
INTERNATIOOAL COMPU1'ERS LIMITED
SYSTEMS SI'RATIDY CENTRE

FINITE aM?O'l!ATICN PRINCIPLE

An Alternative Method
Of Mapting Resolutiai

Far Ipgic Pro)xauud.ng

page 1 of 18

443
REF: EB 83/6

DA.TE: 4th May 83

Currently PROI.00 implements resolution by means of symbolic substitution.
The result is that symbolic operations (eg on lists) in PROLOG are
reversible, whilst data operations (eg arithmetic) are not. This paper

proposes an adaption to the resolution principle called the Finite
Canputation Principle (FCP). Using FCP, symbolic substitution is still
available rut is perfonned by a special predicate.

FCP gives the UNO :important ber:iefits of Order independence and control
over infinite processes. In addition, FCP improves reversibility and
simplifies the connection of logic to existing languages.

A logic language called Prolog M has been -implemented using FCP .• This
provides standard negation, disjunction., conjunction, universal
quantifiers and existential quantifiers. An important feature of the
implementation is that if UNO Prolog M.·programs are equivalent according
to the tautologies of Predicate Calculus, then these two programs will
generate identical answers.

page 2 of 18

During the 1970s the author was actively involved in the hardware and

software design of the ICL Content Addressable File Store (CAFS) . It was
during this period that a method of rraking queries to a database without
the reference to relation or file names [2] was proposed. This shorthand
was made possible by including a limited mathematical model in the
language interpreter. This mxlel being made up of joins of relations.
This technique has proved successful with database users but was limited
to joins of physical relations - i.e. conjunctions of predicates. It was

as a result of trying to generalise this nod.el that it was realised hoN
useful Prolog might be in this area.

Prolog is order sensitive. Despite the name, Prolog is not a true logic
language and the database query below must be written in a particular
order.

Manweight(x,w) , w < 20
w < 20, Manweight(x,w)

.:,rksl
Errors!

In a database query, it is essential that the tenns can be written in any
order. warren [7] recognises this in his CHAT80 database system. In CHA.TSO

additional features are included to allCM order independence.

Prolog is very likely to go infinite. For example, Define Append in the
standard way and then rrake the follc:Ming queries:

Append(x, (4) ,w)

Append{ (4) ,y,w)

Append{(4) ,y,w) , y:=w

prints infinite fornula
or infinite mmt>er of values

prints w== (4.y)

or infinite list of values.
just does oothing 1

In this last example, Prolog is trapped in a silent contradiction. One
predicate generating an infinite number of instances of they and w
variables, whilst the subsequent predicate y = w always fails. In a
large machine with almost unlimited storage resources such an infinite

contradiction could be a very expensive bug.

I I

page 3 of 18

'Ihe Finite Canputation Principle (FCP) nakes two tltlngs p:>ssible:

True order iooeperdence
No infinite processes

Ordinary resolution is still available using a pattern na.tching predicate.
However, FCP allows cperations on lists or sets of data to be carried rut
m::>re securely.

'Ihe p::,wer of FCP appears when it is used in recursive definitions. Thus,
most of the paper is ooncerned with explaining the cperation of a number
of key exanples - in particular APPEND. The paper then hints at what
may be fX)Ssible in the future. ·

1.1 R:>taticn

Prolog M uses a LISP like notation for predicates. However, for clarity
this paper uses the conventional na.thema.tical notation. Nevertheless, so
that the flavour of Prolog M is not lost, the Prolog M syntax is often
written alorg side in curly brackets.

Prolog M means Prolog ~th a M:xiel[l,2]. It is hoped to describe the rccdel
aspect of Prolog Min a forthcaning issue of the ICL technical journal.

page 4 of 18

2. '!BE FINI'l'E CCHUIM'ICl!l PRDCIPLE .(FCP)

The basic notion of the Finite Conputation Principle is one that arises

£ran the nature of logic programming. Sane expressions written in a logic
programming language nay result in the infinite generation of data or sane
other endless process. FCP seeks to flag up infinite processes and put
off their evaluation until the last possible nanent by which time they nay
beccme finite processes as a result of infonnation returned £ran other
processes. 'l'hi.s is done by incluling in every wilt in predicate a test
for the oooditioo. that DBkes it infinite.

FCP detects that a process is infinite and then applies axioms and
theorans to eventually create a finite process in the manner indicated
bela,,:

(~for:m. using
,xians and=====:;;:::===

theorems)

===-=====-====<==================="'
(if still infinite)

A process is either an atomic predicate, meta predicate (such as
conjunction) or a user defined predicate. CUrrent Prolog M only uses the
axions of logic to attempt to render a process finite.

To a limited degree CHAT80 uses something similar to FCP to delay the
execution of negated predicates. The crucial feature about FCP is that
every predicate should be able to identify the conditions that might make
it infinite. It is then possible, as indicated above, to delay the
execution of infinite predicates, even in recursive definitions.

In a fully w::,rking version of Prolog M, the optimal delaying of processes
would also be included, as indeed it was in the ICL CAFS database system

[3].

page 5 of 18

3. ATCMIC PREDICATm

Atomic predicates flag infinite if their use \\OUJ.d generate an infinite
solution set. Fbr exarcple:

x=6 FINITE: aily cne solutioo

x=y INFINITE: (1,1)(2,2)(3,3) •••

2=4 FINI'm: ID solutioos

X = y + Z INFINITE: (l=l+o) (2=1+1) ••••

(2,3) = u • X FINITE: u is head of list ie 2 and
xis tail of list ie (3)

In Prolog M these have the syntax (=,x,6), (=,x,y), (=,2,4),
(+,x,y,z), (.,(2,3),u,x) respectively.

Infinity is flagged by including in the definition of the predicate, code
which will set an infinite flag for certain combinations of free
variables.

4. LEFr TO RIGfr PREDICATE

Predicates are nonnally executed fran left to right:

w < 20_,.!_Manllleight(x,w) { ((<,w,20){Manweight,x,w)) }

Provided both are finite then the whole expression is finite. In this
case the first atanic predicate is infinite and so the whole expression is
infinite.

page 6 of 18

Conjunction all<MS the machine to apply the axions of logic to detennine a
finite ordering. 'lbus, if we write the following:

w < 20 & Manweight(x,w) { (&(<,w,20){Manweight,x,w)) }

'lh.e machine will attEnl}?t execution fran left to right:

w < 20 , Manweight(x,w)

The result is infinite and so using the axiom A & B <-> B & A the
reverse ordering is tried:

Manweight(x,w) , w < 20

If we assume manweight has instance FRED,18 then execution is as foll<MS:

? w < 20 & Manweight(x,w) ,~~f >lbim x m FRFD am w m 1a1

1==:: ~201<=====:;:==="I
If there had been nested conjunctions, these would be collapsed down so
that ((A & B) & C) \oJO\lld be replaced, by (A & B & C) •

page 7 of 18

6. DI~W

Disjunctions of two or rrore predicates are executed as two quite separate
processes. 'Ihus:

(x = 3 or x = 4) & f(x)

is executed as two processes:

X = 3 & f(x)
X = 4 & f(;x)

First, xis given the value 3
value 4 and f is again executed.
processes must be finite.

7. EXIS'lDTIAL amN'l'Ili'IC'ATIW

{ (&(or(=,x,3) (=,x,4)) (f,x)) }

{ (&(=,x,3)(f,x)) }
{ (&(=,x,4)(f,x)) }

and f is executed. Second x is given the
For a disjunction to be finite both these

If there exist values of xl,x2, ••• that satisfy an expression p then the
expression q is executed:

sane(:xl,x2, •••)(p), q { (sane(xl,x2, •••)p)}

We evaluate this by forcing xl,x2, •• to be variables local top. 'nlus,
they start off initially as free variables. If there are instances of
these variables locally in p then the expression q is executed.

441

pa.ge 8 of 18

a. NEX;ATICE

Negation is implemented by transfonning the negated expression so that the
not is rroved to a subexpression using one of the three axions:

not(p&q) -> notp or notq { (not(&,p,q)) -->
(or(not,p}(not,q)) }

not(p or q) -> notp & notq { (not(or,p,q})-->
(&,(not,p}(not,q)) }

notnotp -> p { (not(not;p))-->p}

Eventually, the expression cannot be changed because none of these trans
fo:rms can be applied. It will then be found that p is either an atomic
predicate or an existential quantifier. We therefore actually execute the
not(p) predicate. The not means no instances. Thus, the not is
executed by checking that the predicate p has indeed no instances. If
this is the case, then w1e alla,.r execution of any statements that folla,.r.
This is "Negation as Failure" [4]. In the example:

not.6=7 & X = 9 { (&(not(=,6,7))(=,x,9)) }

six does not equal seven, there is no instance, and so the next term x=9
is executed.

Negation has its own special infinities. A negation is finite only if all
the free variables of p are externally bound. Thus, the free variable of
the expression x = 6 is x. Therefore, for not x = 6 to be finite, x
must be bound at the time when the not is executed. Clearly, if x had
been free then there ...ould be an infinite number of x values not equal to
six. Again by trapping this infinite case it is possible for other
processes to bind x.

450

page 9 of 18

8.1 SPECAL CASE

Suppose an expression not p has free variables and is therefore
infinite. It is sanetirnes p::>ssible, v.hen the expression p starts with the
quantifier some, to manipulate p to give a new expression p' which
generates the bindings for these free variables. The resulting expression
p'¬ p nON bein; finite. For example, the infinite statement

not sane(x)(r(x)¬ h(x,y))
{(not(sane(x}(&,(r,x)(not(h,x,y)}}}) }

can be rendered finite by noving h(x,y), the negated tepn in p, outside:

sane(x)h(x,y) & not sane(x)(r(x)¬ h(x,y))

This new term now creates a finite set of bindings for y. A general
.theoren for transforming p top' is given in reference [1].

Universal quantifiers are equivalent to negative existential quantifiers
and so they are transfonned before execution using the axion:

all (xl,x2, •••) (p) -> notsane(xl,x2, •••) (not p)

{ (all(xl, ••• }p)-->(not(sane(xl, ••)(not p}}} }

page 10 of 18

10. DEFINITICES

Definitions allow complex expressions to be represented by a single
predicate. Consider the definition:

anplifier{vo,vi) <- vo = 6 * y & y =vi+ 12

When this is called using the query ?amplifier(l2,w), the variable vo
inside the definition takes on the value 12 while the variable vi points
to an identical location in store tow and hence become equivalent. The
variable y is local to the definition and so there is an implicite
existential quantifier.

This definition is fully reversible, so we can either ask the question
?anplifier(l2,w):

vo=6*y & y=vi+l2

I::~, y = 21=====:>l~fore vi= -10,I
and sow= -10

or the reverse question ?anplifier(x,-10):

vo=6*y & y =vi+ 12

~1
y=2
therefore l <:=========
VO= 12 and
therefore x = 12

We can nON define another predicate representing two amplifiers in cascade
and still have reversibility:

aqJS(vo,vi) <- aq,lifier(vo,x) & anplifier(x,vi)
Tenn 1 or 2 being automatically selected depending whether vo or vi is
bound.

~51

page 11 of 18

10.1 REXIJBSIVE IEFINITICE

Consider the operation of append. This can be defined by the single
recursive definition which appends list x to list y to give list z:

aa:,eo:i(x,y,z) <- x = () & y = z or
x = u.x• & z=u.z' & aa:,ern(x' ,y,z')

This definition states that if x is an arpty list then lists y and z are
equal. Otherwise, if~ strip u off lists x and z then the remaining lists
x' and z' are related by the · append predicate. When used in recursion
neither or nor & are order independent. This is because recursive
calls to the append predicate always have the possibility of being
infinite and so should always be written last. It may be sensible in some
future inplementation to autanatically place such recursive calls last
thus restoring order independence.

Using FCP this definition gives the follarrlng results.. Readers interested
in the details-of the exemtion are refered to the appropriate appendix.

?ag>end((2),(3),z)
?ag>end(x,y,(2,3))

?ag>end(x,(2),z)

?aa:,eo:1((2),y,z)

z = (2,3)
X = (l y = (2,3)
X = (2) y = (3)
X = (2,3) y = ()

infinite flag set

infinite flag set

APPm>IX 1

APPD\1DIX 2

APPm>IX 3

Notice how FCP correctly traps the infinite.process. Contradictions as
mentioned earlier can therefore be trapped before execution:

?ag>end{(2) ,y,z) & y = z
flags infinite

Without this facility a naive user could be faced with some expensive
caaputer bills!

page 12 of 18

Suppose we define a factorial predicate fact'(x,n) which gives the
factorial x of a number n. When x and n are both free we find that
fact• executes an actual infinite loop. To prevent this infinite loop
we precede fact' by the predicate free:

fact(x,n) <- free(x,n), fact'(x,n)

The predicate free flags infinite if all its arguments are free. Thus by
detecting that x and n are both free, factorial is now secure against
infinite loops.

Notice that appem did not require any such trap to stay finite.

11. 'lBE FUTURE

Prolog Muses the axians of logic to transform an infinite expression to a
finite expression. However, the capabilities of the language could be
considerably extended if the user were also able to define his own
infinite to finite axians and theorems. Bela.v is a simple example of an
axian to alla.v a natural way of writj,ng a range of numbers:

x > xmin &: x < xnex & integer(x) <- range(x,xm:i.n,xnex)
{ (define (&(>,x,xrnin){<,x,xrnax)(integer,x)) (range,x,xrnin,xrnax))}

It is na.v !X)ssible to write the query:
?x > 1 &: x < 12 &: integer(x)

and obtain the integers 2,3, ••• 10,11 using the range predicate.

We can define new functions in the same way that we can bind variables to
values. For example:

quadfn(x) = "x1"x + 2*x - 4"

{(=,quadfn,'(larnbda(x)(plus(times,x,x)(times,2,x),-4)))}
binds the function variable quadfn to "x*x + 2*x - 4 11 using a lambda
expression. The function quadfn can then be used in an equality predicate:

y = quadfn(x) { (=,y, (quadfn,x)) }
Unlike nonnal equality, this is finite only if x is bound.

page 13 of 18

455

Predicates are often defined in tenns of a forward and reverse fllllction. A

reversible quadratic function quad(y,x) is defined as the conjunction
of quadfn and quadreversefn. The appropriate function being chosen by
FCP.

12. CXBDJSICN

Prolog M is still in its infancy. There are at least three important
questions left lll'l.answered:

1. By trapping the generation of infinite fonnulas,
will FCP make conventional resolution nore
flexible?

2. can trace facilities easily explain why programs
are infinite?

3. can we easily include user defined.theorems?

The auth::)r is grateful to the late Roy Mitchell, Vic Maller, Nonrian Truman,
Martin Stears and the other members of the ICL Systems Strategy Centre,
Stevenage who have helped to fonnulate and develcp the ideas in this
paper.

[l] BABB E

[2] BABB E

[3] BABB E

page 14 of 18

SYSTEM IDDELLING LANGUAGE {SML) For Enquiries to
a Business or Scientific t-b:lel.
ICL Technical Note TN 82/1, 1982

Joined Nonnal Fonn: A storage encoding for
relational databases.
ACM Trans. on Database Systems. Decanber 1982

Implanenting a Relational Database by means of
Specialised Hardware.
ACM TODS, June 1979

[4 J CI.ARK K & Logic Prograrmrl.ng,
TARNilJND S.A. (:Eds) Academic Press, 1982

[SJ cux:KSIN W Sc Programming in PROLOG,
MELLISH C Springer-Verlag, 1981

[6] KOWAL.SKI R A Logic For Problan Solving,
North Holland 1979

[7] WARREN D

[8] WARREN D &

PEREIRA F

Efficient Processing Of Interactive Relational
Database Queries Expressed In Logic,
Edinburgh DAI Research Paper No 156

An Efficient Easily Adaptable Systan For
Interpreting Natural Language Queries,
Edinburgh DAI research paper no 155

page 15 of 18

Appemix .. l Alp-rldfoniard
What is the result of appending (2) to (3)?

?append((2),(3),z)

X = U • X 1 & z = u. z' & append(x' ,y,z')

lx = 2,
=> therefore

INFINITE I
•===> therefore ===> y = (3), x' = ()

u = 2, x'=() · delay but append((),(3),z')

lu = 2

lz' = (3)
!therefore
!ANSWER z = (2,3)

Atpndix 2a Afflerld backwards

gives: · z •_=_(3_) ___ _

I
I

I<======·

What two lists appended together give the enpty list?

?append(x,y,())

X = (} & y = z

==> X = () ==>lz = (), therefore, y = ()
.____ ANSWER X = () y = ()

X = U • X1 & z = u. z' & ag>end(x' ,y, z')

infinite z = ()
=> therefore•===> therefore, fails,

delay NO ANSWER

page 16 of 18

AJpndix 2b
vmat two lists appended together give the list (3}?

?append(x,y, (3})

X = (} & y = z

==> X = () ===> z = (3}, therefore, y = (3)

ANSWER X = (), y = (3}

X = U • X 1 & z = u·. z'

>
infinite lz = (3)
therefore ===> therefo. re
delay · u = 3, z' = ()

& append(x' ,y,z')

lz' = 0
=>lappend(x' ,y, (}}

lgives one solution
l (see appendix 2a)

Ix' = 0, = 0

x' = ()
u=3
therefore
X = (3}

<=============

ANSWER x = (3), y = (}

page 17 of 18

~ 2c
What two lists appended together give the list (2,3)?

?append(x,y,(2,3))

X = ()

=> X = (}

X = U • X 1

& y = z

===> z = (2, 3) therefore
ANSWER x= (), y=(2,3)

& z=u • z' & ~(x' ,y ,z')

z = (2,3) z' = (3)
.:__> linflllite

therefore > therefore > append{x' ,y, (3))

gives two solution
(see appendix 2b)
x' = (), y = (3)

delay

x' = () or (3)

u=2
therefore
x = (2) or (2,3)
ANSWER x = (2)

ANSWER x = (2,3)
y = (3)

y = ()

u = 2, z' = (3)

x' = (3), y = ()

<=============

page 18 of 18

Afp!D:lix 3 Append infinite
What are all the lists which end with a 2?

?append(x,(2),z)

X = ()

X = U • X 1

& y = z

y = (2)
====>: therefore z = (2)

ANSWER X = (} y = (2)

& z = u. z' & ~(x',y,z')

I INFINITE I INFINITE I I append (x' , (2) , z')
=> therefore ====> th.erefore ===> therefore a soln i.s

delay delay .!' = () z' = (2)

EB/SAC.
SALLY836:EB 83/6

z' = (2) ,u=freel
therefore <======
ANSWER INFINITE

