
TOWARDS A CO-OPERATIVE DATA BASE MANAGEMENT SYSTEM

J C NEVES and M H WILLIAMS

DEPARTMENT OF COMPUTER SCIENCE

HERIOT-WATT UNIVERSITY

EDINBURGH

SCOTLAND

KEYWORDS: Logic programming, Horn clauses, Prolog,

Logic data base, Query-by-Example, Incomplete queries,

Co-operativeness.

Abstract

A desirable feature of any high-level data

base query system is that it should be user­

friendly. This should ex tend beyond the provision

of a query syntax which is easy to use, to some

attempt at intelligent helpfulness or co­

operativeness. In particular additional knowledge

about the structure of the data in a data base or

the incomplete data contained in a query may be

used to benefit the user. In this respect, despite

its simplicity and ease of use, the data base

management language Query-by-Example is relatively

inflexible.

This paper looks at several ways in which the

co-operativeness of Qu~ry-by-Example can be

improved. These are concerned with incomplete

queries (i.e. queries in which certain information

has been omitted), incomplete updates and queries

which fail as a result possibly of misconceptions

on the part of the user. Consideration is also

given to how these are implemented in Prolog.

JC Neves and M H Williams

1. Introduction

The application of first order logic and resolution

based theorem proving to machine intelligence problems

started during the early 1970 's. Recently, logic programming

has received a considerable boost due to its choice as the

basis of the core programming languages for the Japanese

Fifth Generation Computer Systems [1].

Prolog [2] is a qualified implementation of Horn

clauses which has become important as a vehicle for

Artificial Intelligence applications. In particular there

is growing interest in its use for data base applications

[3]. Since Prolog itself is not very convenient as a query

language, various researchers have sought to develop other

user interfaces to Prolog data bases. These include natural

language interfaces [4] and Que11y-by-Exam~le [5].

Query-by-Example (QBE) is a non-procedural data base

query language developed by Zloof [6] in which queries are

expressed by filling in skeleton tables with examples of the

result required. In a human factors experiment conducted by

Thomas and Gould [7] to determine the ease of use of data

base query languages, the advantages of QBE over SQUARE and

SEQUEL were clearly demonstrated. In particular they found

that subjects using QBE required about one-third the

training time, were somewhat faster in expressing queries

and were about twice as accurate [7].

In view of this and the similarity between the syntax

2

JC Neves and M H Williams

of Prolog goals and QBE [8], an implementation of QBE

interfacing with a logic data base has been realized in

Prolog. Details of the implementation are given in [5].

Despite its simplicity and ease of use, QBE is

relatively inflexible and makes no attempt at intelligent

helpfulness or co-operativeness. This paper consider some

ways in which the co-operativeness of QBE can be improved.

2. Incomplete queries

In QBE all queries must be expressed in full in a

manner which reflects the way in which the data has been

stored in the data base. However, the inexperienced or

casual user may have difficulty in remembering the internal

.structure of the data and the way in which any particular

query must be framed in order to reflect this. On the other

hand the experienced user may find the process a little

clumsy and look for short cuts. The idea of an incomplete

query may appeal to either type of user.

In QBE any simple query which involves the join of two

relations makes use of a common variable which occurs in one

field of each of the two relations.

For example, given the data base in Appendix 1, suppose

that the user wants to find the names of all suppliers who

supply part number 2. The parts which he/she might enter

are underlined " ". Toe entry r:iight be:

JC Neves and M H Williams

suppliers l sno sname status city
I
I
I ------------------,-------------------------------------
: S p.N

supplier_parts l sno pno qty
I
I
I ------------------,------------------------
: S 2

The common variable here which serves to join the two

relations is S. Such a variable will be referred to as a

link variable, and the fields of the two relations which are

linked together (sno of suppliers and sno of supplier_parts)

will be referred to as link fields.

In general there is no choice in the pair of link

fields which can be used to join two relations together. For

example, in the case of the relations suppliers and

supplier_parts, the field sno of relation suppliers and

field sno of relation supplier_parts are the only possible

pair of fields which can be used to join these two

relations.

In some cases it may not be possible to join relations

directly and a join may only be effected via one or more

intermediate relations.

For example, suppose that the user wishes to retrieve

the names of all suppliers who supply at least one red part.

The essential information in this query is:

3~5
4

JC Neves and M H Williams

suppliers l sno sname status city
I
I
I ------------,----------------------------------
1
I p.N

I parts I pno pname colour weight
I

I ------------1------------------------------------
: red

although the complete query is:

suppliers l sno sname status city
I
I
I ---------------,-------------------------------------
: S p.N

supplier parts l sno pno qty
- I

I
I ---------------,------------------------
: S X

parts l pno pname colour weight
I

I ---------------,---------------------------------- ----
l X red

where Sand X are both link variables and supplier_parts is

an intermediate relation.

Since in general link variables are not an essential

part of a query but rather a result of the way in which data

are stored in the sys tern, it should be possible for the user

to omit link variables from any query (together with any

empty in termed ia te tables which may result). Any query in

which one or more of the link variables have been omitted

will be referred to as an incomplete query.

5

JC Neves and M H Williams

However, there is one snag with the omission of the

link variables. Consider the query:

suppliers l sno sname status city
I
I
I ---------------1-------------------------------------
: p.N

supplier parts l sno pno qty
- I

I ---------------1------------------------
: 2 p.X

If this is treated as an incomplete query the system would

attempt to link together these two requests. The result

might be:

suppliers · I sno sname status city
I ---------------1-------------------------------------I s p.N

supplier parts l sno pno qty
- I ---------------1------------------------

l S 2 p.X

which would be interpreted as "print the name of each

supplier who supplies part number 2 and the quantity

supplied" • On the other hand, the original query is

sufficient in its own right being interpreted as "print the

names of all suppliers and the quantities of part number 2

as supplied by different suppliers". The latter is a form of

OR-query.

In gener~l an incomplete ~uery will have the sa~e ~or:n

as an OR-query and the system will be unable to distinguish

6

J C Neves and M H Williams 7

between the two. Thus it must be assumed that an incomplete

query will not involve an OR-condition aI1.d that the user

will indicate when an incomplete query has been issued.

In the next section the underlying data structures and

the general approach to implementation of incomplete queries

are discussed.

3. Implementation of incomplete queries

If a user wishes to issue an incomplete query, the

query is entered in exactly the same way as any other query

except that a different key (for example, a special function

key in the keyboard) is used to signal the end of the query.

When the system is presented with an incomplete query,

it attempts to link together the separate parts of the

request. If it succeeds in find~ng appropriate links, the

resulting query will be displayed in full to the user. If

this resulting query satisfies the user, he/she indicates

acceptance of the query by pressing the key normally used at

the end of a complete query; if it is not what the user

wants, a different key is used to indicate to the system to

continue its search. If no suitable links can be found, the

system reports this to the user.

To illustrate this, consider a request for the names of

any suppliers who supply widgets and to whom one does not

owe money at the present moment. IQ and CQ are used to

denote the keys corresponding to Incomplete Query and

JC Neves and M H Williams

Complete Query respectively. The dialogue might be as

follows (commentary is in/* ••• */ brackets):

suppliers i sno sname status city
I
I
I ------------------,-------------------------------------
1 p.N

parts I pno pname colour weight
I

I ------------------,------------------------------- -------
: widget

supplier_balance l sno amountowed
I
I
I ------------------,--------------------
: X: :X=<O

IQ /* signals the end of an incomplete query * /

The infix opera tor ti::"• is used for syntactic

convenience only and is to be read as ti such that".

In response to this the system mlght display:

8

JC Neves and M H Williams

suppliers l sno sname status city
I ------------------1-------------------------------------
: A p.N

supplier_parts l sno pno qty
I ------------------,----------------------
: A B

parts l pno pname colour weight
I ------------------1---------------------------------------
: B widget

supplier_balance l sno amountowed
l ------------------1--------------------
: A X::X=<O

3.1. Formal specification of links

The data structure used to represent the data base

relations and the connections between the relations is an

undirected graph.

Fig 1 is a diagrammatic representation of the graph

representing the links of the data base in Appendix 1. Every

data base relation is represented by a vertex or node,

called a relation node, and for every two nodes, if the same

attribute occurs in both relations, an edge will connect the

pair. This edge is labelled with the pair of attribute names

from the two relations.

350

9

JC Neves and M H Williams

suppliers

product­
-parts

351
10

prodno:prodno]

supplier­
-parts

sales

~:::~::::sno]
supplier­
-balance

sales­
-people

Fig 1 - The graph structure representing the link
dictionary for the data base given in
Appendix 1.

This information is represented within the

language system by a set of clauses of the form:

link(RELATION NAME 1, RELATION NAME 2,
[

query

ORDERED SEQUENCE OF LINK FIELDS OF RELATION 1:

]) . ORDERED SEQUENCE OF LINK FIELDS OF RELATION 2

setofnodes(GRAPH NAME,
[

SET OF GRAPH NODES
]) .

In Appendix 2 the link dictionary for the data base in

Appendix is given. Also prese:r.:ted is the Prolog progr!:".m

for searching for a path linking any pair of relations in

JC Neves and M H Williams

the data base.

The link dictionary described can be accessed by the

user through the normal query mechanism, thus enabling the

user to examine or update the structure of the data in the

data base.

For example, suppose that the user wants to find which

relations are linked with which • The entry might be:

p.links l
I
I
I ----------,-----------
1
I

CQ /* signals the end of a complete query*/

The system will respond by displaying for each relation R a

list of relations linked to R, e.g.

links l supplier_parts
I --------,-----------------
: supplier balance
l suppliers
l parts
I product_parts

3.2. Handling join conditions

In order to handle joln conditions the system

determines the number N of unlinked components of the

request and then seeks to establish the paths linking them

together.

11

JC Neves and M H Williams

For example, suppose that the user wants to find the

names of any suppliers to whom no money is owed at the

present moment and who supply part number 1023. The entry

might be:

suppliers ! sno sname status city
I
I
I ------------,----------------------------
: X p.N

supplier_balance ! sno amountowed
I

I -------------------,-----------------
: X A: :A=<O

product_parts l prodno pno nor~qd
I
I
I ----------------1----------------------
l 1023

IQ /* signals the end of an incomplete query*/

where the user has partially specified the links by using

the variable X to link relation suppliers with relation

supplier_balance.

Given a query which contains join conditions, the paths

linking the different components of the whole request may be

established using:

(i) - relation merging; that is, if two
relations x and y which form part of the
query are related to each other through
the join variables A1, A2, .•• , An
(n>=1), merge relations x and y by
performing joins between relations x and

353

12

JC Neves and M H Williams

y. Repeat this operation until no
further merges are possible.

(ii) - graph generation; that ls, look
for paths which connect the remaining
unlinked components of the graph (these
must involve intermediate relations).

Let join-relation be the relation obtained by the join

of relation suppliers with relation supplier_balance. Then

the graph for the unlinked components of the initial request

is as shown in Fig 2.

join­
-relation

Fig 2 - Graph structure after merging.

product­
-parts

The start node is indicated on the graph by an arrow,

and double bars have been used to distinguish the final

node. As a response, the system might display:

13

JC Neves and M H Williams

suppliers i sno sname status city
I ------------,----------------------------
1 X p.N

supplier_balance i sno amountowed
I -------------------,-----------------
1 X A: :A=<O

supplier_parts I sno pno qty
I -----------------1----------------: x y

product_parts l prodno pno noreqd
I ----------------,----------------------
: 1023 Y

4. Incomplete updates

The ideas outlined in the previous section apply also

to update operations.

For example if the user wishes to set the quantity to

zero for all suppliers living in London, he/she might enter:

supplier_parts I sno pno qty
I
I
I -----------------1----------------------

u l o

suppliers I sno sname status city
I

I -----------------1---------------------------------------
: london

IQ /* signals the end of an incomplete query * /

to which the system will respond with:

..355

14

JC Neves and M H Williams

supplier_parts l sno pno qty
l -----------------1----------------------

u l Q o

suppliers i sno sname status city
t

-----------------1------------------------------------- ►-l Q london

In addition this link information may also be used in

the case of update operations to ensure that when the user

attempts to update a value in a link field of some relation,

he/she is reminded of the possibility that the corresponding

link field in some other relation may need to be updated

too. In such a case the system might ask the user whether

he/she wishes the same operation to be performed in the

corresponding link field in the appropriate relation.

For example, if the user wishes to change the supplier

number 13 to 3, the user might enter:

suppliers l sno sname status city
I

\ ------------,-------------------------------------
u l 3

I
I
I
I

l 13

CQ /* signals the end of a complete query*/

The system should then ask the user whether in addition

he/she wishes to perform the following updates:

35G

15

JC Neves and M H Williams

supplier_parts l sno pno qty
I -------------------1----------------------

u : 3
l 13

supplier_balance : sno amountowed
I -------------------,--------------------

u l 3
l 13

In such case the user must indicate whether he wishes the

additional update operations to be performed or rejected.

5. Queries which fail

In formulating a query a user inevitably makes certain

presuppositions about the data present in the data base.

These presuppositions are inherent in the information

contained in the query and are an indication of what the

user believes about the state of the information in the data

base.

A data base query can be viewed either as requesting

the selection of a subset (termed the response set) from a

set of qualified instances in the data base, or as

expressing some general belief about the data in the data

base. In either case queries presented in QBE are translated

into an intermediate meta language before being presented as

a conjecture that a resolution-based theorem prover (e.g.

Prolog) attempts to prove. This meta language is a graph

structure, the nodes of which represent both data base

relations and conditions imposed on the relation's

16

J C Neves and M H Williams

attr lbute(s) •

The query graph is divided into connected subgraphs,

each of which in itself constitutes a well-formed query in

the meta language and is translated into a conjecture that

can be presented to the theorem prover to be proved (i.e.

each connected subgraph corresponds to a presupposition the

user has made about the domain of discourse) •

The next section discusses how the presuppositions

inherent in these subgraphs can be used to provide a more

co-operative response to users for both queries that request

the selection of a subset of qualified instances in the data

base and YES-NO queries.

5.1. Constructing corrective indirect answers

When dealing with queries requesting the selection of

qualified instances in the data base (i.e. with queries

defining a property of data base objects) consider the

situation where the system fails to prove the conjecture

(the initial query returns the empty set as an answer). In

this case, on request from the user, the system will try to

establish the user's presuppositions by translating each

connected subgraph into a conjecture to be proved. This

approach ensures that should a presupposition fail, an

appropriate corrective indirect answer [9] will be returned

to the user.

For example, suppose that the user wishes to retrieve

17

JC Neves and M H Williams

the numbers of all suppllers living in London who supply

part number 2. The entry might be:

.suppliers I sno sname status city
I
I
I ---------------,---------------------------------------
: p.X y

supplier parts l sno pno qty
- I

I
I ---------------,----------------------
: X Z

I I 1----------------------,
1 CONDITIONS i
I I ,----------------------, l Z=2 and Y=london

CQ /* signals the end of a complete query * /

This query is based on the following presuppositions

(i.e. the preconditions for the correctness of any direct

answer):

(i) There are suppliers.
(ii) There are suppliers who supply parts.
(iii) There are suppliers supplying part number 2.
(iv) There are suppliers living in London.
(v) There are suppliers living in London who supply

part number 2.

Should any of these presuppositions fail to be true,

the system would, in general, respond with an empty list or

"NULL". If, however, this query were addressed to a human

being one might expect a more co-operative respom1e which

identifies the failing presupposition(s).

35i
18

360

JC Neves and M H Williams 19

A complex query asking for the display of certain data

items subject to a variety of retrieval conditions will be

decomposed into a number of basic components in the meta

language (i.e. connected subgraphs), each of which are

acceptable queries in their own right. With each sub-query

is associated a subset of the original set of

presupposition(s). In the case of the above example, this

can be represented diagramatically as:

[X:X]
suppliers(X,_,_,Y) supplier_parts(X,Z,_)

,.

Y=lond on Z=2

Fig 3 - The complete query.

suppliers(X,_,_,Y) supplier_parts(X,Z,_)

Y=lond on Z=2

Fig 4 - Two first-level components

J C Neves and M H Williams

---------------------- -------------------------suppliers(X,_,_,Y) supplier_parts(X,Z,_)
---------------------- -------------------------

Fig 5 - Two second-level components

which will be translated by the system to yield:

<- suppliers(X, , Y),
Y=london,
supplier_parts(X, Z, _),
Z=2.

This clearly consists of two components:

<- suppliers(X,
Y=london.

, Y) ,

<- supplier_parts(X, Z, _),
Z=2.

each of these jn turn depend on components:

' <- suppliers(X, _, _, Y).

<- supplier_parts(X, Z, _).

In this case the system's response "NULL" will be

produced only in the case where the top level query has

failed but all sub-queries have succeeded. Otherwise the

message "NULL-LOWER LEVEL QUERY FAILED" will be displayed.

On request the system will attempt to determine the

cause of failure. If any sub-query fails and its failure

contributes to the failure of the top level query, then:

- the failure of the sub-query will be
reported back together with any other
sub-query on the same level which

20

j C Neves and M H Williams

contributes to the failure of the top
level query,

- any higher level failing sub-queries,
not failing due to failure of component
sub-queries, will be also reported back.

In the current implementation this is achieved by

typing the keyword "WHY".

For example, if the query described above is presented

to the system but the system fails to find any supplier

living in London, it will respond with:

suppliers i sno sname status city
I ------------,-· - -----------------------------------
: p.X london

results: NULL /* the empty set*/

that is, the system recognizes the failure of the component:

' <- suppliers(X, Y),
Y=london.

and responds appropriately.

On the other hand, an OR-query fails if and only if all

of its sub-queries fail. If one succeeds, the query as a

whole succeeds, even if all the others fail. Such a

situation might contribute to the misinterpretation by the

user of the system's response due to the false assumptions

made about the way the answer was inferred.

For example, suppose that the user wishes to retrieve

the names of all suppliers who live in London or Paris. The

en try might be:

21

JC Neves and M H Williams

suppliers l sno sname status city
I
I
I ------------,---------------------------------------
: p.X london
I
I
I
I
1
1 p.Y · paris

CQ /* signals the end of a complete query * /

, to which the system' s answer is:

results I sname
I ----------,------
: jones
l blake

But it is known (see Appendix 1) that Jones and Blake

both live in Paris, and that no one is in London. That is,

the user can think of suppliers living in London and living

in Paris to be correct, an~ carry on with a frustrating

series of questions, or worse, misinterpret the system's

response. To avoid such a situation, the user can, as soon

as the answer has been displayed, request further

information about the process used in the evaluating of the

query. The result might be:

suppliers I sno sname status city
I ------------,---------------------------------------
: p.X london

results: NULL /* the empty set*/

which indicates to the user that the presupposition that

some suppliers were living in London is incorrect.

22

JC Neves and M H Williams

To the extent that update operations involve an initial

request (query) aimed at

instances or tuples in the data

locating

base, a

certain qualified

similar type of

analysis as the one described above would apply in the case

of failure.

In the case of a query which expresses some property of

the data base as a whole, should the system fail to prove

the conjecture, an attempt is made to prove the negation of

the conjecture in order to answer "NO". Should the sys tern

fail to prove or disprove a given conjecture an answer of

"DON'T KNOW" is returned to the user. This is the case when

neither a "YES" nor "NO" answer is possible from the axioms

in the data base.

If the answer is "NO" or "DON'T KNOW" an analysis of

the presuppositions made might follow if requested.

6. Conclusions

Most query systems currently available respond to

queries in a very literal manner, giving an answer to what

the user actually asked for - no more and no less. Though

the responses are literally correct, such rigidity can be

very unhelpful at times, and a more flexible system is

desirable. This flexibility in the interpretation of queries

in a manner which ls both natural and of benefit to the user

is termed co-operativeness.

This paper outlines several ways in which the query

23

JC Neves and M H Williams

language QBE can be made more co-operative. These features

have been added to a version of QBE implemented in Prolog,

which is running under UNIX on both a PDP 11/34 and a DEC

10 system.

The main features of such a system are:

(i) A link dictionary has been implemented which

contains information about the data base relations and the

linkages between them. This facility was interfaced with

the query facility to provide the user with the means to

examine how the data in the data base are organized and how

they should be accessed and used.

(ii) The system attempts to handle incomplete queries

and updates by filling in link variables. This can be of

use to casual users of the data base who do not have the

details of the structure of the data base at their

fingertips, as well as to experienced users who seek short

cuts.

(iii) The system reminds users of possible side effects

when updates are performed on link variables.

(iv) The system attempts to provide a helpful response

when a complex query fails to give the user an indication of

why it failed. The same tabular form is used to explain the

reasoning it followed to arrive at the answer as that used

to enter the initial request.

Acknowledgements

24

JC Neves and M H Williams

The work of one of the authors, J C NEVES, was

supported by the Calouste Gulbenkian Foundation under grant

14/82 and by an ORS award from the Cornmi ttee of Vice­

Chancellors and Principals of the Universities of the United

Kingdom.

JC NEVES is on leave from Minho University, Largo do

Paco, 4700 BRAGA, PORTUGAL.

~66

25

JC Neves and M H Williams

7. References

[1] T. Moto-0ka et al, Challenge for knowledge information

processing systems, in: Fifth Generation Computer Systems

(North-Holland, .Amsterdam, 1982) 3-89.

[2] D. H. D. Warren, Implementing Prolog - Compiling

Predicate Logic Programs. Technical Report 39 and 40,

Department of Artificial

Edinburgh, 1977.

Intelligence, University of

[3] H. Gallaire and J. Minker (eds), Logic and data bases,

Plenum Press, New York, 1.978.

[4] F. C. N. Pereira and D. H. D. Warren, Definite clause

grammars for language analysis - a survey of the formalism

and a comparison with augmented transition

Artifi;ial Intelligence 13 (1980) 231-278.

networks,

[5] J. C. Neves, S. 0. Anderson and M. H. Williams, A Prolog

implementation of Query-by-Example, in: Proceedings of the

7th International Computing Symposium, March 22-24, 1983,

Nurnberg, Germany.

[6] M. M. Zloof, Query-by-Example: A data base language, IBM

Systems Journal 16(4) (1977) 324-343.

[7] J. C. Thomas and J. D. Gould, A psychological study of

Query-by-Example, Proc. National Co~;uter Cor.ference (1975)

439-445,

26

JC Neves and M H Williams

[8] M. H. van Emden, Computation and deductive information

retrieval, in: Formal Description of Programming Concepts

(North-Holland, Amsterdam, 1978).

[9] S. J. Kaplan, Co-operative responses from a portable

natural language query system, Artificial Intelligence 19

(1982) 165-187.

27

JC Neves and M H Williams

Appendix 1: A simple business data base

The examples in this i;:aper make use of the following

relations:

(i) A relation called i;:arts with attributes (columns):

pno (i;:art number), pname (part name), colour and weight.

(ii) A relation called suppliers with attributes: sno

(supplier number), sname (supplier name), status and city.

(iii) A relation called supplier_parts with attributes:

sno (supplier number), pno (i;:art number) and qty (quantity

supplied).

(iv) A relation called supplier_balance with

attributes: sno (supplier number) and amountowed.

(v) A relation called sales_people with attributes:

salesno (sales number) and salesname.

(vi) A relation called product_i;:arts with attributes:

prodno (product number), pno (part number) and noreqd

(number of i;:arts required).

(vii) A relation called sales with attributes: salesno

(sales number),

(quantity sold).

prodno (product number) and qtysold

Typical values of these relations are as follows:

28

JC Neves and M H Williams

parts l pno pname colour weight
I --------1------------------------------
l 1 nut red 12
i 2 bolt green 17
l 3 screw blue 17
l 4 screw red 14
l 5 cam blue 1 2
l 6 cog red 19

Table 1.1 - The parts relation

suppliers l sno sname status city
I ------------,------------------------------
: 1 smith 20 vienna
l 2 jones 10 paris
l 3 blake 30 paris
l 4 clark 20 vienna
l 5 adams 15 athens

Table 1.2 - The suppliers relation

supplier_parts l sno pno qty
I -----------------,----------------
: 1 1 300
l1 2 200
l1 3 400
l 1 4 200
l 1 5 , 100
l 1 6 1 oo
l 2 1 300
l 2 2 400
l 3 2 200
l 4 2 200
l 4 4 300
l 4 5 400

Table 1.3 - The supplier_parts relation

supplier_balance l sno amountowed
I -------------------,--------------------
1 1 100
i 2 90
i 3 0
l 4 0
l 5 145

1 ,!,. - T::e s,1ppller_balance relation

29

JC Neves and M H Williams

sales_people i salesno salesname
I ---------------,-----------------------
: 1 flanagan
I 2 ellis
l 3 smith
l 4 schafer

Table 1.5 - The sales_people relation

product_parts l prodno pno noreqd
I ----------------,----------------------------
1 1027 1 350
l 1~3 1 ~o

1028 1 100
1033 3 275
1040 4 435
1072 5 555
1045 2 315
2001 6 125
1067 5 111

Table 1.6 - The product_parts relation

l salesno
I

sales prodno qtysold
--------,---------------------------------

: 1
l 1
l 2
l 3
i 3
l 4

'

1023
1027
1028
1033
1040
1072

100
45
40

150
75
20

Table 1.7 - The sales relation

30

J C Neves and N H Williams

Appendix 2: The link dictionary for the data base

in Append ix 1 •

The link dictionary for the data base in Appendix 1.

link(supplier parts, supplier balance, [sno]:[sno]).
link(suppliers, supplier_balance, [sno]:[sno]).
link(supplier_parts, prod uct_parts, [~no]: [pno]).
link(parts, product parts, [pno]:[jnoj). .
link(sales, product-parts, [prodno :[prodno]).
link(sales_people, sales, [salesno :[salesno]).
link(supplier_parts, suppliers, I sno]:4sno]).
link(supplier_parts, parts, [pno]:[pnoJ).

setofnodes(graph, [supplier_balance, product_parts, sales,
sales people, suppliers, parts,
supplier_parts]).

The Prolog program for searching for a pa th linking any

pair of relations in the data base:

clause 1

clause 2
clause 3

clause 4
cle.use 5

?- op(40, xfx, :).

/* declare "·" infix operator */

path(GRAPH, X, Y, PATH)<­
setofnodes(GRAPH, SET),
member(X, SET),
member(Y, SET)
walk(GRAPH, [X j, Y, PATH).

walk(GRAPH, [Y l L] , Y, [Y l L]) •
walk(GRAPH, [xi1], Y, PATH) <-

(
link(X, Z,);

link(Z, X, _)
) '
not(member(Z,L)),
walk(GRAPH, [z,XJL], Y, PATH).

member(X, [X l]) .
r,inmho,...(Y r 1vl \ (' -
~-" ._ .. .:.,; '-" ,._ \.: .. J i.. l ,._ -1 j '

member(X, Y).

31

