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1. INTRODUCTION 

Infinite terms (streams) have been introduced in 
several PROLOG-like lansuases C2,J~4,8,10J in order to 
define Parallel communicatins Processes. The resultins 
operational semantics is auite similar to Kahn-McQueen's 
model C5J, characterized bw asents which communicate throush 
channels. Most of the above mentioned lansuases are anno­
tated versions of PROLOG. Hence some of the most relevant 
.features of PROLOG, such as the abilit~ to define relations, 
set lost. 

If infinite terms are added to pure PROLOG (i.e. Horn 
clauses>, the definiti6n of a "Sood• fixed-Point semantics 
is still an open problem. In C1J a sreatest fixed-point con­
struction is Proposed. Such solution, however, is not satis­
factorv, because: 
i) the sreatest fixed-Point semantics sives a non-emPtv 

denotation not onl~ to nonterminatins Procedures which 
comPute infinite terms, but also to "bad" standard non7 
terminatins Prosrams; 

ii) the construction is not alwaws effective, i.e. there 
exist Prosrams whose Sreatest fixed-Point cannot be com­
puted. 

In this PaPer we Propose two semantics based on a least 
fixed Point construction. In the first· semantics we only 
consider all the finite aPProximations of an infinite term, 
while the second se~antics allows to handle infinite terms. 
The lansuase we will consider is a manw sorted version of 
PROLOG. Its swntax will be defined in the next section. It 
is worth notins that the sortins mechanism will allow us to 
distinsuish finite and infinite terms. 

2. SYNTAX AND DERIVATION RULE 

The lansuase alphabet is composed by; 

1) A set S of identifiers for the representation of the 
sorts. A sorts is! 
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a) simPle ifs belonss to s. The set of simPle sorts is 
Partitioned into two disJoint classes, canonical and 
non-canonical sorts, to coPe with .finite and infinite 
data structures resPectivelv. 

b) functional ifs belonss to s*--> S. If s has the 
form: s 1 x • • • x sn --> s', and at least one of the si 's 
is non-canonical, thens' is non-canonical too. 

c> relational ifs belonss to S. 
2) A familv C of sets of constant swmbols indexed bw simPle. 

sorts. Ifs is a non-canonical sort, then the set of con­
stants of sorts contains the special svmbol w 1 , which 
~enotes an undefined (not vet evaluated) data structure. 

3) A familv D of sets of data constructor svmbols indexed bv 
functional sorts. 

4) A family V of numerable sets of variable svmbols indexed 
b!:I simple sorts. 

5) A familY R of sets of Predicate svmbols indexed bv rela­
tional sorts. 

The lansuase data 
data constructors to 
sorts. Hore Preciselv, 

i) a constant svmbol 

structures are obtained bv aPPlvins 
variables and constants of suitable 

a term of sorts is: 
of sorts. 

. ii) a variable swmbol of sort s. 
iii> a data cor,structor application d(t 1 , ••• ,tn> such that 

.t1 , •··• • ,tn are data terms of sorts s 1 , • • • ,sn and d 
belonss to D and has sort~ x ••• x ~--> s. 
A term which contains at least one occurrence of an 
undefined constant swmbol is called suspension and 
deno.tes a not cotr1Pletel1::1 evaluated data structure. 
Because of the condition,in t.b>, if one of .the t 1 's 
.hiB~ ... a non-canonical sort (briefly is nor,-canonical>, 
then also the term is non-canonical. In tact, the 
result of the aPPlication of a data constructor to its 
components Carsuments> is a suspension if some of its 
components are suspensions. 

The lansuase basic construct is the atomic formula. 
An atomic formula is a Predicate aPPlication P<t 1 , ••• ,tn > 
such that t 1 ,. •. ,tn are data terms ot sort s 1 , ••• ,sn resPec­
tivelv, and Pis a Predicate s~mbol of sort s 1 x ••• x Sn• 

A set of atomic formulas can be interpreted as a col­
lection of Processes or asents C2,7J connected b~ channels .• 
Each atomic f_orm•Jla denotes a Process. There e>d sts a chan­
nel connectins processes. Ph and~, if there exists a vari­
able svmbol which occurs in the atomic formulas denotins \ 
and ~. The basic activit~ is messase Passins throush chan­
nels and reconfisuration of the collection of Processes. 
Informations can pass throush a channel in both directions. 
This is not the case of the SCA model C7J, as well as of the 
Kahn-McOueen model C5J. 



The d~namic behaviour of the collection of Processes is 
specified b~ a set of clauses, which are expressions of the 
lansuase defined as follows: 
1> A definite clause is a formula of the form: 

A <- - B1 , • • • , Bn 
where A and the Bi's are atomic form1Jlas. If n=O the 
clause is called "unit clause• and is denoted as follows: 

A <-- ..:l 
All the variables occurrins in a clause are viewed as 
universal!~ auantified. 

2) A nesative clause (Soal statement> is a formula of the 
form: 

<-- A1 , • + +, A111 

where the A1 's are atomic formulas. If m=O it is a null 
clause denoted b~ 

<--..\ <or □ > 
From a losical viewpoint, the s~mbol •,• denotes the losical 
connective AND, the s~mbol "<--• denotes the losical imPli­
cation, and A is the neutral element with respect to the 
operator•,•, that is<-- A,..\=<-- A 

The notion of derivation of a soal -statement from a 
siven soal statement and a prosram is essentiall~ the same 
defined for PROLOG C6J, and is based on resolution C9J. The 
onl~ trivial difference has to do with sort checkins. 
The relation (J . 

G 1--> G' w 
denotes that the soal state~ent <-- G' is derivable from the 
soal statement <-~ G and the Prosram W, with the substitu­
tion 8, which is the composition of all the substitutions 
used in the elementar~ derivations. 

If, for some fJ, the relation 

G 1-8-> ..:l 
w 

holds, then<-- G is refutable in w. 
Our interpretation of soal statements and clauses is 

·exactl~ the same siven b~ Kowalski C6J for PROLOG. However, 
we think of a soal statement as denotins a collection of 
Processes. The derivation of a new soal statement 
corresponds to a reconfi~uration of the collection. Each 
elementar~ variable bindins in a unification can be seen as 
a messase Passins from a Producer to a consumer. Our 
interpretation is motivated b~ the fact that we view 
Processes as non terminatins procedures which Produce (or 
consume) infinite data structures. Such Procedures have an 
empt~ denotation in PROLOG, both from the operational and 
the fixed-Point semantics viewpoint. 
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3. OPERATIONAL SEMANTICS 

In standard Horn Clause Losic the concept of computa­
tion of a soal statement is essential lid based on the re.f•Jta­
tion of that soal statement, (i,e, the derivation of the 
null clause>, and therefore on the concept of termination. 
In other words, the result of a computation of a soal state~. 
ment (i.e. its operational semantics) is the relation esta­
blished, for each Predicate in the soal, b~ the substitu­
tions determined in all the Possible refutations C6J. 

This definition of operational semantics results inade­
auate to describe Processes which handle infinite terms 
(streams). Consider, for examPle, the followins Prosram: 

W = (list<x,x,L> <-- list<s<x>,L>> 
where the sort of xis •naturals• <canonical sort>, the sort 
of L is •streams of natural' <non canoriical sort>, ••• 
denotes the stream of naturals constructor, and •s• denotes 
the successor constructor on naturals (for the sake of sim­
PlicitY we will use 1 instead of s<O>, 2 instead of s<s<O>>, 
etc,). 

Since the soal statement <-- listCO,L) has no refuta-
.. tions in W, the ·denotation of the Predicate list siven by 

the standard operational semantics is an emPt~ relation. 
In SPite of this, a derivation of listCO,L) Produces, step 
by step, the substitutions: 

L = O+L 
L = 0+1+L 
L = 0.1.2.L etc ••• 

It is easy to see that an infinite computation of this 
soal statement will lead L to be instanced to the infinite 
list of natural numbers. In seneral ever~ Process which Pro­
duces infinite terms has the same Problems with resPect to 
its semantics definition, since its computation necessaril~ 
does not terminate. 

The solution we Propose is based on the introduction 
for each Predicate s~mbol P which is non-canonical Ci,e+ 
which handles infinite terms>, of a terminal clause (unit 
clause) defined as follows: 
If P has sort s 1 x ••• x sn, then the terminal clause has the 
form PCt1 , ••• ,tn> <-- , where each t 1 is: 
- . a v a r i able of so rt s1 , i f s I i s canon i ca 1 
- the undefined cor,stant sYmbol w51 , if s 1 is non..,canonical. 

The terminal clause is added onlld if there exists no 
unit clause, in the Prosram, for which there is a superposi­
tion. This condition is necessarld because it must not be 
Possible to introduce new solutions b~ addins a terminal 
clause. The new terminal clause must onl~ allow termina­
tion. 



Note that if there exists a terminal clause, for which 
there exists a superposition with the new one, then it con-
tains some non-canonical terms that can be substituted 
with w. For this reason the termination is suarant~ed in 
this case. 

In our example the terminal clause is 
list(n,w) <--A 

This clause allows the seal statement <-- listCO,L) to have 
a refutation. The values that it computes for Lare of the 
form: w, o.w, 0.1.w, 0.1.2.w, etc ••• 

The s~mbol w, in this example, looks like the empty­
list constant, and the values for L look like standard fin­
ite lists. Their Prasmatics however is auite different, 
since the Prosrammers can think in terms o~ infinite lists 
a~d not be worried about artificial terminal cas~s, which 
can be inserted systematically by the interpreter. 
The introduction of the terminal clause is similar to the 
termination rule for infinite data productors Proposed in 
C7J. In that case a Process Producins a (potentiallw> infin~ 
ite data structure terminates when all the Processes which 
consume that data structure have terminated (l~zy · evalua­
tion>. We obtain the same behaviour by exPloitinS the non­
determinism of the lansuase. A process which produces a 
(potentially) infinite stream, at each stream aPProximation 
can be reduced to A. However, if there exist consumins 
Processes, the Process has an alternative reduction which 
Produces a refinement of the stream. 

The operational semantics is defined as follows: 

If Wis a set of clauses, and Pis a Predicate swmbol of 
so~t s1 x ••• x ¾, then the operational semantics of Pin W 
is~ 

D0 ( P, W) = < ( t , ••• , t 0 ) I t 1 has sort s1 , i = 1 , •• • 0, n 
and P < t 1 , • ·• • , t 0 ) I w; A } 

where W' is the union of the Prosram Wand 
terminal clauses, added accordinsl~ to 
described. 

EXAMPLE 1) 
listCn,n.L> <-- list<s<n>,L> 

of 
the 

P(s(n),k.L,~) <-- P(n,L,m) , Prod(k,m,~) 
P<O,L,1> <--A 

all 
rule 

of its 
above 

Assume <-- Prod<k,m,~> be refutable iff Y results to 
be the Product of m and k. 
list<n,L) is the Process which Produces the stream L of 
al! the natural numbers ctartins frcm n. 
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6 4+4 
P(n,L,m> defines the relation •mis the Product of the 
first n numbers in the stream L•. 
Then, consider the Prosram: 

1) fact<n,m) <-- list<l,L> , P<n,L,m) 
2) P(s(n),k.L,~l <-- P(n,L,m) , Prod(k,m,~) 

W'= .3) PCO,L,1) <--..l 
4) list<n,n.L) <-- list<s<n>,L> 
5) list<n,w) <-- .,l <terminal clause) 

Note that 5 is the onl~ terminal clause, since the 
clause P<x,w,y)(--.,\ will not satisf~ our condition. 

factin~m> defines the relation 'mis the factorial of 
o•. 
We will now Sive an examPle of computation. For the 
sake of simPlicitw, the second clause will be rewritten 
in the form: 

P<s<n>,k.L,k*m> <-- P<n,L,m) 
where the swmbol '*' is interPreted as the Product 
operator on natural numbers. 

Initial soal statement: 
<-- factC2,x> 

bw clause 1),and the substitution x=m: 
<-- list(1,L) , PC2,L,m> 

bw clause 2, and the substitution L=k+L1 , m=k*m,: 
< - - 1 is t C 1 , i'~ •. L1 ) , P (1 , L1 , m 1 ) 

bw clause 2, and the substitution L1 =k 1 .L2 , m1 =k,*ml 
.. <-- 1 is t ( 1 , k + k 1 • L2 ) , P CO , L 2 , 1t,2 ) 

bw clause J, and the substitution m2 =1: 
<-- list(1,k,k1 +L2 > 

bw clause 4, and the substitution k=l: 
<-- list(2,k1 .L2 > 

bw clause 4, and the substitutiqn k1 =2: 
<-- listC3,L2 > 

bw clause 5, and the substitution L2 =w: 
<-- .,\ 

The .resultinS substitution for H is: 
x=m=k*m,=k*k,*m 2 =k*k 1 =k 1 =2 

The resultins substitution for L •is: 
L=k+L1 =k,L 1 ,L2 =1,2.w 

Note that, to have a refutation, at least two elements 
of the list L have to be computed. 



4. FIXED POINT SEMANTICS: FINITE APPROXIMATIONS 

The fixed Point semantics for a Prosram Wis defined as 
a model of the set of clauses WU {terminal clauses}, 
obtained as the least fixed Point of a transformation which 
is defined on the set of the interpretations of W C1,10,11J. 

The interpretations of Ware defined over an abstract 
domain U, which is a famil~ of sets u5 ,. each set beins 
indexed b~ a sorts occurrins in w. 
Each U5 is defir,ed as follows: 
1) All the constant s~mbols of sorts, occurrins in W, are 

in U5 (note that ifs is a non-canonical sort, also w 5 is 
a constant s~mbol of sorts and then also~ belonss to 
Us > • 

2) For each data constructor s~mbol of sorts x ••• x sn--> s, 
U 5 contairis all the terms d<t 1 , ... ,tn> such that t 1 , ••• ,tn 
belonss to U5 , ••• ,u 5 , respectivelw. 

I n 

Note that U contains the standard manw sorted Herbrand 
Universe as a Proper subset, i.e. the set of all the sround 
terms in which none of the w5 occ•Jrs. In addition U con­
tains suspensions, i.e. non comPletelw evaluated data, where 
both undefined and standard constant s~mbols occur. 
Finallw, U contains also the fullw undefined terms, i.e. the 
terms w5 • 

The He~brand Base B of Wis the set of all the sround 
atomic formulas: for each Predicate P occurrins in W, of 
sort 51 x ••• x Sn, and for each n-tuple of terms t 1 , ••• ,t11 

belonsins to u5 ••••• Us resPectiveh,, PCt 1 , ••• ,t11 > belonss 
to B. 1 n 

A Herbrand Interpretation I of Wis anw subset of B 
contairdns A. 

The set~ of all the Herbrand InterPretations of W is 
partiallw ordered b'.:I the relations (set inclusion). As is 
the case for standard Horn clauses, <d,s> is a complete lat­
tice, i.e. for everw Possibl'.:1 non finite s•Jbset"' of ;J., 
there exists lub<4'> and slb<.t>. 

It is possible to associate, to an'.:I Prosram W, a 
transformation T on. the.domain of interPretations, defined 
in the followins wa'.:I: 

T(I)={AIA<--B1 ,. .. ,Bn is a !:!round instance of a clause of W' 
and B 1 , • • • Bn E I } U < A } 

where W' is the union of the set W and of the terminal 
clauses for w. 

It is well-known that the transformation Tis monotonic 
and continuous C6J. 



Since Tis monotonic, there exists: 

I,= min{II I=TCI)} 

Horeover, since Tis continuous: 

IF= U yk ({A)) 
k!:O 

8 ~31 

The fixed Point semantics of a Predicate P, of sort 
s x ••• x sn, in a Prosram Wis defined as follows: 

DF CP,W) = <<t1 , • • ,tn > I t 1E U51 , • • •, tnE Usn' P<t1, • •. ,tn > f I } 

The eGuivalence of the operational and fixed-point semantics 
come~ directl~ from the similar result for PROLOG. 

5. FIXED-POINT SEHANTICSl INFINITE TERMS. 

Now we want to define an alternative fixed-Point seman­
tics, which reflects the idea that non-canonical data, con­
tainins the s~mbols w5, are suspensions, that is Partial 
aPProximations ·of infinite terms. 

A term containins occurrences of the s~mbol ~ cannot 
be transformed into an infinite term conta1nins no 
occurrences of ws, because it would be necessar~ an infinite 
number of derivations. However it is Possible to compare two 
suspensions to establish which is a better aPProximation. 

Consider, for example, the Process P<n,L> which 
duces the stream of all the odd numbers startins from 
n is odd, and the stream of the even numbers _startins 
n~ if n is even. Such Process is defined b~ the clause: 

1. P<n,n.L> <-- P<~<s<n>>,L> 

while the terminal clause is: 

2. P<n,w) <-- A 

Pro­
n, if. 
.from 

One of the streams Produced b~ the Process P, startins from· 
O, is Lt = 0.2.w, obtained b~ aPPl~ins clause 1 twice and 
clause 2 once. 
Another stream is L2 = 0.2.4.w, obtained b~ aPPl~ins clause 
1 three times, and clause 2 once. 
L1 is a better approximation than L2 of the st.ream which 
tould be obtained startins from O and aPPl~ins clause 1 for­
ever: 

0.2.4.6. •. • 

Clearl~ L1 cannot be compared to an~ of the streams 
obtainable, for examPle, startin~ from 1 Cl.w ,1.3.w, 
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etc.). 

It is then necessary to define a partial orderinS < on 
the elements of A <~round terms), which corresponds t6 the 
concept of "better approximation•. 

i) For anw c~nstant ~Ymbol c of sorts, c 5 < c 5 and, ifs is 
non-canonical, w5 ~ ~• 

ii) For anw constructor sYmbol of sort s1 x ••• x sn--> s: 
a) if ti=w5., i=1, ••• ,m, then d(t1 , ••• ,tn>=ws 
b) if ti< t~', i=1, ••• ,m, then d<t 1 , ••• ,tn><d<t{,•••'t~) 

A similar Partial orderins is defined on the Herbrand 
Base 8, as follows: 

For any Predicate swmbol P of sort s 1 x ••• x s., and for anw 
t 1 , ••• , t .. , t{, ••• ,t.~ of sorts s 1 , ••• ,~ .. : 

if ·ti < t ( i = 1 , • • , m , then P ( t 1 , ••• , tm ) < P ( t { , • • • , t ~ ) 

Furthermore, it is necessarw to introduce in the 
universe U all the infinite terms which are limits of mono­
tonic seauences of terms. Similarlw, it is necessary to 
introduce in the base Ball the atomic formulas which con-

~ tain infinite terms and which are limits of monotonic 
seauences of atomic formulas. 

An interpretation of Wis anw subset of B which con­
tains A and which does not contain anw Pair formulas A and 
A' , such that A< A' • 

Obviously, the interpretation containins atomic formu­
las in which the~e occur infinite terms can be resarded as 
limits of monotonic seauences of interPretations without 
infinite terms. 

Let p be a function which t~ansforms subsets of B Ccon­
tainins A> into interpretations. It is defined as follows: 
ifs is a subset of B then 

p(S) = S -: <A( AES , 3A'E S, A<A'} 

In other words p eliminates all those atomic formulas 
for which there exists in Sa better aPProx~mation. 

The set of the interpretations of W is partially 
ordered bw the relation< defined as follows: if I,J belonss 
to : 

I<J iff VA E I 3A' E J A<A' 

or, eouivalentl~: 
I<J iff IE u(J) 

where u is defined as follows: 



' ! 

o-( I) = {A I :I A' E: I A<A'} U { ..l } 

Note that, if I is an interPretation: pCo-<I>>=I 

10 

The set~ of the interpretations is a complete lattice 
with respect to <, and it holds, if J. is a subset of;, : 

Slb<l> = pCU u<t>> 
lub<.G> = slb<.l'> 

where ,t' = -CI' I VIE la I< I'} 

Note that A' is never emPtw, because it contains at 
least p<B>. In Particular, if Lis finite: 

lub<.t> = P <U u <.t> > 

The transformation T' associated to • - Prosram W is 
defined jn the followins waw: 

T'(I) = p({AI A<--B 1, ••• ,Bn is a sround instance 
of a clause of W', and B1 , •• ,BnEu(I>)U-C..l}) 

where W' is the union of Wand of the terminal clauses of w. 

tain 
also 
must 

- u(I) occurs in the definition of I because, if a cer­
aPProximation of a data structure is computed, then 

any less defined ~PProximation of such a data structure 
be considered as computed. 

It can easily be Proved that T' is monotonic and con­
tinuous, hence there exists the least fixed-Point I{ of T' 
and: 

I ' = U T ' 11( { ..\ } ) 

f ·~ 
The second .. fixed-Point semantics is defined analosously to 
the first: 

D,,<P,W>=-C(t1, • • • ,tn) lt1E U51, • • •, tnE Usn' P_(t,, • • • ,tn LE o-(If )) 

It is worth notins that in the Pre~ious semantics, the 
lub of the chain yk(-C..l)) contains onl1;1 finite aPProxima­
tions (suspensions>, while, for this semantics, the lub of 

.T'k({..\}) can contain also infinite terms. 
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