
SECURITY AND INTEGRITY IN LOGIC DATA BASES USING

QUERY-BY-EXAMPLE

M H WILLIAMS, J C NEVES and S O ANDERSON

Department of Computer Science

Heriot-Watt University

Edinburgh

Scotland

KEYWORDS: Security, Integrity, Query-by-Example,

Prolog, Logic data base.

30~

Abstract

Security and integrity are two important and

inter-related aspects of data base systems, and

data base management languages must make provision

for the specification and enforcement of such

constraints. In the case of the data base

language Query-by-Example a style for handling

certain types of security and integrity

constraints has been developed by Zloof.

An alternative approach to integrity in QBE

is presented here which is based on the idea of

consistency of the data in the data base. This

approach allows for a more general type of

constraint which includes the handling of

functional, multivalued and em.bedded-multivalued

dependencies, as well as the more conventional and

simpler type of integrity constraints in a uniform

manner.

Both security and integrity constraints have

been implemented in Prolog as part of a logic data

base.

305

30.6

M H Williams, J C Neves, S O Anderson

1 • INTRODUCTION

One of the important functions of any data base

management system

stored within the

is to preserve the integrity of any data

data base by ensuring that it is

consistent with the prescribed properties of such data

(integrity constraints). Integrity constraints. can be

classified into three types (Ullman [1], Nicolas and

Yazdanian [2]) :

(a) Value-based constraints. These are conditions which

the values of the domain elements must satisfy. They are

usually restrictions on the range of values which a field

can assume or are concerned with non- structural

relationships amongst various fields. For example in the set

of relations given in.Appendi<:!: 1 one might.wish to impose

restrictions such as:

(i) The weight of a part is always less than 100 units

(simple restriction on range).

(ii) An entry may only appear in the supplier_parts

table if an entry for the supplier concerned exists in the

supplier table (existence check).

(iii) Any supplier from Vienna or Athens must have a

status which is at least 20 (non-structural relationship),

etc.

(b) Structural or "Value-oblivious" constraints.. These

are restrictions concerned not with the value in any

- 2 -

M H Williams, JC Neves, SO Anderson - 3 -

particular field of a tuple but with whether certain fields

of one tuple match those of another. Three specific types 0f

structural constraints are addressed in this paper:

-(i) Functional Dependencies. If X and Y are two sets of

attributes from some relation scheme, then X functionally

determines Y (or Y functionally depends on X), written "X ->

Y", if any pair of tuples which agree in the components for

all attributes in set X must likewise agree in all

components corresponding to attributes in set Y.

Examples of functional dependencies in the set of

relations in Appendix 1 include:

sno -> sname (corresponding to each
supplier number is a unique name),

sno, pno -> qty (corresponding to each
supplier/part number combination is
associated an unique quantity),

and so on. It has been shown [3] that any set of functional

dependencies can be transformed to an equivalent set in

which all functional dependencies have the form "X -> Y"

where Y is a singleton set.

(ii) Multivalued Dependencies. If X and Y are two sets

of attributes from some relation scheme then X

mul tidetermines Y (or there is a multivalued dependency of Y

on X), written "X ->-> Y", if corresponding to a given set

of values for the attributes of X there is a set of zero or

more associated values for the attributes of Y, and this set

of Y-val ues is independent of the values of any attributes

M H Williams, JC Neves, SO Anderson

not contained in XU Y.

An example of a multivalued dependency taken from the

relation scheme in Appendix 2 (taken from Ullman [1]) is:

course->-> period, room, teacher

that is, associated with each "course" is a set of "period

room- teacher" triples which does not depend on any other

attributes. For example, given the pair of tuples:

cs2a
cs2a

3
5

601
302

jones j
smith t

a.dams a 42
zebedee e 67

one would expect to be able to exchange (3, 601, jones j)

with (5, 302, smith t) and obtain two valid tuples, viz:

cs2a
cs2a

5
3

302
601

smith t
jones j

adams a 42
zebedee e 67

However, it is not possible to exchange one or two fields of

the triple without exchanging all of them, eg:

cs2a 5 601 smith t adams a 42

is not in the data base since "course ->-> room" does not

hold.

(iii) Embedded Multivalued Dependencies. These are

multivalued dependencies which do not apply in the full set

of data but which become applicable when the data set is

reduced by projection. Formally, given a relation scheme R,

an embedded multivalued dependency is one which holds only

when any relation r in R is projected onto some subset X [

- 4 -

M H Williams, JC Neves, SO Anderson

R. For example, in the relation scheme presented in Appendix

2, the multivalued dependency "course->-> prerequisite'!

does not hold since tuples such as:

cs2a zebedee e cs1b 1978

are not present in the data base. However, if the data in

progresstable is projected onto the subset {course, student,

prerequisite} giving:

cs2a adams a cs1a
cs2a adams a cs1b
cs2a zebedee e cs1a
cs2a zebedee e cs1b

then "course->-> prerequisite" does hold, as does "course

->-> student".

(c) Transition constraints. These are restrictions on

the way in which the data base may change; or, more

specifically, the relationship between the states of the

data base before and after any change is made. They include

restrictions on the way in which:

(i) Values in a single field may change, e.g. values

such as age or salary may only increase, marital status may

only change in a particular way, etc.

(ii) Values in a set of fields (possibly in different

relations) may change, e.g. the amount of special low

interest-rate loan may be increased only if the grade of the

employee is above a certain level, etc.

- 5 -

~10

M H Williams, JC Neves, SO Anderson - 6 -

Security, on the other hand, is concerned with who may

access what information in the data base and what operations

may be performed. The distinction between security and

integrity constraints is not always clear as will be seen in

later sections.

Zloof [4] has developed mechanisms for handling

security and integrity constraints within the data base

language Query-by-Example (QBE). The approach used for

handling integrity constraints is a trivial extension of the

concept of transition constraints in which constraints may

be placed on insert, delete and update operations as well as

on print operations. The problem with such an approach is

that it is not possible to make any general statements about

the data in the data base without a detailed history of the

data base.

The object of this paper is to present a slightly

different approach which includes all three types of

constraints, and which does lend itself to statements about

the properties of data in the data base.

The following section gives a brief introduction to

Query-by-Example, while section 3 looks briefly at the

specification of security constraints (a slight variation

from Zloof's approach). The remainder of the paper is

devoted to the integrity constraints and implementation

details.

M H Williams, JC Neves, SO Anderson

2. QUERY-BY-EXAMPLE - THE BASIC LANGUAGE

Query-by-Example [5] is a two-dimensional language

which is designed for use at a terminal and makes use of a

special-purpose screen editor to compose queries. On

striking a particular key, the user is presented with the

skeleton of a table as follows:

I
I
I -------------,------------------------------1
I

The four areas delimited by this skeleton are:

(1) I (2)
I -------------,------------------- - ·--------

('.3) I (4)

(1) Table name field,

(2) Column name field,,

(3) Tuple command field , and

(4) Tuple entry field.

Using the screen editor the user may position the

cursor in any of these four areas in order to insert a

command and/or a variable or constant element. The

formulation of queries is achieved by setting up tuples

containing variables, constants and conditions. An attribute

which is to be displayed is indicated to the system by

typing " " P• ' followed possibly by a variable name and

possibly by a condition, in the column corresponding to that

attribute. In our implementation lower-case letters have

311

- 7 -

M H Williams, JC Neves, SO Anderson

been used in place of upper-case letters for the basic

operations.

For example, to print the status of a particular

supplier, say "clark", given the data base of Appendix 1 ,

the user may enter the table name "suppliers" in the table

name field, viz (the parts which the user might enter are

underlined " __ "):

suppliers l
I
I
I ------------1--------------------------------I
I

Since the relation already exists in the data base the

column headings (attributes of suppliers) can be generated

by the system, i.e.:

suppliers I sno sname status city
I
I
I ------------,----------------------------
1
I

One can now enter "cl ark" in the sname field and II p.X 11 in

the status field as follows:

suppliers l sno sname status city
I
I
I ------------,----------------------------
: clark p.X

Any character sequence beginning with a lower case

letter, such as II clark", is taken to be a constant

representing a specific value, while one beginning with an

upper case letter or an underline symbol " tf is taken to be

31l

- 8 -

M H Williams, JC Neves, SO Anderson

a variable. Thus this is interpreted as a request to print

the status of any supplier whose name is "clark".

Similarly to print the details of any supplier whose

status exceeds 10, one may enter:

suppliers l sno sname status city
I

I ------------1-------------------------------
1, p.X p.Y A A>10 p.C p. : :

or one may write the command "p." in the tuple command field

as follows:

suppliers l sno sname status city
I
I
I ------------1----------------------------

P• ! X Y A::A>10 C

where the infix operator "::" is used as a syntactic aid and
'

is to be read as "such that".

A query may require more than one relation in which

case appearances of the same variable name in different

parts of a query represent the same value. For example, to

display the names of all suppliers who supply parts which

are red, one may enter:

- 9 -

M H Williams, JC Neves, SO Anderson

parts l pno pname colour weight
I
I
I --------1------------------------------
l X red

supplier_ps.rts l sno pno qty
I
I
I -----------------1----------------l y X

suppliers l sno sname status city
I
I
I ------------,----------------------------
1 Y p.Z

- 10 -

Complex conditions are handled by use of a separate

condition box. For example, suppose that one wishes to

display the names of all suppliers for whom the quantity of

part number 2 lies between 100 and 300. One may enter:

suppliers l sno sname status city
I
I
I ------------1----------------------------
: X p.Y

supplier_ps.rts l sno pno qty
I
I
I -----------------,------------------
: X 2 Z

I I 1--------------------1 l CONDITIONS i
I I 1--------------------1
l Z>99 and Z<301 l

Besides the query operator "p." there are three other

---~ - ------ -----

M H Williams, JC Neves, SO Anderson

operators: " . " l.. (Insert), "d." (Delete) and "u." (Update).

As an illustration of the use of "i.", consider the addition

of a new part tuple to the relation parts:

parts i pno pname colour weight
I

I --------,------------------------------
i. i 7 washer red 10

3. SECURITY IN QUERY-BY-EXAMPLE

Security constraints take the form of an authorization

for a user to perform certain operations on a relation. For

example, if one wishes to permit a user John to perform

print, update and insert operations on the relation

suppliers, this may be specified as follows:

suppliers l s?io sname status city
I
I
I -------------------------,----------------------------

i. au tr (p • , u • , i.) . j ohn l A B C · D

where once again lower case letters have been used and the

final ". " J.. omitted [4].

The presence of a variable in each field of the

relation indicates that John has access to that field. If

the variable Chad been omitted and the status field left

blank, this would indicate that John does not have access to

the status field. Just as in other QBE statements, one may

add conditions to these variables or link them to fields in

other relations.

015

- 11 -

M H Williams, JC Neves, SO Anderson

A more complex example which illustrates this imposes

the constraint that John may only read details from the

supplier_parts relation if the status of the supplier is

less than 30 or the supplier comes from Paris. This is

specified as follows:

supplier_parts l sno pno qty
I
I
I -------------------,----------------

1.autr(p.) .john l A B C

suppliers l sno sname status city
I
I
I ------------,----------------------------
1 A E F

I I ,---------------------,
l CONDITIONS l
I , I ,---------------------, l E<3O or F=paris I

In each case the entry in the tuple-command-field has

the form:

i .autr(<access rights lists>) .<user>

The <access rights list> is a list of one or more of

the four rights "p.", " . " J.. , n " u. or "d. 11 while < user> is the

name of the user to whom access is to be granted. In

generalizing these two items, following the philosophy of

QBE, variables may be used. Similarly if the keyword II all. 11

is used in the table-name-field it will refer to all

-- 12 -

M H Williams, JC Neves, SO Anderson

relations. Thus the constraint:

all. I
I
I
I
I ---------------,-------------------

i .autr(X). Y l

will allow any user to perform any operation on any

relation.

4. REALIZATION IN PROLOG

each

In our initial implementation of QBE in Prolog [6],

QBE request (insertion, deletion, update, print,

constraints) was translated directly into Prolog and applied

to the data base. However, when we changed our approach to

integrity constraints and adopted the approach which will be

described in the next section, a different implementation

strategy was called for.

In the current system (which runs both on a PDP 11/34

and a DEC 10 machine), each QBE request is translated into a

clause in a meta-language which is then interpreted using

the remainder of the data base.

The following notation is used to express object-level

knowledge in the meta-language:

(1) A rule clause is represented as:

p <- [q1, q2, ••• , qn, {s}].

which stands for p :- q1 ,q2, ••• ,qn.
while the strings in braces!} is used
to store information for recreating the

- 13 -

M H Williams, JC Neves, SO Anderson

original QBE request.

(2) A goal clause is represented by:

<- [q1,q2, ••• ,qn].

which stands for?- q1,q2, ••• ,qn.

(3) A fact or assertion is represented
as:

p.

which stands for p.

The usual interpretations are to be understood for

rules, goals and assertions [7]. The use of the meta-

- 14 -

language at the object-level has the great advantage of

allowing one to use clauses and predicates as terms.

5. EXTENSION TO HANDLE INTEGRITY CONSTRAINTS

The general philosophy beh~nd the approach described

here is that any constraint which is currently operative

must apply to all data in the data base. Thus whenever a new

constraint is defined, it is immediately checked against the

data in the data base. If any of the data does not satisfy

the constraint, the exceptions are reported and the user is

given the opportunity of either updating the data or

revising the constraint. If all the data does satisfy the

new constraint, it is stored and used to check all

insertions and update operations conducted in the future.

Ttree new operators are ln'croduced for this pur·pose:

M H Williams, JC Neves, SO Anderson

ic. - insert a new constraint

de. - delete an existing constraint

pc. - print constraints

The form of a constraint definition is similar to that

of a query. As a simple example, consider the insertion of

the constraint that the value in the quantity field of each

supplier_parts tuple should be greater than zero. To do this

one may enter:

supplier_parts : sno pno qty
I
I
I -----------------1------------------

ic. : X::X>O

or one may use the condition box as follows:

which is

To

supplier_parts : sno pno qty
I•
I
I -----------------1----------------

ic. l X

I I ,----------------,
l CONDITIONS l
I I 1----------------1 l X > 0 l

translated by the system to yield:

supplier parts(, , X) <-
[X>O, -

{X>O}
] .

ensure that a tuple may only exist in the

31,

- 15 -

M H Williams, JC Neves, SO Anderson

supplier_parts relation if a tuple for the supplier

concerned exists in the suppliers relation, one may have:

supplier_parts l sno pno qty
I
I
I -----------------,----------------

ic. l X

suppliers l sno sname status city
I
I
I ------------,----------------------------
: X

which is translated by the system to yield:

supplier parts(X, ,
[suppliers(X,

]. {}

_) <-
_, _)'

A more complicated value-based constraint is the

restriction that any supplier from Vienna or Athens must

have a status which is at least 20. To specify this, one

has:

suppliers l sno sname status city
I
I
I ------------,----------------------------

ic. l X Y

I I ,--,
l CONDITIONS t
I I ,--, i (Y = vienna or Y = athens) implies (X >= 20) i

which is translated by the system to yield:

- 16 -

M H Williams, JC Neves, SO Anderson

supfliers(_, _, X,
not (Y=vienna
not (Y=athens
{ (Y=vienna or

].

Y) <-
or X>=20) and
or X>=20),
Y=athens) implies (X>=20)}

Functional dependencies are specified in the condition

box using the format:

<var> -> <var>

or (<varlist>) -> <var>

For example, in the parts relation, suppose that "pno

-> weight". This can be specified as a constraint as

follows:

parts l pno pname colour weight
I

I --------,------------------------------
ic. l X Y

I I ,----------------,
l CONDITIONS l
I I ,----------------,
I I
I X -) Y 1

which is translated as follows:

parts(X, , , Y) <-
[parts(X, _, _, U),

Y=U,

J.
{ 1 ->4}

This can be read as :

- 17 -

?
.,.

M H Williams, JC Neves, SO Anderson - 18 -

for all X, A, B, Y:
if there exists R, S, U such that
if parts(X, R, S, U) and Y=U are true
then parts(X, A, B, Y) is true.

When this command is given, the data base will be checked

immediately to ensure that the data already present

satisfies this condition. Provided it does, the constraint

will be added to the data base. Thereafter whenever the user

inserts or updates a tuple in the parts relation it attempts

to deduce "weight" from "pno" and fill it in automatically

for the user.

Multivalued dependencies are specified in a similar way

using the format:

<X> ->-> <:Y>

where <X> and <Y> each stand for either a single variable or

' a variable list enclosed in parentheses. Thus in the example

from Appendix 2 one might express the constraint:

timetable : course period room teacher student mark
I
I
I ----------,---

ic. l W X Y Z

I I ,----------------------,
l CONDITIONS i
I I ,----------------------,
l W ->-> (X, Y, Z) l

which is formalized as follows:

M H Williams, JC Neves, SO Anderson - 19 -

timetable(W, X, Y, Z, R, S) <-
[timetable(W, A, B, C, M, N),

timetable(W, A, B, C, R, S),
timetable(W, X, Y, Z, M, N),
{1->->(2,3,4)}

] .

Once again when this command is given the data base is

checked for any violations. If violations arise they are

reported, if not the constraint is added to the data base.

Thereafter whenever an insertion or update operation causes

this constraint to be invoked, the system generates (and

displays) the full set of tuples which need to be added to

the data base in order to maintain consistency. If the user

is content with the set of tuples generated, the system adds

the full set to the data base, otherwise the

insertion/update operation is abandoned.

Embedded multivalued dependencies are specified using

the format:

<X> ->-> <Y> /<Z>

where <X>, <Y> and <Z> each stand for· either a single

variable or a variable list in parentheses. This is

interpreted as X multidetermines Y if the set of attributes

Z is removed. For example, to express the fact that "course

->-> prerequisite" if the relation "progresstable" in

Appendix 2 is projected onto the subset (course, student,

prerequisite}, one may enter:

M H Williams, JC Neves, SO Anderson

progresstable l course student prerequisite year
I
I
I ----------------,---------------------------------------

ic. i X Y Z

I I ,----------------,
i CONDITIONS ;
I I ,----------------,
i X ->-> Y/Z ;

which is translated by the system to yield:

progresstable(X, A, Y, Z) <-
[progresstable(X, B, C,

progresstable(X, A, C,

].
frogresstable(X, B, Y,
1->->3/4}

E),
R)'
s),

When this command is given, the data base is checked

for consistency. If violations arise the user is prompted to

correct them or abort the constraint. Once the constraint

is added to the data base, any further insertions or update

operations are checked against the constraint and where

required the system will generate the full set of tuples

needed to fulfil any particular operation, prompting the

user for the additional information (year) required to

complete each tuple.

Transition constraints, which are concerned with the

way in which values in the data base may change, are

expressed using a pair of entries for the relation in

question. The field in this relation which is to be

controlled, will be represented by two different variables -

- 20 -

M H Williams, JC Neves, SO Anderson - 21 -

the one occurring in the line with the ic command in the

tuple-command-field represents the new

variable, the other the old value.

value of the

For example, suppose that one wishes to place a

constraint on the status of a supplier whereby it can only

increase, one might enter:

suppliers l sno sname status city
I
I
I ------------1----------------------------

ic. l N X
I
I
I

I
I N y

I I 1-----------------1 I CONDITIONS l
I I 1-----------------1 l X>=Y l

which is translated by the system to yield:

suppliers(N, , X,) <-
[suppliers(N~ , Y,

X>=Y,

J.
{X>=Y}

) - '

Similarly one might impose a constraint on the age or

salary of an employee whereby the values of these fields for

a particular employee can only increase. In the case of

marital status the only permissible transitions may be:

M H Williams, JC Neves, SO Anderson

single ---> married
married ---> divorced or widowed
divorced ---> married
widowed ---> married

which may be specified as follows:

employee I empno ename salary status grade
I
I
I -----------1--

ic. i N X
I
I
I
I

l N single

I I ,---------------------------,
l CONDITIONS l
I I ,-------- ------------------,
l X=married or X=single l

employee l empno ename salary status grade
I

\ -----------,---------------------------------------
ic. l N X

I
I
I
I

I N married

I I ,--1
: CONDITIONS l
I I ,--,
I X=married or X=divorced or X=widowed l

and so on. This is translated by the system to yield:

- 22 -

M H Williams, JC Neves, SO Anderson - 23 -

employee(N, , , X, _) <-
[employee(N, _, _, single, _),

X=married or X=single,
!X=married or X=single}

] .
employee(N, , , X,) <-

[employee(N, -; , married, _),
X=married or X=divorced or X=widowed,
{X=married or X=divorced or X=widowed}

] .

Alternatively the four constraints may be combined into

a single one using two variables.

As an example of a more complex form of constraint,

consider the restriction that the value of a loan may only

increase (or decrease) if the grade of the employee is

greater than 5. This might be specified as follows:

M H Williams, JC Neves, SO Anderson

loantable i empno loan
I
I
I ------------1-------------

ic. i X NL
I
I
1
I

l X OL

employee l empno ename salary status grade
I
I
I -----------1--
: X y

I I 1----------------------------1 i CONDITIONS i
I 1 ,----------------------------,
l (Y<=5) implies (NL=OL) l

This is translated by the system to yield:

loantable(X, NL)<-
[loantable{X, OL),

employee(X, , , , Y) ,
not Y<=5 or NL=OL,
{(Y<=5) implies (NL=OL)}

J.

The complete syntax of these constraints is given in

Appendix 3,

6. OVERLAP OF INTEGRITY AND SECURITY CONSTRAINTS

The transition constraints discussed in the previous

section deal only with the way in which data in the data

base may change (i.e. te apdc.-:ed). It does not cater :or

transitions involving insertion or deletion.

- 24 -

M H Williams, J C Neves, S O Anderson

Thus suppose one wishes to impose the constraint that a

loan may only be granted to an employee with grade between 5

and 8, but once an employee has been granted a loan, if his

grade changes to a value outside the range 5-8, he will not

lose his existing loan. This type of constraint is not a

simple property of the data (i.e. one cannot conclude that

any employee who has a loan, must have a grade in the range

5 to 8). However, it can be handled using a security

constraint, eg.

loantable : empno loan
I

I --------- ------,-------------
i.autr(i.) .X : A B

~mployee l empno ename salary status grade
I
I
I -----------,---------------------------------------
: A C

I I ,-----------------------,
l CONDITIONS l
I I ,-----------------------, l (C>=5) and (C<=8)

Likewise the example considered by Nicolas and

Yazdanian [2] in which a constraint needs to be placed on

the system to prevent employees whose income is less than

some value (say 5000) from being deleted, can be treated as

follows:

- 25 -

330

M H Williams, JC Neves, SO Anderson - 26 -

employee i empno ename salary status grade
I
I

-----------------!---------------------------------------1

l.autr(d.).X l A B C D E

I I ,-------------------1
i CONDITIONS i
I I 1-------------------1

. l C>=5000 l

7. CONCLUSIONS

The specification and enforcement of integrity

constraints in a data base system is essential in order to

guarantee the consistency of data within the data base. The

role of security constraints is to control the types of

operations which individual users may perform on the data

base. The two types of constraints overlap to some extent.

This paper presents an integrated approach for

specifying generalized integrity and security constraints

within the data base management language Query-by-Example.

The important aspects of this approach are:

(a) It caters for all three types of integrity

constraints in a generalized and consistent manner.

(b) It treats integrity constraints as properties of

the data applying to all data in the data base, rather than

as properties of particular operations (as proposed by Zloof

r ., 1 \
L'+J/.

(c) It ensures that the user is aware of the

M H Williams, JC Neves, SO Anderson

implications of any operation producing changes in the data

base which affect fields involved in

embedded-multivalued dependencies.

ACKNOWLEDGEMENTS

multivalued or

The work of one of the authors, J C NEVES, was

supported by the Calouste Gulbenkian Foundation under grant

14/82 and by an ORS award from the Committee of Vice

Chancellors and Principals of the Universities of the United

Kingdom.

JC NEVES is on leave from Minho University, Largo do

Paco, 4700, BRAGA, PORTUGAL.

- 27 -

M H Williams, JC Neves, SO Anderson

8. REFERENCES

[1] J. D. Ullman, Principles of Database Systems, London:

Pitman, 1980.

[2] J.M. Nicolas and K. Yazdanian, Integrity Checking in

Deductive Data Bases, in: Logic and Data Bases, Plenum

Press, 1978, 325-344.

[3] w. W. Armstrong, Dependency Structures

Relationships. Proc. IFIP 74, 1974, 580-583.

[4] M. M. Zloof, Security and Integrity within

by-Example Database Management Language,

Yorktown Heights, N. Y., 1978.

of Database

the Query

IBM RC6982,

[5] M. M. Zloof, Query-by-Example: A Data Base Language, IBM

Systems J., Vol. 16, No. 4, 1977, 324-343.

[6] J. C. Neves, S. O. Anderson and M. H. Williams, A Prolog

Implementation of Query-by-Example, in: Proceedings of the

7th International Computing Symposium, March 22-24, 1983,

Nurnberg, Germany.

[7] W. F. Clocksin, and C. S. Mellish, Programming in

Prolog, Springer-Verlag, 1981.

[8] K. Bowen, and R. A. Kowalski, Amalgamating Object

L.s.nguage ar ... d I1etala;:g1.1:lge iL Logic Prcgramm.ing. To ap~ea:- in

Logic Programming (K. L. Clark and S. -A. Tarnlund Eds.)

- 28 -

M H Williams, JC Neves, SO Anderson

Academic Press,1982.

[9] M. H. Williams, A Flexible Notation for Syntatic

Definitions, ACM Trans. on Prog. Lang. and Syst., Vol. 4,

No. 1, 1982, 113-119.

333

- 29 -

M H Williams, JC Neves, SO Anderson

Appendix 1: A simple business data base

Consider a simple business data base which contains:

(i) A relation "parts" with attributes (columns): pno,

pname, colour and weight.

(ii) A relation "suppliers" with attributes: sno,

sname, status and city.

(iii) A relation "supplier_parts" with attributes: sno,

pno and qty.

(iv) A relation "employee" with attributes: empno,

ename, salary, status and grade.

loan.

(v) A relation "loan table" with attributes: empno and

Suppose that the current content of each relation is:

parts i pno pname colour weight
I --------1------------------------------l 1 nut red 12
l 2 bolt green 17
i 3 screw blue 17
l 4 screw red 14
l 5 cam blue 1 2
i 6 cog red 19

Table 1.1 - The parts relation

- 30 -

M H Williams, JC Neves, SO Anderson

1 . I supp iers I sno sname status city
I ----------,-------------------------------
: 1 smith 20 vienna
I 2 jones 10 paris
I 3 blake 30 paris
I 4 clark 20 vienna
l 5 adams 30 athens

Table 1.2 - The suppliers relation

supplier_parts sno pno qty
----------------- -----------------

1 1 300
1 2 200
1 3 400
1 4 200
1 5 100
1 6 1-00
2 1 300
2 2 400
3 2 200
4 2 200
4 4 300
4 5 ' 400

Table 1.3 - The supplier_parts relation

employee l empno ename salary status grade
I ---------,------------------------------------
: 12 morley 6500 married 10
I 7 warren 7135 single 7
l 15 exner 4475 single 4
l 17 berry 5345 married 12
l 5 john 6725 widowed 9

Table 1.4 - The employee relation

loantable I empno loan
I ------------,-------------
: 7 570
l n 1500

Table 1.5 - The loantable relatio

335

- 31 -

33~

M H Williams, JC Neves, SO Anderson - 32 -

Appendix 2: A simple departmental data base

Consider a simple departmental

contains:

data base which

(i) A relation "timetable" with attributes: course,

period, room, teacher, student, grade.

(ii) A relation "progress table"

course, student, prerequisite, year.

with attributes:

Suppose that the current content of the data base is:

timetable l course period room teacher student grade
I ----------,---
1 cs2a 3 601 jones j adams a 42
l cs2a 5 302 smith t zebedee e 67

Table 2.1 - The timetable.relation

progresstable l course student prerequisite year
I --------------,--
1 cs2a adams a cs1a 1978
: cs2a adams a cs1 b 1979
l cs2a zebedee e cs1a 1978
l cs2a zebedee e cs1b 1979

Table 2.2 - The progresstable relation

M H Williams, JC Neves, SO Anderson

Appendix 3: Concrete syntax of the data base query language

Extended-Query-by-Example

The basic Extended-Query-by-Example (EQBE) format is as

follows:

Table-name-field l Column-name-field
I ----------------------,--------------------

Tuple-command-field l Tuple-entry-field
I
I

I I 1---------------------------1 l CONDITIONS l
I I ,---------------------- ----, l Condition-entry-field l

where the syntax of each of these components is defined as:

bl f . d (II. II I ta e-name- iel ::= i. 1 "u.") string-constant ·:

[" ti p. l "d."] [string-constant]

"all."

column-name-field : : = ["p. "] [string-constant]

tuple-entry-field : : = ["p. "] [example-element

["::" relation] l p-relation]

l string-constant l integer

authorization : : = "autr" ["(" access-rights-list ") "]

user-list

tt "

access-rights- list : : = access-right ("," access-right)*

example-element

" " I ". II I "d " I " " access-right ::= p. 1 .i.. 1 • 1 u.

user-list ::= list l example-element l string-constant

1 . t "(" t . t t "It t. t t)*")" is ::= s r.i.ng-cons an ,(, s ring-cons an

33r

- 33 -

M H Williams, JC Neves, SO Anderson - 34 -

tuple-command-field : : = r ft. "
L J.C •

"d n I n n
C. I pc.

(1f - " 1. • "d." j "u.." " n) p.

[authorization]]

condition-entry-field ::= functional-dependency

multivalued-dependency

embedded-multivalued-dependency

boolean-expression

functional-dependency : : = set "->" example-element

multivalued-dependency : : = set "->->" set

embedded-multivalued-dependency::= set"->->" set"/" set

set : : = "(" example-element ("," example-element)* ")"

l example-element

boolean-expression ::= boolean-secondary

("implies" boolean-secondary)*

boolean-secondary : : = boolean-term ("or" boolean-term)*

boolean-term ::= boolean-factor ("and" boolean-factor)*

boolean-factor ::= ["not"] boolean-primary

boolean-primary::= boolean-constant i relation

1 "(" b 1 . 1 oo ean-expressJ.on tt) If

boolean-constant : := "true" : "false"

relation : : = numeric-exp relational-op numeric-exp

string-exp relational-op string-exp

p-relation ::= relational-op (numeric-exp : string-exp)

numeric-exp ::= [add-op] numeric-term

(add-op numeric-term)*

numeric-term ::= factor (multiply-op factor)*

factor::= [function-designator] numeric-variable

M H Williams, JC Neves, SO Anderson

l numeric-constant "(" . ")" numeric-exp

multiply-op : : = "*" : "/"

dd "+ It I II It a . - op : : = · 1 -

function-designator::= " " I max. 1
n • n I min. 1 "ave."

l "cnt." If ti sum.

string-exp : : = string-primary ("+" string-primary)*

string-primary::= string-variable l string-constant

integer ::=digit+

string-constant ::= ('""'"non-quote-character*'"""')+ l

lower-case-letter letter-or-digit*

string-variable ::= example-element

numeric-variable ::= example-element

example-element ::= capital-letter letter-or-digit*

l underscore letter-or-digit*

letter-or-digit ::= lower-case-letter : digit
'

capital-letter : : = "A" l "B" l "C" l "D" l "E" "F"

"G" "H" "I" "J" "K" "L"

"M" "N" "O" "p" "Q" "R"

"S" "T" "U" "V" "W" "X"

"Y'' "Z''

lower-case-letter ::= "a" "b" If CH I "d" I tt e" I "f" I I I

"g" "h" ti." "j" "k" "l" J.

"m" "n" tt " " tt "q" " r" 0 p

"s" "t" "u" " " "w" "xn V

" It " II y z

digit : : = "O" I "1 " "2" "3" "4" "5" I

"6" I "7" I "8" I "9" I I I

- 35 -

340

M H Williams, JC Neves, SO Anderson - 36 -

where the notation used is that given by Williams[~].

