
PPCGRA._PH AS AN F.r-MRCT-!MENT

FOR PROLCG f'ATA RA...c:;F, APPLIC"\TIONS

by T. Pietrzykowski
Acadia University
Holfville, Nova Scotia
Canada ROP IXO

' ABSTRACT

LPaper presents a specialized data base model of a newly developed
I functional prograMming language with graphical front PROGRAPH, and
I discusses the advantages of using it as a host from PROLOG. On the
· basis of an example there is a description of a method of converting

(via PROI.ro} an arbitrary query into a wff containing only data 'i:ia.se and
computational predicates. Afterwards such a wff is formulated in
PROGRAPH and computed (again a series of examples and a method
provided}.

1. Introduction

Logic programming approach proves, beyond any doubt, to ce the rnost

universal and flexible mechanism for data base queries ([6] , [7] I
etc.}. Its power becomes particularly visible when a query L-rwolves a 1

more advanced conceptual structure and requires non trival computations.

However, for the full success of logic programing in this area is

handicapped by the following shortcomings:

(i} awkwardness of executing queries, which involve universal

quantifcation. The usual method of converting them into negated

existential qualification of negated formula ([5]} leads often to

considerable inefficiency of the search procedure. Moreover, universal

1

! •

qualification generally accompanies implication inside of the query what

in tenn proouces non Hom clauses.

(ii) communication with data base only via unification of the unit

clauses brings various dilemnas: the unit clauses with a small number

of variables increase flexibility in formulating queries but also

increase depth of deduction while unit clauses with a large number of

variables may dangerously expend the size of the data base

~epresentaticn am conseqently leads to the losf of efficiency.

(iii) relational data base model (which becomes a consequence of the

unit clause approach discussed in (ii)) may causes lose of important

infonnation al::out the overall structure of data base which could be used

as valuable heuristical guidelines for an efficient search procedure

which is the foundation of the computation of queries.

Int.he following we shall propose an alternative approach which

deals with the data base model as well as with the computation of

queries. It will be based on a newly developed programming language

PROGRAPH ([3], [4 J) which will be used as a host system for logic

programin;, particularly in the area of interface with a data base.

2. PROGRAPH Data Base.

We will start our presentation from the description of the data

base model. It can be viewed as a combination of a particular case of
'

the relational model with some network model influences. However, these

similarities maybe more misleadin; then helpful and the best way would

be to consider it on its own.

We shall present three different but strictly equivalent

definitions of the model. Later we shall refer to any of them:

whichever appear to be most convenient.

A. Directed graph rrodel.

The PROGRAPH data base can be defined as a directed graph with

labelled arcs. We shall call it graph database or shortly GD. We

assume that the graph is connected. The set of nodes N of GD is

partitioned into two distinct categories: abstract records and data

2

records. While abstract records are abstract elements without any

particular qualities the data records are trees where leaves are

elementary data of basic types like integer, real, boolean, strings of
characters, etc.

Among the abstract records there is one specifically distinguished

called root and denoted as ~ The arcs GD are labelled by a

string of characters which are called attributes.

B. Functional Model.

This model is called functional database of FD. It consists of a

set elements identical to nodes N of GD and a set of partial multivalued

functions with domains and ranges in N. Each of these functions

correspoms to a distinct attribute of GD in a one-to-one manner: if F

is a function of FD then the domain of Fis a subset of N consisting of

all nodes where any arc of GP with the attribute F originates while

range is the set of all nodes where such an arc ends. The connectivity

comiticn can be easily expressed in terms of FD.

c. Relational Model.

This model called relational database (RD) is a simple variation of

the functional model. It is defined as a set of partial binary relations

over N. If P is a relation of RD then P(x,y) holds iff y P(x) where

P(x) is defined in terms of FD. (The notational ambiguity is hopefully
resolved by the reader).

Now we shall present an example of a PROGRARI database using 1::oth

GD and RD models. Construction of the FD model for this example is left
for the reader

3

l __________ _____::ot~

l
JOHN 1

1 <: NAr+-{c
COHp'

Fig. 1

4

Nv H.Beo - ,, . I -~-- > 200-;, I
;)

This GD represents a structure composed of departments, students

majoring, courses offered, courses taken as well as the names of

departments and students and numbers of courses. The integers inside of

nodes have no semantic significance and are used only as a way of

referring to individual abstract records nodes in further discussion.

For example: nodes 1, 2 correspond to departments: 1 to Mathematics

while 2 to Computer Science 3, 4, 7, 8 are students with names JOHN,

llJCY, MARY and PAUL respectively. The data records have no identifying

numbers and we refer to them via the corresponding data.

A useful way of looking at the above GD is to compress it into a
map as presented below.

D€-PT-

Fig. 2

1' l_....Ll J,-
1 \l'""TI"" ':::

The map is obtained by recursively collapsing all the arcs with the

same attribute originating in a node into one, following by collapsing

the corresponding end nodes of these arcs. The circle nodes of the map

corresponds to sets of abstract records of GD while triangle nodes

correspond to sets of data records.

Now we represent database of Fig. 1 as RD in the form of binary

tables. We use the numbers attached to appropriate nodes as entries to

the tables arove while the heading of a table corresponds to a relations

name (attribute).

5

DEPI'

r:r

1 ~TH

2 <XMP

3 JOHN

4 I1JC'.{

7 [l,1ARY

8 PAUL

M1\JORS

1 3

1 4

2 7

2 8

NUMBER

5 1003

6 2003

9 2003

10 3003

OFFERS TAKES

1 5 3 6

1 6 4 5

2 9 4 6

2 10 7 6

7 9

8 6

8 9

Fig. 3

It is easy to note that the graphical structure presented on Fig. 1

and even more clearly on Fig. 2 contains valuable information on

efficient implementing the data base. It suggests keys, access

structures and storage allocation. In contrast in the flat tables of

the relational model described on Fig. 3 this potentially useful

informaticn is lost: it can only be recovered by converting the tables

into a graphical or functicnal structure.

3. Canbining logic. progranming with PRCGRAPH.

In the following we shall present a proposal on how to deal with

problems of logic programming mentioned in the Introduction. Our

aproach will use the PROORAPH data rese model and programming technique~

Our presentaticn will be based en examples.

I.et us consi,der the following query:

"are all the students regular, where regular means faithful but not

overzealous? A faithful student takes at least one course from the

department in which he/she majors, while overzealous takes all the

6

o¼

I
i

~T1--r-------------------------
courses from such a department".

Now we shall present the same query as a mixture of predicate logic

and PROI.ro:

(i) vx regular (x)

(ii) regular(x) := faithful(x), notoverzealous(x)

(iii) faithful(x) := 3 y 3 z[(DEPI'(f ,y) /\ MAJORS(y,x)) ::i

(TAKES(x,z) /\ OFFF.RS(y,z))J

In the above query and following it definitions, let us distinguish

two types of predicates: defined predicates like regular, faithful and

notoverzealous and evaluation predicates, like DEPI', MAJORS, TAKFB and

OFFERS. The former we denote by using bold face lett.ers while the

latter by capitals. The defined predicates occur, at least once, on the

left hand side of PROLOG expressions while evaluation predicates are

attributes of the PRCX1RAPH data base or computation predicates like x~

or :x+y=z (absent in our example).

Now we are ready to describe th,,rocessing of the query. We apply

PROI.ro mechanism to replace all occurences of the defined predicates,

starting with the actual ouery in formula (i). (Let us note that the

query is not negated or skolemized.)

These replacements will follow the rules of logic programming with

the understanding that occurrences of universally qualified variables

are treated as constants. Substituting (ii) into (i) with the

appropriate unification, we obtain:

(v) V x(faithful(x) /\ notoverzealous(x)).

At that moment the comma ',' separating the two subgoals is converted

into conjunction (' /\ '). ~ we continue our activity substituting into

(v) the formulae (iii) and (iv) to obtain, after _easy optimization:

(vi) 'tfX 3 y[(DEPT(t ,y) /\ MAJORS(y,x)) :>

(3 z (TAKES (x, z) /\ OFFERS (y, z}) /\

3u(TAKES(x,u) /\-, OFFERS(y,u))J

Let us note that (vi) does not contain any defined predicates and

PROI.ro phase of processing is therefore terminated.

7

3-=tg
r---------------------------

I n general the situation is more involved because in the presence

of recursive definitions such a state cannot be achieved, but it is not

a new phenomenon: PROLOG will deal with it in the same way as it

usually does with recursion. It should be mentioned that the whole

mechanism described aoove can be wit.hout t..~e difficulties implemented in

PROLCX:;.

Before we move to the next stage of producing a prograph

corresp:,nding to the formula (vi) let us provide some information a.rout

PRCX;RAPH.

PROGRAPH is a programming functional language with a graphical I
I

front. It follows the direction of the Graphical Programming Language, j

GPL [2] developed at the University of Utah and dedicated to their data

flow computer DDM 1 [l]. However, PROGAA.PH goes much further then GPL

allowing: comp:,se operation, introduction of user defined subroutine,

explicit indicaticn of !X)ssible parallelism of computation and what is

most irn!X)rtant, it provides a mechanism for database access and update

activities, which does not violate the functional character of the

language. An experimental version of PROGRAm is currently implemented

en PERO graphics station.

A PR(X;RAfH equivalent of 'program' is called 'prograph'. Generally

speaking a prograph is a network of boxes connected by wires. A box,

corresponds to a specific operation provided by the system (called

primitive) or defined by a user. Such an operation is performed on

datas supplied to its input and the results are delivered as outputs.

The wires naturally connect inputs and outputs of distinct ooxes without

producing loops.

Now we shall introduce a few PROGRAPH primitives, necessary to

present our query as a prograph.

Let F be an attribute of a PROGRAPH data base which we shall

interpret, for the moment, as a binary relation. Let X be sets of nodes

of data base applied respectively to input - top wire and Y resulting

from output - bottom wire. As a matter of fact, inputs always are

provided by top wires while outputs always are delivered by the 1::ottom

8

ones. ~

The rox '-f-' , called access, means that Y= F[X] (in functional

notaticn) while ~ • inverse access, means Y = r 1[xJ. /"c,,, let x,

y be single records provided as inputs of the box ·Lt] called

application. Then the output z = F(x,y) (using relational notation).

In this case the output is obviously of the type boolean, however

PRCGRAPH does not require specification of types of datas.
I

Let us introduce two obvious primitives: ~ arrl $111el
I

oval boxes are used here only for visual ef feet so the user can easily/

distinguish logical operations.

Finally, we shall present two so-called composed operations (all

the above ones are simple): EXISTS and FUR ALL.

:,::;: FOR Al L :·:·:·::r-:-:::·:,:·:;:·:::•:•:·:·:::·:,:·:·:·:·:-:·:·

p

♦

The number of inputs can vary while there must be one and only one

called multiple whidl is signified by the ..I.. It should be mentioned

that multiple input does not have to be first to the left but it must

not be more than one such input. It should be mentioned that the

multiple input dOes not have to be first to the left.

9

380
r----------------------

denotes an arbitrary prograph with k+l inputs (k~O) and one output of

the type boolean. The semantics of these operations is: if x,y,, .• ,yk

are values of inputs then the values of outputs are respectively:

3 x (~ E X /\ P (x, y, , .•• , Yk) and r/ x (x E X :J P (x, Y,, ... Yk))

It is worth to note that the PRCGRAPH definitions of quantifiers satisfy

the basic properties of predicate logic: that is

♦
is equivalent to

10

I ...

0
' I
!

/ ~QT) .,,,

♦

(Ni}; ',
i

~w we are ready to present the PRCX;RA.m equivalent of the formula (vi)

;::::;:, FOR ALL

!
~

ANO

♦

Fig. 4

11

\ !Hl.JGR S

OFFERS

I
~
♦

381

Note thc:1.t letters cl..; ~Jo and g are not part of the PROGRAPH

descriptiai: they are introduced as references to appropriate EXISTS

and roR ALL boxes.

Now we shall present an informal description of how the prograph of

Fig. 4 is derived.

First let us construct the following graphics presentation of the

formula (VI) called outline which will be useful for our explanation.

DE=-PT

Fig. 5

The outline is a directed graph with nodes corresponding to
'

distinct variables in formula {VI). . The labelled arcs correspond to

predicates (or negated predicates) of (VI) in such a way that R labels

arc originating in the node m and ending in n iff R(m,n) occurs in (VI).

In order to derive the prograph of Fig. 4 we introduced a partial order

among the arcs the outline which is imposed in natural way by the

directions of arcs.

Now we can proceeded with constructing the prograph starting with a

. minimal arc (in this case: DEPr) and create:

12

382

i---------------~-----------
Then we progress along outline and arrive at the end node of this arc

(in this case node y), and create EXISTS box ~ since y is

existentially quantified in (VI).

We proceed in an analogous manner with arc MAJORS: we introduce and

create ~ box FOR ALL.

The rational behind the box is somewhat more complex so we will provide

the reader with some additional explanation. Let us consider the top of

the prograph of Fig. 5:

DEPT

EXISTS

where y0 is the input to

\ MAJORS

I

\MAJOR/
!

and ~ the output. Obviously,

y0 satisfies DEPI'(~ ,y0) am x E x0 iff MAJORS(y0 ,x). Therefore x E Xo

iff DEPT(~ ,y0) /\ MAJORS(y0 ,x) so in view of formula (vi) and

definitiai of semantics of operation FOR ALL the introduction of the box

is justified. Following the ordering of outline on Fig. 5 we arrive in

node x and note that there are 2 arcs org~"'}yng in x,both
labelled TAKES. Therefore we introduce TAKES and branch the

outp.rt. The corresponding branches are directed to EXISTS 1-..oxes and
.•

respectively, which corresponds to z and u, variables of Fig. 5.

Now both arcs OFFERS and 7OFFERS ·end in the node y (already

traversed). In this case we fill the boxes O and J1 with the

13

383

,-----------------------331
operations:

i I
OFFERS 7

i
and ! OFFERS respectively

(~flT) ' i' ~

It is worth noticing that the first input wire corresponding toy

variable originates in the rox<X, has been transmitted into j3 (first

input wire) and branches there to arrive as first input to C and

[' respectively.

inputs to ~
" Finally outputs of boxes t and i} are joined as

box according to the conjunction of both

existential subexpressions 3 z(.••) and 3u(.•.) in formula (VI).

The above descriptiai of an algorithm for producing a prograph from

a well formed formula, as we mentioned already, is fairly infernal and

sketchy. However, there is a formal algorithm performing this task

which is unfortunately too lengthy to be described here and will be a

subject. of a separate publication.

To further convince the reader that the proposed approach is

useful, we will present two more examples of data base queries and their

PROGRAm representation.

First query:

'does exist a course offered by the department of mathematics

such that every student majoring in math takes this course'
' Here is this query presented as a iff formula of predicate logic:

(viii) 3x3z V y[(DEPI'(~ ,x) /\ NAME(x,MATH) A MAJORS(x,y)):)

(OFFERS(x,Z) TAKES(y,z))]

Given below is an equivalent PRCXiRAPH formulatiai:

14

-

'MATH"

\ MAJORS / OFFERS /

I
;r

NAME

EXISTS

I
, I

TAKES

AHO

Fig. 6

Now we shall present a ~ · version of the formula {viii) with

a secorxl and third quantifier reversed, so the prefix looks as follows:

:9xVy3z and the matrix is unchanged.

15

'MATH"
r===r-

OFFERS /
i

!

!
iAKES

I

♦

♦

ANO

Fig. 7

The reader is encouraged, to find how the reversal of qualifiers effects

the changes in corresp:mding prographs.

4. Conluding Ranarks.

The presented results have a preliminary character, but in the

author's opinion, leave no doubt that the appr~ch is worth p1rsuing.

Since an experimental version of PROGRAPH is already functioning on a

PERO graphics station we intend to use it for a thorough series of

experiments with a variety of data base queries formulated in terms of

16

PROGRAPH. The next stage will be to introduce an interface with a

PROLOG implementation (unfortunately such one is not, at present,

available on PERQ). This can be achieved by establishing appropriate

communicaticn with another computer or porting PRCX;RAm onto a computer

system where PROIOO is available. Finally, we would like to experiment

with the combinaticn of both as a uniform environment.

17

r---------------------388

[l]

[2]

~ [3]

-::::;[4]

[SJ

[6]

[7]

BIBLICGRAPHY

Davis, A. L., Keller, R. M., "Data Flow Program Graphs", IEEE
Canputer, Feb 1982, W• 26-41.

GPL Progranming Manual, CS Cept. , University of Utah, July, 1981.

Pietrzykowski, T., "Programming Language PROGRAPH: Yet Another
Application of Graphics" (with s. Matwin and T. Muldner), Graphics
Interface 83 Conference, F.drronton, May 1983.

Pietrzykowski, T., "Report on a Functional Language with a
Graphical Front PR03RAPH: (with S. Matwin and T. Muldner), Research
Notes, CS 83 02, School of Computer Science, Acadia University,
1983.

Sato, T., ''Negation and Semantics of PROI.ro programs", Proceedings
of 1st International Workshop on Logic Programming, Marseille,
1982.

Van Emden, M. H., "Computation and r:eiuctive Information Retrieval"
in "Formal Description of Programming Concepts", North Holland,
1978.

Warren, D., "Efficient Processing of Interactive Relational Data
Base Queries Expressed in Logic", Proceedings of Conference on Very
Large L'e.ta Basis, 1981.

