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Shapiro de:6.n:ed three complexity-measures over logic programs- goal-size, length 
· and depth - .·and showed their relation to complexity measures for alternating 
Turing machines. We, introduce the fourth complexity measure - conjunctive 
goal-size - and employing the known ideas of Turing-machine complexity theory 
we analyze the relation- among the complexity measures over logic programs. In 
particular, for any deterministic logic progrtam of conjunctive goal-size S(n) and 
length L(n) we can construct an equivalent deterministic logic program of depth 
O(log(L(n)) .and length; O(L(n));. and if the program: is strongly deterministic 
then we can :construct another equivalent strongly deterministic logic program 
of goal-size O(log(S(n)) + log(L(n))) and length O(S(n)L(n)). 

I ntroductio~ 

The idea of procedural· interpretation to Horn-clause logic begun a new era 
in logic programming. ~Today, the programming language Prolog, based on .. this 
idea, is a viewed as a start· point to the basic programming language. of the fifth 
generation computer systems [FGCS81]. 

The standard method of execJting a program in Prolog is by so called 1back
tracking, consuming a .large amount of time and space. In order to achieve the 
planned speed up in time performance, Japaneses have to improve backtracking 
by mixing with other methods, for instance,bottom-up, and work out an efficient 
parallel implementation of Prolog. A solid,·.analysis of the computationalr com
plexity of logic programs should .precede th'0 speed up e:fforts. , 

In a large part our goal is i to use the. similarity betweem logic programs 
and alternating Turing machines: in order to derive relationships among various 
complexity measures over logic programs .. Efficient implementing of logic pro
grams in various computational models may benefit fr.om these results. As· these 
results rephrase in part::-known facts from Turing machine theorJi in the language 
of logic programming, they seem lto be of smaller importance for abstract com
plexity theory. The other our goal is to comment informally on the possibility of 
a fast parallel implementation of logic programs, and, on complexity of bottom
up computations of logic programs that are neglected in the logic programming 
society. 
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Basic Notions 

We totally adopt 1Shapiro's definitions· of definite clauses,·,goals, conjunc
tive goals, clause's head and bodY, logic program, goal reduction, substitution, 
uniti.er, derivation and refutation of a goaLfrom a logic program, the phrase "a 
program P solves a goal", refutation tree, length, depth, goal-size of refutation 
( see (Sh82a]). 

The author came to the conclusion that. it is natural and convenient to:.allow 
also variable:.·free initial. axioms as input data. 
Initial axioms are inserted in the list of axioms of a lo~c program before starting 
its computation. 
A pair ( G, A) consisting of an initial gdal G (possibl~,: a. conjunctive goal) :and a 
set of initialL.axioms is called an initial goal~axiom pair. 
A goal-axiom pair (G,A) has a refutationifrom a logic program P if G.,has a 
refutation from PUA in the Shapiro's sense. 
The interpretation of :a logic program P, .. .I(P), is the set of ,all variable-free 
goal-axiom pairs that are constructable from predicates, constants and functors 
appearing in ithe language in which P is wr,itten, and·:ihave a refutation from P. 
Following our modification of logic program semantics in comparison with Shapiro, 
we redefine complexity.·measures· over logic programs as follows:: 

A logic program Pis respectively of goal-size, depth,::length complexity C(n) if 
for any goal,;axiom pair. in I(P) o.f size n there respectively exists a refutation of 
goal~size, depth, length: C( n). 

For the· definitions:: of non-deterministic and deterministic :'Turing machine 
the reader. is·:referred to (CKSh82}. 

Moreover we use the following definitions: 

(1) An axiom is a clause with the empty body. 
(2) Given a :computation of a logic program, C, a reduction step of C is the 
reduction of.a chosen goal to a sequence ofnew goals by a single application of 
a clause in the program. 
(3) Let P, R be a logic program .and a refutation, respectively,;· 
The conjunctive goal-size of R is, the maximum size of the current list of: goals 
at any reduction step of R ( respectively, goal size ia:the maximum size of any 
unit goal at.any step of R ). P is of conjunctive goal-size complexity U:(n) if 
for any goal-:axiom pair Gin I(P) of size n· there is a refutation of G from P of 
conjunctive goal-size <U(n). 
The non-deterministic length of R is the number of nodes in the refutation tree 
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such tha.t there are at .least two clauses whose heads~ match the: goal chosen to 4 b:J 
reduce. P is of non-deterministic: length complexity N(n) if for· any goal-axiom 
pair G in I(P) of size n there is a refutation of G from P of non-deterministic 
length <N(n). 
If N(n)-o then Pis strongly deterministic~ 
If every goal-axiom pair in I(P) admits only one refutation then:P is determinis
tic, see [H8l]. 
0 bviously I if P is strongly deterministic then it is deterministic.. The notion of 
strong determinism for logic programs corresponds to that of determinism for 
Turing machines. 
(4) We assume a standard list representation. The term O denotes the empty 
list, and the.: term [X IYJ standSI . .for a list whose head is X and tail is:,.,y. A 
string a1a2 ... a"' is represented by the list [a1l[a2l[ ... lan]]J, With. the exception 
of Theorem 3 integers ,n are represented as n-fold composition of the functor 
s applied to~the constant 0. Writing a logic program, we· skip·the clauses and 
axioms defining the arithmetic predicates of:=, <, <; >, >. Finally, we assume 
that we can::test .equality ·between an atom and term by applying a standard 
equality anddnequality ·:predicate·s built in the formalism of logic programs. 
(5) According to the assumed string representation (see 4), Turing machine M 
is equivalentcto a logic ·program :P if after .erasing the square brackets and the 
symbol" I" in the words of L(M), we obtain I(P). 

Relationships among Complezity Measures ouer Logic Programs 

In the following remark, WEr.can find :a couple of obvious)observations on 
complexity measures over logic programs. ;j 

Remark 1. Let P be a logic program of depth complexity D(n), conjunctive 
goal-size complexity G(n) and length complexity L(n)~: The following inequalities 
hold: 

D(n)<L(n) : 
L(n)<dG(n) where d is·.a constant uniform:'in P. 
Moreover, ifwe restrict-initial goals to single.!goals then;we have L(n)<cD(n)+1-

l where c is the maximum number of goals in a clause of P. · 

In several computational models, the .depth complexity is:ca natural lower 
bound on the time taken by parallel evaluation. ln._the computational model 
of logic programming it is hard to approximate the lower bound with efficient 
parallel computations .. Simply, solving a conjunctive goal with shared variables 
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cannot be spawned directly. 
By virtue of the , following theorem1 for any logic program there ·exists 

an equivalent logic program of fairly· small depth. The proof is by applying 
Savitch's trick, originally applied to simulate non-deterministic space bounded 
Turing 1:0-achines by deterministic, ones ( see [Sa70] )1 and then, by time bounded 
alternating Turing machines [CKS80] .. 

Theorem 1. Any logic program P .of length complexity.£( n) and non-deterministic 
.length complexity N(n) can be transformed into a logic program Q such that a 
goal-axiom pair ((G1, G2, ... , Gl), (Ai, A2, ... , A1;)) of size n is in l(P) if and only if 
there exists a:refutation of the corresponding goal-axiom pair (p([G1l[G2 l[ ... jGz]]], [1, 
r log(L(n))l, (p([A1 IX], [X], 0), p([A2 IX], [X], 0), ... , p([A1; IX], [X], 0))) from Q of 
depth flog(L(n))l, length 4L(n) and non-deterministic length N(n). If the pro
gram Pis deterministic:(respectively, strongly deterministic) then Q is also deter
ministic (respectively, strongly deterministic}. 
Proof. To form the cla,uses of Q ,, 1We use only the predicate p(X~, Y, i). It reads: 

If X and Y are lists representing;:goals and i is a natural number then the goals 
from X can .be reduced to those from Y in12' reduction steps. : 

For each clause A+-B11 ... , B1;. of .P, the program Q contains the axiom . 
p([AIX], [B11[B2! ... [BilX]]],0). Note that the predicates from P become functors 
here. Next, Q contain&,the axiom :p(□, [), 0).tsaying that we can reduce the empty 
list of goals to itself in one reduction step. The only clause with non-empty body 
in Q is as follows: 

p(X,Y,s(i))< +- p(X,Z,i},p(Z,Y,j). 

Given a refutation of G,from P, of length L(n), there exists a refutation of G from 
P, say R, such that at,each reduction step. in R the ,first clause on the current 
list of goals is chosen to reduce and R is of length L(n). Having R, we form a 
refutation of the corresponding initial goal ,from Q by applying. the only clause 
of Q in depth-first manner, and .then, the axioms of .Q. As a result, we obtain 
a refutation ,whose tree has, leaves labelled::by instantiated predicate p(X~ Y, 0) 
corresponding to single:.reduction steps of R. The length of the. refutation does 
not exceed 2flog(L(n))+1l - 1. Its non-deterministic length is the same as that 
of R. If R is .the only refutation .of the initial goal-axiom pair from P then it is 
the only refutation of the corresponding initial goal-axiom pair· from Q. 
Conversely, given a refutation of the corresponding goal from Q, we can easily 
find out a refutation of G from P · I 
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In Savitch's simulation of non-deterministic space bounded Turing machines ~ b5 
with deterministic space bounded Turing machines, the intermediate 
tape configuration ( corresponding to the intermediate list of goals Z in the 
above proof) is determined by exhaustive search (see [Sa70]). In the proof of 
Theorem 1, the intermediate list of goals substituted for Z is the outcome of 
calling p(X, Z,j) ( in Concurrent Prolog [Sh82b}, the basic clause in Q would 
be rather written as p(X, Y, s(j)) +- p(X, Z, j), p(Z?, Y, j) ). From the point of 
deterministic simulation, our method of finding the intermediate state is more 
efficient than Savitch's one if the non-deterministic length complexity of P is 
small, and worse otherwise. 
The first who showed; how to simulate Turing machines with logic programs 
was Tarlund [T67]. Shapiro proved a close relationship between complexity of 
alternating Turing machines and complexity of logic programs [Sh82a}. The 
following theorem reveals relationships between complexity of non-deterministic 
Turing machines and complexity ·of logic programs ( In thi·s theorem, as well as 
in Theorem 3 and Corollary 1 and 2 we informally use the notion of simulation 
whose meaning can be deduced from the proof of Theorem 3 ). 

Theorem 2. Any multi tape ( deterministic) Turing machine operating in time 
T(n), and space S(n) can be simulated by a (strongly deterministic, respec
tively) logic program of length complexity O(T(n)), and conjunctive goal-size 
complexity O(S(n)). Conversely, any (strongly deterministic) logic program of 
length complexity L(n), and conjunctive goal-size complexity S(n) can be trans
formed into an equivalent (deterministic, respectively) Turing machine operating 
in time O(L(n) X S(n)2), and space O{S(n)). 
Hint. Note that a single reduction step can be simulated by a deterministic 

_ Turing machine in time O(S(n)2) (see [R65]) and read the proof of Theorem 4.4 
and 5.4 in [Sh82a]. 1 

By Theorem 1 and 2 we obtain the following corollary: 

Corollary 1. Any (deterministic) Turing machine operating in time T(n), and 
space S(n) can be simulated by a (strongly deterministic, respectively)· logic 
program of depth complexity O(log(T(n)), length complexity O(T(n)), and con
junctive goal-size complexity O(S(n)). 

· Probably, several important problems solvable by deterministic Turing 
machines in polynomial time are not solvable in parallel time O(logkn), i.e. by 
parallel machines with polynomial number of proces·sors with fixed fan-in and 
fan-out, running in time O(logkn) ( see [B77],[CKS81] ). As by Corollary 1, 
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deterministic Turing machines operating in polynomial time can be simulated by 
deterministic logic programs of logarithmic. depth complexity, probably a small 
depth complexity of a logic program does not ensure the existence of a fast 
parallel implementation of the program, in the general case. It seems that the 
requirements that a logic program should satisfy to admit an essential parallel 
speed up are more complex. In the next section, we shall briefly discuss this 
problem from the point of view of bottom-up computations. Here, we infor
mally propose the following requirements, coherent with the top-down nature of 
derivations from logic programs. 

Let P be a logic program of length complexity L{n). For i, :j, let Ri,;(n) be the 
equivalence relation between conjunctive goals such that G1Ri,;(n)G2 if and only 
if for any goal-axiom pair of size n, G, any refutation of G from P with the the 
i -th element G1 performs the same i-th through j-th reduction steps as any 
refutation of G from P with the i-th element G2 • In other words, to determine 
the i-th through j-th reduction steps of a refutation of G from P whose i-th 
element is G1 it is sufficient to know a representative of the equivalence class of 
R,,;(n) for G1. Suppose that for n E N there exists a tree Tn of fixed degree 
with leaves consecutively labeled by 1 through L{n), and a number mn. such that 
for any subtree of T n with the leftmost leaf labelled by i and the rightmost leaf 
labelled by i, the number of equivalence classes of Ri.;(n) is at most mn., In the 
simplest case, the tree Tn. may correspond to the refutation tree of P. Given an 
goal-axiom pair of size n, G, we can recursively find a refutation of G from P 
(if it exists) by applying divide and conquer strategy induced by Tn. and trying 
all representatives of the equivalence classes- of Ri,;( n) in parallel. Provided that 
T n and the representatives are given, the refutation can be determined in time 
O(log(mn) X height(T.,,,)) with the use of 0(2log(mA)Xheight(TA)) processors. In 
particular, if m,,, is a constant uniform inn and height(T.,,,) = O(logn), P can be 
implemented in parallel time O(logn). The. reader can find more details about 
this approach, expressed rather in terms of Turing machines, in (L83]. Here, we 
offer only the following simple example. 

Example 1 

Let us consider the following logic program, delmem(Z, X, Z', H), where 
Z is an input linear list of a constant length over a finite alphabet E, X is an " 
input list over E organized as a complete binary tree of height H, Z' is the out
put list composed of all the elements of Z that are not in X, member(A, Z), 
notmember(A, Z), delete(A, Z, Z') stand for the standard predicates testing mem
bership of Ain Z and deleting A from Z { i.e. Z' = Z - A ) respectively ( see 
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[CM81J ), we may assume without loss of generality these standard predicates to 
be available primitives since they are applied to sublists of the input list Z which 
is of fixed length in this example. 

delmem(Z,X, Z',H) +- delmem(Z,X, Z',O,H). 

delmem(Z,.[X I Y],Z',K,H) +-

K < H, delmem(Z,X, Z", s(K), H), delmem(Z", Y, Z', s(K), H). 

delmem( Z, A, Z', H, H.) +- member(A, Z), del(A, Z, Z'). 

delmem(Z,A, Z,H,H) +-· notmember(A, Z). 

Note that if we neglect labels, the form of a refutation tree of P for any goal
axiom pair with the input list X of length n is totally determined by n. Let 
T,,, be a tree of such a form, with leaves consecutively labelled by 1 through 
n. Clearly, if i and j are the labels of the rightmost and the leftmost leaf in a 
subtree of T,,,, then the i-th through j-th reduction steps in any refutation of 
an goal-axiom pair with the · input list X of length n from our logic program 
is a refutation of the goal delmem(U, Y, U', k, h) corresponding to the root of 
the subtree. Thus, the i-th through j-th steps are totally determined by the 
instantiation:. of Z, U. Therefore, the equivalence classes of the relation R,,;(n) 
can be identified with the possible instantiations of Z. As the input list Z is of a 
fixed length,. the number of possible instantiations of Z is a constant uniform in 
n. Hence, the number m,,, is a constant uniform in n here. It is not difficult to 
see that the language specified by de(mem(Z,X,Z',K,H) is regular but in the 
general case, the language specified by a logic program for which m,,, = 0(1) is 
not necessarily regular [183]. The tree T,,, induces the same divide and conquer 
strategy as the recursive definition of delmem(Z, Y, Z', k, h), therefore, we do 
not need to transform P in this respect. To try all of the representatives of 
equivalence classes of the relations R,,;(n), equivalently all possible instantiations 
of U, it is sufficient to add the following clauses with B ranging over all possible 
instantiations of Z: 

delmen(Z, [XI Y], Z', K, H)+-

K < H,delmem(Z,X,B,s(K),H),delmem(B,Y,Z',s(K),H). 

It is easy to see that by fully using the OR-parallelism introduced by the above, 
additional clauses, clelmem(Z, Y, Z', k, h) can be implemented in parallel time 
O(logn).1 
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The following theorem relates time and space complexity of Turing machines 4 6 
to goal-size complexity of logic programs. The proof is analogous to the proof 
of Chandra et al. showing Uc>oDTIME(c5 <"">) C ASPACE(S(n)) [CKSh82]. 

Theorem 3. Let M be a deterministic Turing machine operating in time T(n) 
and space S(n). M can be simulated by a strongly deterministic logic program 
Q of goal-size complexity O(logT(n) + logS(n)). 
Outline of Proof. We assume several restrictions on M fallowing the proof of 
Theorem 3.4 in [CKS80]. In particular, M has only one tape, on the tape the 
input word is written, M accepts an input by entering its unique accepting state 
qA with the head scanning the T(n) + 1st tape square, etc. (see [CKS80] for 
details). A computation of M on the input word is described as a sequence of 
configurations, each in the form aq{j where ap describes the contents of squares 
0 through 4T(n), q is the current state of M and the head of M points the 
rightmost symbol of a. 

For any four symbols from the tape alphabet and the set of states of M, 
6_ 1, 60 , 61 , 62 , among which at most one represents state of M, there is unique 
symbol 6 such that for any j if 6-1, 60, 61, 62 occupy positions j-1,i,i+l,i+2 
in a configuration of M 1 then 6 occupies the position j in the next configuration 
of M. For each such quintuple 6-1, 60, 61, 62 , 6, the program. Q contains the 
axiom next(6_1 , 60 , 61, 62, 6) .. The basic predicate in Q is accept(j, t, a). It says 
that in the t - th configuration. of the computation of M, the j - th square 
contains the symbol a. 
To prove the theorem we cannot represent the integers j, t using. the unary nota
tion defined in the previous section. Here the integer of binary representation 
bi, ... , bi is written as [bzl[ ... lb1]]. The successor predicate is defined as follows: 

suc([llX], [OIY]) +- suc(X, Y). 

suc([OIX], [l!X]). 

sue([], 1). 

The definitions of the predicates of < and < for this specific representation of 
integers are left to the. reader. 
The main clause in Q is as follows: 

accept(j, u, X) +- suc(t1 u) 1 suc(i, j), accept(i1 t, Y) 1 



suc(j, k), accept(k, t, W), 

suc(k, l), accept(l, t, T), 

next(Y, Z, W, T). 

To verify the initial contents of the tape we use the clauses accept(j, O,X) +

inpt.1.t(i, X). The integers occurring in any derivation of accept(T(n)+ 1, T(n), qA) 
from P have binary representation of the length not exceeding f min{log(T(n)), 
log(S(n))}l. To prove the theorem, we show by induction that accept(}, t, a) can 
be proved in O(L(n)) reduction steps if and only if the given interpretation of 
accept(i, t, a) is right. 1 

By Theorem 2 and 3 we obtain the following corollary: 

Corollary 2 .. Any strongly deterministic logic program of length complexity 
L(n) and conjunctive goal-size complexity S(n) can be simulated by a strongly 
deterministic logic program of length complexity O(L(n) X S(n)2), and goal-size 
complexity O(log(L(n)) + log(S(n))). 

Bottom - up Computations of Logic Programs and their Complexity 

. That what we mean by a computation of a logic program P might be 
specified as a top-down computation of P. A bottom-up computation of Pis a 
reversed (top-down) computation of P, and can be briefly described as follows. 

The computation starts from a set of instantiated axioms. At each step 
we non-deterministically pick a clause of P, A+-B1 ', ~ ', ... , B1c' ( it might be 
an axiom, Le. k = 0). Then we non-deterministically choose a sequence 
Bi, B2 , ••• , B1r. from the. list of current axioms in order to unify it with the body 
of the previously chosen clause. The unification is via a substitution 9 and the 
axiom AD. is added to the current list of axioms. The computation terminates 
when there exists a substitution. 9 unifying each initial goal with a member of 
the current list of axioms. The. definitions of of derivation, refutation of an 
initial goal-axiom pair from P etc. as well as the definitions of depth, length 
and conjunctive goal-sfae complexity for bottom-up computations are similar to 
those for top-down computations, and are left to the reader. 

Remark 2. If a logic program is of bottom-up depth complexity D(n), bottom-up 
length complexity L(n), bottom-up goal-size complexity U(n), then it is of depth 
complexity D(n), length complexity L(n) and goal-size complexity U(n). 
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Choosing a. clause a.ta. step of a bottom'."up computation of Panda sequence Lt +( 
of some current axioms in order to unify with the body of the clause, we do not 
know whether it leads to a proof of the initial goals. Moreover, the number of 
possible choices of the sequence of some current axioms may be of order nk where 
k is the number of goals in the body of the chosen clause. That is why programs 
in Prolog are executed in a top-down manner. We may argue that if the program 
P is non-deterministic. then choosing a clause in a top-down computation in 
order to unify its head with the selected goal, we neither know whether it will 
solve the goal. However, if we do not loop then we may backtrack in case of 
failure like the running Prolog interpreters whereas the definition of failure for 
a bottom-up computation is not clear. Neverthless, it is author's feeling that 
for an important class of logic programs bottom-up computations are essentially 
more efficient than (top-down) computations. This class may include so called 
dynamic programming procedures which recursively generate a lot of symmetric 
subgoals in order to solve the original goal. 

An example of a logic program for the dynamic programming procedure of 
Cocke, Kasa.mi and Young, accepting wordsfrom the language L(G) where G = 
(N,E,P,S) is a context-free grammar in Chomsky normal form (see [AHU74]), 
is shown as Program L 

Program 1 

PA(i, j) +- qA(i, i, j). for A E N, 
qA(i, le, j) +- s(s(k)) < j, qA(i, s(k), j). for A E N, 

qA(i, k, j) +- i < k < j, Ps(i, k), Pc(k, j). for A--J>BC E P, 
PA(i, s(i)) +- i < n, input(a, i). for A-+a E P. 

The program is design.·to succeed on the goal-axiom pair consisting of the goal 
Ps(O, n) and the axioms input(wi, i). where w1 , ... w" is the input word if and 
only if the input word belongs to L( G). In the worst case we may have to 
backtrack an exponential in n number of times in order to find a (top-down) 
computation accepting w whereas a bottom'."'up computation yields an answer in 
O(n3) deduction steps if it proves a new goal at each deduction step. Why are 
bottom-up computations successful here? Simply, there are only O(n3 ) variable 
free goals that can be solved by Program 1 starting from the initial axioms. 

Definition 1. Let R be a refutation. The goal number of R is the total number 
of distinct goals in the nodes of the refutation tree. A logic program P is of 
goal number complexity G(n) if for any goal A in I(P) of size n there exists a 
refutation of A from P of goal number <G(n). 
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Our observation about bottom-up computations of Program 1 can be generalized 
as follows: 

Remark 3. Let P be a logic program. P is of goal-number complexity G(n) 
if and only if it is of bottom-up· length complexity G(n). Moreover, if P is of 
goal-size complexity U(n) then it· is of goal number complexity du(n.) where dis 
a constant uniform in P. 

The analogous remark for {top-down) computations would not be true. Simply, 
it might happen that to solve a given goal, we have to solve the same goal several 
times. In implementing (top-down) computations we can get rid of the above 
inefficiency by dynamically extending the original set of axioms of P by the 
solved intermediate goals. 

By Theorem 2 and Remark 2 and 3, we can observe that any·Turing machine 
operating in polynomial time can. be simulated by a logic p~ogram of polynomial 
goal number complexity. 

In a simple parallel implementation of bottom-up computations, we do not 
encounter the problem. of variable sharing for subgoals of equal rank. Therefore, 
the depth complexity · and the time taken by a single deduction step seem 
to decide about the time performance of a bottom-,up computation of a logic 
program of polynomial goal number complexity, in a parallel computational 
model. The recent paper of Lewis and Statman [LS8?] has shown the prob
lem of unification between :first order terms to be complete in co-NLog Space. 
Therefore, the existence of a parallel algorithm for the unification problem 

· operating in time O(lognlr.) and using a polynomial in n number of processors 
.· ' 

would imply the existence of such algorithms for any problem from NLog Space 
or co-NLog Space, which seems unlikely. Hence, we cannot count on a parallel 
implementation of the single deduction or reduction step in time O(lognlr.). If 
the logic program P in Theorem .. 1 is not patological then the bottom-up depth 
complexity of the resulting program Q is equal to the depth complexity of Q. 
Therefore, by Remark 2, we can usually apply Theorem 1 in order to compress 
the bottom-up depth complexity. The following theorem, analogous to Theorem 
1, shows how to achieve this for any logic program. 

Theorem 4. Let P be a logic program of bottom-up length complexity L(n). 
Let Bi, ... , Bm be the list of all axioms in P. P can be transformed into a logic 
program Q such that a goal-axiom pair ((G1, ... , G1r.), (A1, ... , Ai)) is in J(P) if 
and· only if the corresponding goal-axiom pair {p( [B1 I[ ... IBm]J, [ G 1 I [ ... [ G 1r. 1-111 
, f log(L(n))l), (p([X], [A1 IX], 0), ... , p([X], [A,IX], 0))) has a refutation from Q of 
depth f log(L(n))l + flog(n + L(n))l. 

11 

4t1 



Outline of Proof. The proof is again by applying Savitch's trick, analogously as 
in the proof of Theorem 1. Here the predicate p(X, Y, i) says: 

If X and Y are lists of axioms and i is natural number then the axioms in Y 
can be derived from those in X in 2i (bottom-up) deduction steps. 

The axioms -chosen from the current list of axioms in order to unify with the 
body of chosen clause may occupy various_positions on the list. Therefore, we 
include in Q the following clauses to pull the chosen axioms :to the front of 
the list (because the list of axioms may be of length n + L(n) we again apply 
Savitch's trick). 

p(X,Y,O) +- q(X,Y,rlog(n+L(n))l). 

q(X, Y, s(j)), +- q(X, Z, j), q(Z, Y, j). 

q([Xl[YIZ]],[Yl[XIZ]],'.O) +- X=/;Y. 

q(X,X,O). 

Finally, for each clause A+-B1, ·-, B,,, in P :we have the corresponding axiom 
q([B1 l( ... [B,,, IX] ... ), [Al [B1 l(.:.l[B,,, IX] ... ], 0).11 

In the above theorem, the program Q is non-deterministic even if the program 
Pis strongly; deterministic (compare with Theorem l). 

Possible Extensions 

(1) The goal-:size complexity of Q'ain Theorem 1 mightibe as large as L(n) X U(n) 
if Pis of goal-size complexity U(n). It seems possible to generalize Theorem 1 by 
showing a trade off between the depth complexity and the goal-size complexity 
of Q. 
(2) It is possible to formalize the notion of simulation or introduce a more general 
concept of equivalence, among logic programs and Turing machines. 
(3) It would be interesting to design a parallel algorithm for, the unification 
problem operating in time O(n01) and using (nP) processors where a < 1 and 

P<l. 
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