields 'Sorry, I don't understand'.

The remaining predicates can be used e'ither for retrieval or for checking,
and there is some overlap between these and the retrieval-only
predicates. Thus the question 'what vegetables can I spray with product
D ?' yields the query

set(vegetable) :S !
all(V, use(product D, V-O,

environment(vegetable:V).
assume(equipment(sprayer))), S)

which retrieves into S the answer 'any'.

One can also ask the checking question 'can tomatoes be sprayed with
product D ?' which yields a yesno query similar to the one above, but for

environment(vegetable: tomato)

and leads to the answer 'yes'.

The use of retrieval-only predicates to store English sentences is mainly a
matter of convenience. If detailed questions about, e.g., directions for

PAGE 15

the use of a product, were expected, then the knowledge could be moved
to predicates which could be used both for retrieval and checking.

To summarize, the knowledge base consists of a hierarchy together with
specific knowledge about products and their uses. An incoming internal
query from the English interface is transformed into a Prolog goal, the
goal is executed against the knowledge, and the result is sent to the
output component of the system.

PAGE 16

5. CONCLUSIONS AND DIRECTIONS FOR FURTHER WORK

The KBOl system is at present a prototype. Our experience in bringing
it to its present level of behavior indicates that Prolog is well-matched to
the task of building a knowledge based natural language system. The
system answers non-trivial questions in under one second of real time on
an I BM mainframe computer.

While certain simplifications were made in order to build a demonstrateable
system in a short time, the English language interface performs full
dictionary lookup and parsing. The system was built in a modular manner,
and we have separated the reusable parts from the domain dependent
parts.

Adding new words and their meanings the system is rather
straightforward. Many extensions to the syntactic parser could be made
without having to change other parts of the system. For example. we
could improve the present treatment of left extraposition just by
modifying the parser. In fact, 'what' is already treated like an extraposed
noun, and 'when' like an extraposed complement.

A major improvement would be to handle anaphora, mainly ellipsis and
pronoun reference beyond the scope of one sentence. However, this is
still a research area needing much work. An interesting point is that ,
people sometimes make outside references not only to a previous question,
but also to previous answers. To resolve such references, we must have
access to a representation of the previous answers.

Another interesting enhancement would be the treatment of cardinal and
fuzzy quantifiers. This would require that we modify the semantic rules
that handle quantification, and that we define the equivalent of the 'all'
meta-predicate for the new quantifiers. A nice possibility is a generalized
'all' meta-predicate with an extra argument which would impose conditins
on the number of solutions. ·

In summary, the direct representation of syntax, semantics and
knowledge in the language Prolog appears to be a good approach to the
construction of useful knowledge based systems which can answer
questions in ordinary English.

PAGE 17 J.. t0

6. REFERENCES

(1) Clocks in, W. F. and C. S. Mellish, Programming in Pro log.
Springer-Verlag, 1982.

(2) Kowalski, R. Logic for Problem Solving. North-Holland Publishing
Co., 1979.

(3) McCord, M. Using slots and modifiers in logic grammars for natural
language. Artificial Intelligence 18, (1982), 327-367.

(4) Pereira, F. C. N. and D. H. D. Warren. Definite clause grammars
for language analysis - a survey of the formalism and a comparison with
augmented transition networks. Artificial Intelligence 13, 1980, 231-278.

(5) Pereira, L. M., P. Sabatier and E. Oliveira. Orbi: an expert system
for environmental resource/ evaluation through natural language. Proc.
1st Int. Logic Programming Conference, University of Marseilles, France,
1982, 200-209.

(6) Porto, A. Epilog: A language for extended programming in logic.
Proc. 1st Int. Logic Programming Conference, University of Marseilles,
France, 1982, 31-37.

(7) Roberts, G. M. An implementation of Prolog. M.S. thesis, Department
of Computer Science, University of Waterloo, 1977.

(8) Walker, A.· Prolog/EX1: An inference engine which explains both yes
and no answers. Proc. 8th Int. Joint Conf. on Artificial Intelligence,
Karlsruhe, to appear.

(9) Warren D. H. D. and F. C. N. Pereira. An efficient easily adaptable
system for interpreting natural language queries. DAI Research Paper
No. 155, Department of Artificial Intelligence, University of Edinburgh,
1981.

