
i.

Database Management. Knowledge Base Management
and Expert System Development in PROLOG

Ka.mran Pa.rsaye

Computer Science Research International•

ABSTRACT: The programming language PR0L0G suggests a natural way of com­
bining programming and deductive database queries by treating both programs
and data as assertions in a database. We explore some issues in the implementa­
tion of databases and expert systems in PR0L0G. We show that some simple

• extensions to PR0L0G will allow for the convergence of many concepts from rela­
tional databases and expert systems into a uniform formalism for the manage­
ment of both data and knowledge.

1. Introduction
The programming language PR0L0G .. , has been an interesting step in

modem language design. By its nature of design, PR0L0G includes a database
and is hence a suitable language for database applications, particularly rela­
tional databases. Due to its symbolic nature and deductive capabilities, PR0L0G
is also a suitable language for expert systems implementations. Thus PR0L0G
seems a good candidate language for implementing both databases and expert
systems.

· In this paper we explore some issues which arise in the implementation of
databases and expert systems in PR0L0G. We show that some simple extensions
to PR0L0G will allow for the convergence of many concepts from relational data­
bases and expert systems into a single formalism. This formalism can be used to
approach both database management and knowledge-base management in a uni­
form manner.

Our extensions to PR0L0G are, however, intended to preserve the flavor of
PR0LOG as a language. For instance, we show that the concept of functional
dependency in relational databases is essentially equivalent to some PR0LOG

:.:: 1 >.· ''.ouis'1,. that-integrity-constraints may simply be treated as PR0L0G assertions.­
and that explanations and transparent reasoning in expert systems can be
viewed as PR0L0G execution traces. Many of the issues presented here grew out
of the work on EDD (Expert Database Designer), a PR0LOG based expert system
for database design [Parsaye 82]. .

This paper is organized as follows: In section 1.1 we give a brief description
of the language PR0L0G. In section 2 we relate · standard relational database

- concepts and terminology with PR0LOG. We suggest an extension to PR0LOG
mode declarations, show the relationship between cuts and functional dependen­
cies, and show how integrity constraints can be treated. Section 3 is devoted to
PR0L0G optimization issues for large database applications. We present a
classification scheme for PR0L0G clauses and propose the "independence
assumption" for optimization. We also suggest how the notions of transactions

•) Authar's Address: Computer Science Research International, 6420 W"tls..liire Blvd., Suite
2000, Los .Angeles, CA 90048 .
..) fn this paper PR0L0G essentially refers to the language originally defined by (Co1meraue:r
75) and implemented by (Warren 77].

...

and serializability can be easily introduced into PROLOG. In section 4 we focus
on expert system applications. We propose a uniform view of database and
knowledge-base management and illustrate two closely related approaches to
knowledge representation in PROLOG. We also show how features such as expla­
nations and transparent reasoning can be naturally programmed in PROLOG.

1.1 'lb.e Language PROLOG

In the context of this paper, it is particularly interesting to compare the
development of PROLOG as a language to similar developments in data models
and database languages.

Early database systems, e.g. IMS or CODASYL, use data structures such as
trees or networks to store data Users of IMS store and retrieve data by explicit
insertion and retrieval operations which act upon tree structures, and in this
sense deal with a structure oriented language. On the other hand more recent
database systems, e.g. relational databases, hide the underlying data structures
and implementation details from the user, and present associations and rela­
tionships in a non-navigational form. .

Similarly, in programming languages such as FORTRA..1'\J", LISP or ADA one has
to create data structures such as arrays, lists or stacks, store bis data within
these structures and later retrieve the data by navigational searches. On the
other hand, in a database oriented language, such as PROLOG, the user can be
unaware of the underlying implementation methods used for storing much of his
data, and simply ask for data items to be stored and retrieved, just as he would
ask a relational database system for storage and retrieval of data.

Software development in PROLOG can thus be mostly based on "progra:rn­
ming by assertion and query" [Robinson 80], rather than by insertion and
searohs of data structures. Moreover, the style of PROLOG programming is
decla:rati.ve, in· the sense that a predicate (procedure) definition explicitly
includes both the input and output parameters. Thus in PROLOG the distinction
between°input parameters and output parameters is much less prominent than
in other languages, as seen by the examples below.

We now present a very brief and informal description of PROLOG, proceed­
ing mostly by example. A detailed and comprehensive description of the

· lru;iguage. can be found in [Clocksin & Mellish 81], or (Pereira, Pereira & Warren
71). . '

The basic building blocks of PROLOG programs are clauses. A clause in
PROLOG is a predicate name, called a functor, with some arguments. For
instance

father(john. mary).
square(3, 9).

are clauses, where 'father' and 'square' are functors and 'john', 'mary', 3 and 9
are arguments.

Arguments may be constants or variables, and conventionally, non-numeric
constants are denoted by lower case letters, while variables must start with
uppercase letters, e.g. as in father(X, mary).

In PROLOG clauses can be assarted. to be true, in which case they are
included in the PROLOG "database". The PROLOG database contains all facts
which are asserted to be true. For instance,

1

C --

,-~- ·~ ·.;:,_· .;.

I !

assert(father(john. mary)).
will include father(john, mary) in the database and

retract(father(jobn, mary)).
will remove it.

I · In PROLOG, clauses are used to make sentences. A sentence in PROLOG
may be a simple unit clause, such as father(john, mary). or it may involve the
conctii:icmal construct denoted by" :- ", and better understood as "if".

For example, the conditional sentence
parent(X, Y) :- mother(X,Y) . . .

means that "for all X and Y", parent(X, Y) is true if mother(X, Y) is true. Thus
essentially " A :- B " means that A is logically implied by B. •

Clauses on the right hand side of a " :- " can be joined together by "and" and
"or" constructs denoted by"," and";" respectively, as in

parent(X. Y) :- mother(X,Y) ; father(X. Y) .
which means that "for all X and Y", parent(X, Y) is true if either mother(X, Y) is
true "or" father(X, Y) is true.

Let us make two simple technical notes here. First that sentences in PRO­
LOG must end with a period. Second that due to the universal quantification

· above, the range of each variable in PROLOG is essentially a sentence, i.e. two
occurances of the same variable name within two sentences are totally unre­
lated. The PROLOG compiler will internally rename variables to avoid conflicts.

Unlike equational programming languages, such as OBJ [Goguen & Tardo 79]
or HOPE [Burstall et al. 80], PROLOG allows variables on the right hand side of a
conditional which do not appear on the left hand side. Such variables are
~tended to be e:z:istentially <p.t.a:ntified. For instance the sentence

grandfather(X, Y) :- father(X, Z), parent(Z, Y).
:,means that"for all X and Y''r Xis the grandfather of Y if "there exists., some Zin :.;••c>··'.'.'·''r:···

the database, such that Xis the father of Z and Z is a parent of Y.
In PROLOG, conditional clauses may be stored in the database just as data

are, i.e. programs are really treated as data in a database. This uniform view of
: .::::7"7:-:both. programs~-and .data· as items--in~a high level . database -ts· p-erhaps the major · . · · t1 :·;; t.::Lz'.1 .. ·(:Ei

· reason for the elegance of the PROLOG programming style.
Once one has adapted this database view of programming, one may natur­

ally wonder about queries to the database; Simple queries may relate to simple
facts such as: "Is father(john, mary) true in the database?", which may simply
require a look up in the database, However, one may also ask more complex
queries.

We generally refer to an attempt to answer a query in the PROLOG database
as an attempt to satisfy a. goal (or to prove a goaJ.}. For instance, in the exam­
ple above "father(jobn, mary)" is the goal, and it can be satisfactorily proved if
father(john, mary) has been asserted in the database.

One may also try to prove goals with variables, in which case PROLOG will
try its best to find a match for the variables to satisfy the goal. For instance, an
attempt to prove "father(X, mary)" will succeed provided that the condition (X =
john) is .. true. Note that this is not an assignment (PROLOG is assignment free),

•) Logically speakmg, PR0L0G sentences are Horn Clauses [Horn 51].

2

but a binding of a variable to a value as in pure lJSP. Such bindings are dis­
carded upon the completion of the query.

Now, how about conditional clauses? Since the interpretation of the condi­
tional construct " :- " is that the right hand side logically implies the left hand
side, the validity of the left hand side can be established by proving the right
hand side. This new goal may itself in turn be part of a conditional clause, ... , and
so on. Thus execution of programs in PR0L0G essentially consists of attempts to
establish the validity of goals, by chains of pattern matching on asserted
clauses.

To prove a goal PR0L0G searches its database for a clause that would match
the goal, by using the process of unification (Robinson 65]. If a conditional
clause whose left hand side matches the goal is found, PR0L0G tries to satisfy
the set of goals on the right hand side of ":-" in a left to right order. If no match­
ing clause can be found, fauure will be reported.

It must be noted that PR0L0G includes no explicit negation symbol, and
negation is essentially treated as unprovability, i.e. the failure to establish a
goal from a set of axioms [Clark 79]. This closely resembles the closed world
assumption [Reiter 78].

If PR0L0G does not succeed in establishing a g.oal in a chain of deductive
goals at a :first try, it will backtrack, i.e. go to the last goal it had proved and try
to satisfy it in a different way. For instance, suppose that we have the sentences
(or program)

parent(X, Y) :- mother(X,Y); father(X.Y). (•)
grandfather(X, Y) :- parent(Z, Y), father(X, Z). (••)

and that the following facts have also been asserted:
father(john, mary) ..
father(paul,jobn).
mother(jennifer, mary).
Then to prove "grandfather(X, mary)", by using (•) and(..) above, first the

goal "parent(Z, mary)" will be tried. This in turn will result in an attempt to
prove "mother(Z, mary)" and will succeed with (Z: jennifer). Tb.en, going back
to the ti grandfather" clause again, the next goal in- the conjunction should be
proved. So "father(jennifer, Y}" will be tried and will fail. At this point PR0L0G
will go back (i.e. backtra~k), discard the assumption (Z : jennifer) and try to
prove "parent(Z, Y)" again. This time (Z :::: john) will result, after trying
"father(Z, mary)". Then the eventual binding (Y :::: paul) will be returned, after
trying "father(X, john)".

Let us note that in the grandfather "program" here there are nn explicit
input or output parameters, i.e. one may either invoke grandfather(X, mary}, or
grandfather{paul, Y). This style of declarative programming in PR0L0G can
often be used to great advantage to develop software very rapidly. However, if a
parameter in a program is always intended to be an input or output, the com­
piler can be signaled to generate optimized code by including mode declarations
of the form

:-mode square-root(+, -).
which means that the square root function is never intended to be used to multi­
ply a number by itself. Thus the user has the choice of running a program in
both directions or not, as he sees flt.

3

~ ,-\ ,i' ,.,,,.
'' , . .., ··~- "

On one hand, the series of steps taken by the PROLOG c·ompiler in proving a
goal essentially amount to deduction. On the other hand an attempt to prove a
goal "father(X, Y)" can also be looked at as a procedure call to the predicate
father. Thus the use of the term "logic programming" is quite apt here.

Calls in PROLOG can also be recursive, as in
connected(X, Y) :- edge(X, Z), connected(Z, Y).

which deals with connectivity in graphs described in terms of edges. The PRO­
LOG compiler [Warren 77] uses tail recursion optimization to great advantage in
such cases.

Now, for expression evaluation. In the author's opinion, one of the most
inconvenient features of symbolic languages such as LISP has been the relation
between quotation and evaluation. The PROLOG approach to evaluation is
exactly the opposite of LISP, i.e. evaluation does not take place until it is forced
to. This is specially relevant to arithmetic expressions and removes the need for
quotes. Thus (2 + 3) can be evaluated to 5 when the need arises, by using the
PROLOG infix operator "is", i.e. ''Xis (2 + 3)" binds X to 5. However, again note
that this is not assignment.

Finally, one other feature of PROLOG which we need to mention is the "cut",
denoted by .. , ... The cut is used to control backtracking in PROLOG. It is just
treated as a goal itself, and can be used in any conjunction or disjunction of

· goals. Any attempt to satisfy "!" will succeed immediately fo~ the first time, hut
will signal the compiler never to try it again. In fact an attempt to "retry'' a cut
will fail the parent goal invoking it, e.g. in

a(X) :- b(X,Y), !, c{Y,Z), d(Z} ..
backtracking can take place between c and d, but PROLOG will never backtr~ck
to b. The cut can thus be used to gain efficiency and control in programs.

· · · Many more examples of PROLOG programs, and a more detailed description
of the language and its use may be found in in (Clocksin & Mellish 81], or /
[Pereira, Pereira & Warren 7/J. _ i-·

2. PROLOG and Relational Databases
,·'··" · It . ts: well known that relational data oases can be viewed as ·logical· predi-

cates [Nicolas 77J Essentially, each table in a relational database can be con­
sidered as the 'extensional' specification of a predicate. Each PROLOG predicate
on the other hand, can be viewed as the 'intensional' specification of a relation
or table. Moreover, it is also well known that most 'assertions', dependencies
and integrity constraints in relational databases can be expressed as Horn
Clauses [Fagin 80], which are essentially PROLOG sentences. Thus there is a
natural correspondence between PROLOG and :relational databases.

However, there are differences between existing relational concepts and
PROLOG. In the next 3 sections we outline some of these dit!erences and show,
how with some simple extensions, they can be reconciled.

2.1 Schemas and Types
Relational databases usually rely on a typed system of logic and include

schema information which determines the type and domain of attributes. PRO­
LOG currently lacks these notions and relies on an untyped system of logic.

However, as [Nicolas 78] shows, an untyped system of logic can be easily

4

used to represent typed logic. For instance, the typed assertion
V XdNT p(X)

can be represented as the untyped sentence
VX (integer(X) & p(X)),

where & denotes conjunction.
The addition of schema and type information to PROLOG without affecting

the flavor of the language is quite easy. PROLOG already includes mode declara­
tions of the form:

:-mode employee(+,+,-).
which, for selected predicates, can be used to signal the compiler as to which
parameters are intended as input and output.

To declare schemas, we suggest adding schema declarations of the form
:-schema employee(name, age, salary).

Similarly, we can add type information of the form
:-type employee(string[12], integer[3], integer[?]).

However, we believe that the inclusion of type information need nai be man­
datory and the user should be allowed to exclude type declarations for small
relations, or when he sees fit .

. The gain from havim:g the declarations is two fold: on one hand they can be
used for type checking and error detection, on the other they can be used by
the compiler to achieve considerable enhancement in performance.

We feel that a major shortcoming of most current PROLOG implementations
is that the compiler can not be informed that the argument to· a square root
function is intended to be an integer (rather than an arbitrary list). or that a
social security number is a string of 9 digits. In most large database applica­
tions one needs to specify some type information and fixed length record sizes.
We believe that before PROLOG can be used in a "real" large database application
it should be extended to allow for the inclusion of type information within pro­
grams.

2.2 Functional Dependencies J

PROLOG currently inc!udes no notions of dependencies and normalization so
far. These concepts were introduced into relational database theory since they
are needed for design and for the avoidance of update anomalies. We believe
that these concepts should be introduced into PROLOG in order to make it suit­
able for database applications. Moreover, in section 3.3 we show how functional
dependencies can sometimes be used for optimization purposes.

Functional dependencies are simple enough to preserve the elegance of the
PROLOG programming style. However. we feel that the addition of more complex
dependencies, such as MVD's (Zaniolo 78] [Fagin 78] or E1IVD's [Parker & Par­
saye 80], may add an unnecessary amount of complexity to PROLOG programs.

Functional dependency information can be added to PROLOG in a manner
similar to the type and sche_ma information. However, interestingly enough, not
only can this concept be incorporated into PROLOG quite naturally, but it gives
rise to a different style of PROLOG programming.

In relational database terminology [Armstrong 77], the existence of a func­
tional dependency A->B in a schema p(A,B) means that for each A there is only
one B such that p(A,B) is true, e.g. X->Y in father(X, Y) means that each child

5

has at most one father.
We suggest the introduction of functional dependencies into PR0L0G pro­

grams by declarations of the form
:- dependency(A->B) in p(A, B).
:- dependency(AB->C) in q(A,B,C).

At first a functional dependency may seem similar to a PR0L0G construct of
the form .

... , p(A.B), !, ...

which fails the parent goal invoking p(A,B) if any goal following the cut fails. If a
binding for A is supplied by the parent goal the cut is essentially equivalent to
having the dependency (A->B) in p(A,B). In this case after fai.µng p(A. B) once,
one could not hope to .find a new value for B by retrying p(A,B). •

However, if B is supplied by the parent goal and A is to be found by invoking
p(A, B) then the the cut and the dependency are not equivalent, since the cut
still forces the search to end. We feel that sometimes this use of cuts is against·
the general PR0L0G philosophy that programs can be run in both directions
when desired.

In general there has been a good deal of dissatisfaction with cuts in PR0LOG
anyway. We suggest that in many cases functional dependencies would be a
much better alternative to cuts. Functional dependencies can often be used to
write "cut-free", but efficient PR0L0G programs, by directing the execution of
programs in a manner which is dependent on the mode of procedure calls. Thus
witJ:?. the above functional dependency, in evaluating /}

q(A,B) :- ... , p(A, B), ... r::>~

there is an implicit cut after p(A, B} in the evaluation of q(a,B}, but not in the
evaluation of q(A,b). Moreover, note that the two sided declaration

:- dependency(A<->B) in p(A,B).
can be used to achieve a symmetric effect.

Of course, there are cases where one wishes to terminate the search after
one unsuccessful attempt even though there is no dependency, in which case a
cut will have to be used. However, this ge,nerally reduces the elegance and tran-

·.sparency:otthe "cut~free_" PR0L0G programming style"'··•:·'..: · ·.,·- ·

2.3 Integrity Constraints ·
Enforcing database style integrity constraints expressed by Horn Clauses is

very· natural in PR0L0G and is essentially a form of integrity enforcement by
query modification [Stonebraker 75].

Clauses are usually added to the PR0L0G database by the predicate
'assert', which adds almost anything to the database, without any integrity
checks. To enforce integrity, we suggest the use of a predicate 'add' to assert
facts which are subject to an integrity check. 'Add' is itself defined in PR0L0G by

add(C) :- not(invalid(C)), assert(C). ••
Conditions which should not be allowed in the database are indicated by the

predicate 'invalid'. Thus, to enforce an integrity constraint on a predicate we
add an assertion about invalidity. For instance, assume that we wish to enforce

•) Provided the integrity of the database has been preserved, as discussed in section 2.3 .
..) Where 'not' denotes negation as unprovability.

6

the fact that an employee whose age is less than 19 can not earn over 100,000,
i.e. that in

employee(Name, Age, Salary)
Salary should be less than 100,000 if Age is less than 19. We can simply add the
assertion

invalid(employee(Name, Age, Salary}) ·- (Age < 19) , (Salary> 100,000).
Thus the assertion

add(employee(johnson, 18, 120,000))
will fail, since

invalid(employee(johnson, 18, 120,000))
will succeed.

Functional dependencies are a special form of integrity constraint and will
hence have to be enforced during addition of new data. A functional dependency
(A->B) in p(A,B) can be enforced by simply adding the constraint

invalid(p(A, B)) :- p(X,B), not(eq(X,A)),
where 'eq' is defined by eq(X.X).

One may also wish to deal with the validity of responses, i.e. to ensure that
returned values are consistent. Then one can define

return(A) :- A, not(invalid(A)).
to return results. Updates to the database can then be treated by combining
additions and deletions.

The discussion above is aimed at integrity constraints that are usually
placed on relational databases, i.e. constraints which essentially deal with unit
clauses. We feel that enforcing constraints on non-unit clauses will often involve
such a great deal of computation as to make it practically non-feasible.

3. Large PROLOG Databases
Having considered some high level database and language issues, we now

focus on large database implementation and optimization issues relating to PRO­
LOG.

Currently, all implementations of PROLOG either reside totally in core or
rely on virtual memory. This proves to be sufficient for general programming
and very small databases, but is certainly inadequate for serious database appli­
cations. However, we believe that with a suitable implementation strategy PRO­
LOG can also be successfully used in conjunction with very large databases.

Moreover, since large databases are almost always shared by many users,
we also need to consider PROLOG in a multiuser database context. We shall deal

· with these issues in the next three sections.

3.1 'lb.e Independence Assumption.
Much of the appeal of PROLOG has been the unification of the concepts of

programming and querying into a single discipline by treating programs and
data in a unified manner at the user level. However, while the user may be
unaware of this distinction. we feel that for optimization purposes, a PROLOG
implementor should separate these facts and deal with them accordingly.

Clauses in PROLOG can be classified into three categories:

7

a) Non-'Ll:nit Qauses, i.e. clauses with both a left and a right hand side, e.g.
clauses of the form p(A,B) :- q(A, C), r(C, B, X).

b) Unit-Clauses with variables, i.e. clauses with no right hand side, but with
a variable argument, e.g. clauses of the form p(a,X).

c) Ground-Unit Cla:uses, i.e. clauses with no right hand side, and with no
variable arguments, e.g. clauses of the form p(a, b, c).

Almost all of the information stored in current relational databases is of
type c), while PR0L0G 'programs' mostly contain clauses of types a) and b).

Currently most PR0L0G implementations store and retrieve data by
directly accessing a predicate's clause and (sometimes) bashing on one or more
of the arguments. Moreover, almost all implementations use the same hashing
method for clauses of class a), b) and.c). In most large database applications
this is simply an unacceptable implementation strategy since the size of and fre­
quency of access and updates to data can be very different from the correspond­
ing size and frequency for programs. Hence different hashing and indexing
methods for these different categories of clauses are called for.

At first it may seem that the presence of a large number of 'database facts' ·
of type c} and 'programs' of type a) for a given functor name can cause a prob­
lem since it may not be clear what form of hashing or indexing should be used

. for that functor name. However, we suggest that ~his need not be the case, and
that the above classification can be used to implement large deductive data­
bases more efficiently by making the following independence assurnptico·

For ea.ch given functor name, it is unlikely thaJ: there a.re a large number
of Non-'Ll:nit clauses· and a. large number of Ground~nit clauses al: tha same
time. It is also unl:ilcely that there are a. large number of Unit-clauses with vari­
ables for any given functor name.

Assuming that Non-unit clauses are essentially 'programs' and Ground-Unit
clauses are mostly 'data·. the independence assumption means that programs
and data are usually referred to with different functor names.·· The user may, if
he wishes, indicate whether a functor name will be used for large database appli­
cations by a declaration of the form

:- largedata(employee(name, social-security-no, salary)).
;;_;~~•···, ... , Diffe.ren.t hashing = .. and. indexing sch~mes may thus. be. ,.used for- these

different classes. It would also be desirable to provide indices not only on the
first argument but on other arguments of a predicate as specified by the user
with a declaration of the form ,

:-index(B), index(C} in p(A, B, C).
which provide extra indices for B and C.

In this context, an interesting form of indexing for use in conjunction with
deductive database systems has recently been proposed by [Lloyd 82].

3.2 Transactions, Concurrency.
Currently PR0L0G is really only for single user personal databases, and

includes no notions of transactions and concurrency control. Large databases
are almost always accessed by more than one user, and there is a need for con­
trolling the interleaving of the different user's programs in order to preserve the
consistency of the database.

If PR0L0G is to be used in large database applications, there will be need
for sharing parts of databases between different PR0L0G programs. This is not

B

I.
I

directly related to expert system issues, but a PROLOG based expert system
may need to access a shared database, say of patient medical records.

There will also be a need for including some form of transaction
specification facility in PROLOG. There is also a need for the modification of
most PROLOG implementations so that they would provide better interaction
facilities with operating systems.

The introduction of transactions and concurrency control would require
that some specified parts of a program be indicated as "atomic" actions, which
are not interleaved with other programs. This is really a very simple point, and
we are including it mostly for the sake of completeness.

To illustrate the concept of atomicity, consider a PROLOG transaction which
performs transfers between accounts, i.e. the predicate

transfer(Accountl, Account2, Amount) :-
balance(Accountl, X), balance(Account2, Y),
Z is (X + Amount), Wis (Y -Amount),
retract(balance(Accountl, X)), retract(balance(Account2, Y)).
add(balance(Accountl, Z)), add(balance(account2, W)).

The interleaving of the execution of this predicate with another user pro­
gram such as

printsum(Accountl, Account2) :­
balance(Accountl, X), balance(Account2, Y),
Wis (X + Y), print(W).

may result in inconsistent results. Thus the user needs to specify that he wishes
'transfer' to be an atomic action on the shared database.

We suggest adding simple declarations of the form
:- atom.ic(transfer(account, account, amount)).

to specify that a predicate should be implemented as an atomic transaction.
The method of concurrency control can of course be left to the database operat­
ing system.

3.3 Implementing the •Setof' Predicate
Some PRO LOG implementations provide a predicate 'set of' which retrieves

· all instances of variables satisfying a predicate (or conjunction of predicates),· ,,:c
e.g.

setof(X, (p(X, a, Y), q(Y,b), r(Y,c)), L)
retrieves into L all X for which p, q and r are true. Of course in many situations
the order in which the predicates are evaluated can make a big difference. This
form of conjunctive query optimization occurs quite frequently in database
applications. Both System R [Astrahan et al. 76] and CHAT-BO [Warren & Pereira
61] deal with this issue by looking up relation sizes and reordering conjunctions.

We feel that the need for introducing this optimization into CHAT-BO is sim­
ply an indication of the fact that such a feature is missing from the basic PRO­
LOG implementations. If PROLOG is to be used as a 'database' language, such
feature would be necessary. It would not be bard to add such a feature essen­
tially as CHAT-BO has implemented it.

Moreover, sometimes it might be possible to do even more optimization by
using functional dependencies. A user can specify the order of the evaluation of
conjuncts in his programs if he wishes, but any given order is not optimized for
different modes of procedure calls. Again due to the PROLOG philosophy that

9

programs should be runnable in both directions it would be a good idea to allow
the optimization to vary with the mode of the procedure call. Often it is possible
to optimize in these situations if a functional dependency is known, e.g. if we
know that

dependency(A->B) in q(A,B)
then in the evaluation of

setof(X, (p(X, Y), q(a, Y)), L)
it would usually be advantageous to evaluate q before p. This is also helpful in
CHAT-80 like applications.

4. Some Expert System Issues
So far, we have discussed the appeal of PROLOG in database applications.

Due to its symbolic nature and deductive capabilities, PROLOG is also a suitable
vehicle for implementing expert systems. In the past few years, PROLOG has
been the major language for expert system i~plementations in Europe. Some
such systems, e.g. [Pereira & Porto 82], [Pe1111"ra et al. 82], [Darvas et al. 79], i ~
[Markusz BO] among others, offer encouraging results.

In the next sections we discuss the appeal of PROLOG's uniform approach to
data and programs in expert system applications and and show how issues such

.as knowledge representation, explanations, transparent reasoning and inheri­
tance can be dealt with.

4.1 Databases and Knowledge-bases .
Currently, most expert systems dealing with databases have two distinct

notions of data.base management and knowledge-base management [Davis &
Lenat 8Z]. Often, the interaction between the knowledge-base and the database
is not as smooth and well coordinated as one would Wish.

As we have discussed before, PROLOG treats both programs and data in. a
uniform way. In expert systems applications, this can be looked upon as a single
view of both 'data' and 'knowledge'. We suggest that this single view of both data
and knowledge can be . used to approach both database management and .
knowledge-base management in a uniform and elegant manner .

.. :; Looking back at the history of computing systems, one can view;tbis as part
of a general trend towards the development of very high level interfaces for
interactive systems. The user interfaces of the computing systems of the 1960's
were essentially based on the notion of file management, while since the early
1970's there has been a distinct trend towards high level database management.
As (Ohsuga 82] points out, the user interfaces of the computing systems of the
late 1980,.s and beyond are very likely to be mostly based on knowledge-bases.
This signifies a general trend towards a uniform and high level style of interac­
tive computing based on intelligent knowledge-based interfaces. We believe that
PROLOG'S uniform view of data and knowledge is a good basis for this gradual
movement towards this for'm of knowledge-based interactive computing.

PROLOG is particularly useful in expert system applications which need to
use large databases in one of the following ways:

a) They need to interact with large amounts of 'data' stored in databases,
e.g. as in the RX system [Blum 82] which bases its inferences on a large database
of medical case histories.

b) They need to use a database to store a large amount of 'knowledge' in

10

terms of a large number of rules which pertain to an area of expertise, e.g.
expert systems which deal with a manufacturing environment [FGCS 81].

Of course, there are also many cases where both of the above conditions are
~ satisfied. The advantage of using PROLOG in such applications is that the unified

manner in which PROLOG approaches both data and programs (and in this case
'knowledge') results in a uniformity of design which facilitates the interaction
between the human expert, the knowledge engineer and the expert system. As
[Buchanan 79] points out, uniformity in design and representation is of great
value in the development of expert systems.

We feel that in due course of time, most computing environments will be
eventually liberated from the concept of a file system and will exclusively deal
with unified databases and knowledge-bases. We also believe that due to its uni­
formity of approach, PROLOG is an excellent vehicle for this transition.

4-.2 Knowledge Representation
Since PROLOG programs are essentially a subset of the sentences of first

order logic, a natural knowledge representation method in PROLOG is a "logic
flavored" knowledge representation method similar to MRS [Genesereth 81b].
Such representation has many advantages, but as we shall discuss later, it need
not necessarily be the sole conceptual representation method for expert sys­
tems developed in PROLOG.

In the logical approach, the world is viewed in terms of 'predicates', and
knowledge is essentially captured in terms of logical implications, i.e. produc­
tion system like rules, or 'if then else' conditions. Such representation is in a
way similar to the methods used by Rl [McDermott 80]. PROLOG sentences offer
a convenient way of representing such rules, both in terms of 'deep' and 'sur­
face' rules [Hart 82].

For instance, this form of representation is quite useful in the development
of expert systems for diagnostic applications [King 82]. SUBTI..E [Genesereth et
al. 81a] uses an essentially similar approach. For example, a basic and general
rule about the malfunctioning of structured components, say in an instrument
diagnosis expert system, would be

malfunction(X) :- subcomponent(X, Y), malfunction{Y).
where the subcomponent information can itself be included in the database, as
shown for example by

subcomponent(instrument, sensor).
subcomponent(instrument, connector).
subcomponent(instrument, display).

Specific structure relating to connectivity can be represented by assertions of
the form

connector-input(X) :- sensor-output(X).
display-input(X) :- connector-output(X).

On the other hand, assertions of the form
malfunction(connector) :-

CODJ?.ector-input(X), connector-output(Y), not(eq(X, Y)).
can be used to reflect the input/output relationships for the components.

In this example, note how easy it is to deal with the knowledge-base about
the structure of the components just as one deals with a relational database
containing parts and components information. Moreover, sometimes in the

11

course of diagnosis and repair of an instrument, the expert system may wish to
gather information about the availability of "field replaceable units" from a com­
mon shared database. This can again be handled quite naturally by using the
framework suggested in the previous sections.

However, the logical knowledge representation method need not be the only
knowledge representation method used in conjunction with PR0L0G. We feel
that the "None for all, but any for some" truism of programming languages also
applies to knowledge representation methods, i.e. that there is no knowledge
representation method that is good for all applications, but that any knowledge
representation method is perhaps good for some application. This suggests that
one may use PR0L0G in conjunction with difierent knowledge representation
methods in different applications. We must, however, point out that the
differences in these approaches are essentially conceptual and in many cases
one approach may easily be translated into the other without much difficulty.

Another approach to knowledge representation would be a semantic net­
work like approach, e.g. as suggested in [Brachman BO]. However, as [Deliyanni
& Kowalski 79] point out, PR0L0G's lpgical form can be closely linked to seman..:
tic network based knowledge representation techniques [Findler 80]. Moreover,
in database applications, semantic network like representations may also be
viewed as using some form of Entities and Relationships. EDD [Parsaye 82] uni­
formly uses the Entity-Relationship model [Chen 76] both for database schema
design and for capturing the knowledge used in the design process by viewing
Entity-Relationship diagrams as semantic networks.•

An example of a situation in which an Entity-Relationship like representa­
tion is intuitively appealing is in expert systems for office automation or in data­
base design. AJJ [Deliyanni & Kowalski 79] showed, in such cases one can simply
capture the schema. structure of the Entity-Relationship diagram by assertions
of the form

relationship(employment, department, employee).
attribute(employee, name). .
attribute(employee, social-security-number).
attribute(employee, department-number).

which reflect the fact that "employment•: is a relationship between the entities
''department" and "employee'..';:and that "name", "social-,security-number" and•
"department-number" ar~ attributes of the entity employee. The translation of
this representation to a logical form is very similar to the translation of Entity­
Relationship diagrams into relational schemas, i.e. it involves the transformation
of entities into relation names and attributes into arguments. For instance, the
entity "employee" will be transformed into a relation schema

:-schema employee(name, social-security-number, department-number).
which can later be used to store information such as

em.ployee{jones, 558 53 8973, departmet-4).
Thus, as is the case with Entity-Relationship diagrams and relational sche­

mas, the logical and network-like representation methods can easily be
translated into each other.

•) The fact that with very simple modiftcations, semantic networks diagrams can be easily
transformed into Entity-Relationship diagramB has been part of computer science folklore
for some time now.

12

Another issue that is sometimes quite important in knowledge representa­
tion is that of subtypes and i:nheritance. For instance, it is sometimes very use­
ful to a user to deal with both "employees" and "managers", and record the fact
that each manager is also an employee. Th.ere is a lot that can be said about
suchpolyrnorphic type structures in theoretical terms [Parsaye Bl], [Mac Queen
82], but in most practical cases these issues are quite simple to deal with.

As mentioned in section 2.1, types can be captured in untyped logic by the
use of conjunctions, and thus such properties can easily be included in PROLOG
programs by assertions of the form

employee(X) :- manager(X).

which specifies that each manager is an employee.
The inclusion of such conjunctions in PROLOG programs is no more easy or

difficult than explicit type declarations for variables in a typed language, but
this approach provides the flexibility of having or not having the types as
desired.

4.3 Explaining Facts and Deductions
It is well known that relational databases can be viewed as logical theories

[Nicolas 77], [Jacobs 81]. With this view, almost all data stored in, and queries
posed to, current relational database systems deal with facts which are ground
literal logical assertions or Ground-Unit PROLOG clauses. Such sentences
correspond to what might be termed who and what facts and queries, e.g. "Who
is the manager of department X" or "What is the salary of the oldest employee".

In expert system applications, 'knowledge' is captured in terms of facts
which pertain to some form of expertise and need to be represented as non­
ground literal clauses, i.e. Non-Unit clause sentences in PROLOG. Queries
corresponding to such facts might be termed how and. why questions, e.g. ."Yfuy
did you recommend antibiotics for this patient", or "How did you know that this
patient has diabetese".

Such queries are important since in the development of expert systems, it
is often necessary to query the system about the knowledge used, and the series
of deductive steps taken, in a deduction . .This form of transparent reasoning, i.e.
the.ability of the expert system to explain,and justify its actions and derivations
'is of utmost importance in the development of expert systems; without it the
gradual enrichment of a simple set of rules into a non-trivial knowledge base
would be almost impossible.

In such cases, it is not only necessary to explain the method of deduction
and the knowledge used in the derivation of the answer, but to record why some
piece of knowledge is in the database. For instance, it is usually necessary to
record the actual patient case history which results in the addition of a rule to a
MYCIN like system in order to facilitate future debu.gging [Shortliffe 76].

Once again, by involdng the uniformity of PROLOG's approach to knowledge
and data, we suggest that explanations pertaining to both data and knowledge
may be treated in a uniform manner. The basic idea is rather simple: each
derivation in. PROLOG essentially has the form of a proof tree whose leaves
correspond to 'basic facts' or data, while the rest of the nodes reflect the struc­
ture of the proof.

The basic facts (i.e. the leaves) are obtained by some empirical means, e.g.
laboratory tests, physicians observations, etc. The justification for these facts
can be stored in terms of assertions in the PROLOG database itself, by using

13

assertions like justification(fact, reason), which record a basic reason for a basic
fact, e.g.

:- Justification(blood-count(johnson, 130), "test on 11 /7 /82").
Then the predicate "justify" can be used to justify basic facts by
justify(X) :- justification(X, Y), print(Y).

Such method may also be used for justifying the addition of non-unit
clauses to the PROLOG database, e.g.

:- ju.stification(rule 133, "patient case history 173").
· Moreover, the steps involved in the deduction are essentially those steps

involved in pattern matching and unification Most PROLOG implementations
offer debugging facilities which allow the user to trace the steps in the execution
corresponding to a certain predicate. We suggest that similar technique can
also be used in explanations, e.g. suppose we have

grandfather(X, Y) :- father(X, Z). parent(Z. Y).
parent(X, Y) :- mother(X,Y) ; father(X. Y).
father{john. mary).
mother(mary, paul).

A first level explanation of "grandfather(john, paUl)" can be obtained by following
_ the steps of the unification, i.e.

grandfather(john, paul) since father{john, mary), parent(mary, paul).
A further level of explanation may then be obtained by
parent(mary, pau1) since mother(mary, paul).
Now let "trace(X, Y)" give Y as the top level goals which were used in the

derivation of X. The predicate "justify" can then be extended to the trace and
be used to give explanations by using "explain", where

explain(X) :- justify{X).
explain(X) :- trace(X, Y), explain(Y).
explain(X ', • Y) :- explain(X), explain(Y).
Another interesting issue is to ask "why not'' questions, e.g. "Why is not john

the father of mary?". A simple answer to this can be that this fact is non­
~·-- existent in'the d~tabase, but sometimes 'there may .be, need for:the display of

partial deductions that fail. This is quite· interesting to program in PROLOG, and
is left to the reader as an exercise.

There are of course many other issues that need to be dealt with in the con­
text of multi.:level explanations. A number of these issues are discussed in
[Swartout 81], and a good deal more work remains to be done on the subject.

5. Conclusions
We have shown how PROLOG can be used to arrive at a uniform and high

level approach to both database management and knowledge-base management.
We have also pointed out the appeal of this single approach to the management
of both data and knowledge in expert system applications. As a language, PRO­
LOG holds a lot of promise. We believe that with the advent of architectures
more suited to its implementation (FGCS 81], PROLOG will become a dominant
force in computing in the 1980's.

14

6. Acknowledgements
1 wish to thank David Warren and Fernando Pereira of SRI, Stott Parker of

UCLA, Edward Katz, Heinz Breu, Robert Fraley and Martin Liu of Hewlett
Packard, Robert Blum and Gio Wiederhold of Stanford University, Jonathan }(jng
of Symantec and Antonio Porto of the/university of Lisbon for helpful comments
and discussions. Some of this work was performed while the author was at the
Computer Research Center, Hewlett Packard Laboratories.

References
[Armstrong 74]

Dependency Structures of Database Relationships, Proceedings of the 1974
lFIP Congress, Amsterdam.

[Astrahan et al. 76]
System R: A Relational. Approach to Data Management, ACM Transactions
on Database Systems, Vol 1, No 2.

-> [Blum 82]
The RX Project, Computer Science Department, Stanford University.

[Brachman BO]
Knowledge Representation in KLONE, in [Findler 80]

[Buchanan 81]
Research on Expert Systems, Heuristic Programming Project Report, Stan­
ford University.

[Burstall et al. 80]
HOPE, An Experimental. .Functional Programming Language, Proceedings
of the 1980 IJSP Conference, Stanford University.

[Chen 76]
The EJntity Relationship Model, ACM Transactions on Database Systems, Vol
1, No 1.

[Clark 78]
Negation as Failure, in [Gallier & Minker 78].

[Clark 80]
PROLOG, A language for Implementing Expert Systems, in 'Machine Intelli­
gence 10', edited by P. Hayes and D. Michie.

[Clocksin & Mellish 81]
Programming in PROLOG, Springer Verlarg.

[Colm.erauer 75]
Les Gram.ma.ires de Metamorphose, Groupe d'Intelligence Artificialle,
Marsille-Luminy, 1975, reprinted in Lecture Notes in Computer Science Vol.
63.

[Dahl 82]
On, Database Systems Development through Log'ic, ACM Transactions on
Database Systems, Vol 7. No 1.

(Deliyanni & Kowalski 79]

15

Logic a:n.d Semantic Networks, Communications of the ACM, Vol 22. No 3.
[Darvas, et al. 79]

A Logia Based Program for Predicting lJn.Lg Interactions, International
Journal of Biomedical Computing, Vol 9.

[Davis & Lenat 82].
Knowledge-Based Systems in Artificial Intelligence, McGraw Hill, New York.

[Fagin 78]

A New Norm.al Form Jar Relational Schemas, Research Report, IBM San
Jose Research Laboratory.

[Fagin 80]
lmplicational Dependencies, Proceedings of the 1980 ACM Conference on ·
Foundations of Computer Science.

[Forgy 81]
OPS5 User's Manual, Department of Computer Science, Carnegie-Mellon'
University.

[FGCS 81]
Proceedings of the Fifth Generation Computer Systems Conference, Tokyo,
Japan.

[Findler 80]
Associative Networks, North Holland.

[Furukawa 81]
Problem Solvi:ng and Inference Mechanisms, in [FGCS 81].

[Gallier & Minker 78]
Logic a:nt:lDatabases, Plenum Press, NewYork, 1978.

[Genesereth et al. 81a]
SUBTLE Reference Manual, Computer Science Department, Stanford
University.

[Genesereth et al. 81 b]
•

.. . · MRS Reference Ma:nual, Computer .Science Department, Stanford Univer-
sity.

[Goguen & Tardo 79]
An Introduction to OBJ, Proceedings of IEEE Conference on Reliable
Software, Boston .

....4) [Hart 82]
The future of Artificial Intelligence, Artificial Intelligence Technical
Report, Fairchild Laboratories.

[Horn 51)
On Sentences which a:re '!rue of J)f,rect Unions of Algebras, Journal of Sym­
bolic Logic, Vol. 16.

(King 82]
Knowledge-Based Dlagnosis and Repair, Internal Memorandum, Hewlett
Packard Laboratories.

--{.) [Kitagawa 82]

16

t
.:!' J

~
~

.z '3

Japans .Annual Reviews in Computer Science and Technologies, North Hol­
land.

[Kowalski 79]
Logic for Problem Solving, North Holland.

[Kowalski 81]
Logic as a .Database Language, Department of Computing, Imperial College
London.

~ (Jacobs 81]

--P

Applications of Logic to Databases, Department of Computer Science,
University of Maryland.

[Lloyd 81]
Implementing Qa:use Inde:r:ing in Deductive Database Systems, Technical
Report, Department of Computer Science, University of Melbourne.

[Mac Queen 82]
A Polymorphic Type System, Technical Report, Bell Laboratories.

[Markusz 1980)
Applications of PROLOG in Many-storied Panel House Design, Proceedings
of the 1980 Logic Programming Conference, Hungary.

[Mc Dermott 80)
Rl : A Rule-Based Ccmfigurer of Computer Systems., Technical Report, Com­
puter Science Department, Carnegie-Mellon University.

[Michie 80]
Expert Systems in the Micro-electronic Age, Edinburgh University Press.

[Nicolas 78]
Logic a:nd Data.bases, in [Gallier & Minker 78].

[Ohsuga 82]
Knowledge-Based Systems as a New Interactive Computer System of the
Next Generation, in (Kitagawa 82].

[Parker & Parsaye 80]
Inferences Involving Embedded JJulti-Valued Dependencies and Transitive
Dependencies, Proceedings of the 1980 ACM SIGMOD Conierence.

[Parsaye 81]
Higher Order Abstract Data Types, Ph.D. Dissertation, Computer Science
Department, UCLA.

[Parsaye 82]
EDD, an Expert System for .Data.base Design, Internal Report, Computer
Research Center, Hewlett Packard Laboratories.

[Pereira 82]
Ca.n Drawing be Liberated from the Von Neuman Style?, Technical Report,
SRI International.

[Pereira, Pereira & Warren 77]

17

'5

DEC-10 PROLOG users Guide, Dl]. par~e~tiof Artifiii~ Intelligence, Univer-
. sity of Edinburgh. ff'~ A~ ~T _.J(. ?~_j (] 11. ~

[Pereira & Porto 62] {;
~ PROLOG Implementation of a La:rge System on a Small }la.chine, Proceed­
ings of the 1982 Logic Programming Conference, Marseille.

[Reiter 78]
On. Closed-world Data.bases, In [Gallier & Minker 78].

[Robinson 65]

A Ma.chine-oriented Logic Based on the Resolution Principle, Journal of the
ACM, Vol. 12, No. 1.

---...1.;> [Robinson 80]
Programming by .Assertion and Query, in [Michie 80].

[Shortlifie 76]
Computer Based Medical Consultations: MYCIN, Elsevier, :New York.

-P [Stonebraker 75]
Implementation of Integrity Constraints on Vie'l.t.S by Query Modification,
Proceedings of the 1975 ACM SIGMOD Conference.

---{> [Suwa 81]
Knowledge Base Mechanisms, in [FGCS 81].

[Swartout 81]
E:r:plai:n:ing and Justifying Expert Consultation Programs, Proceedings of
the 7th IJCAI. -

[Warren77]
Implementing PROLOG - Compili:ng Predicate Logic Programs, Research
Reports 39 and 40, Department of Artificial Intelligence, University of Edin­
burgh.

[Warren 81]
Efficient Processi:ng of Interactive Relational Database Queries Ex-pressed

,, :. in Logic, Proceedings of the 1981 VLDB. .,. _,.,
[Warren, Pereira & Pereir~ 77]

PROLOG, The La:ngu.age and Its Implementation Compared with LISP,
· Proceedings of the ACM Symposium on AI and Programming Languages.

[Warren & Pereira Bl]
The CIIAT-80 System, Technical Report, Department of Computer Science,
University of Edinburgh.

[Zaniolo 78]
Stu.dies an Relational Databases, Ph.D. Dissertation, Department of Com­
puter Science, UCLA.

18

