. 4385

SCME ASPECTS OF THE STATIC SEMANTIICS CF LCGIC ERCGR2ANS SITH
BOEALIC FUNCTIICHS

Patrizia Asirelli

Ist. di Elab. deli'Informazione - C.NeB.
V. S. Maria, 46 - I56100 BISA -~ Italy

AESIEACT

We consider 1logic programs in the Horm clauses forz of logic
with monadic functions, and present twc apprcaches tc derive a
set of equations from a given set of clauses. The derivation is
obtained by a data flow analysis of the <variables, involved in
each clausal definition. Each eguation expresses the semantics
of a procedure, by means of a set expressicm which, by
transfcrmation of the set of eguations, can Lte reduced to a
solved form. The set expression thus cbtained refpresents, for
each rrocedure its greatest, approximate, set of solutioas; i.e.
a set vwhich contains the denctaticn defined, fcr the =sanme
procedure, by the standard semantics. The approximate solutions
can be seen in the contest of akstract interpretations of
prograss, tc get, by a static analysis of their definitions,
some of their properties. The aprrcximate =sclutions, being
expressed by means of set expressions, could then ke used as a
tocl for program verification and constructicn.

e IBIEODUCTIGN

We [fpresent an approach to the static analysis of prograss,
written in a sinple logic langquage, defined as in |1-2], where
procedures are defined by means of Horn clauses with monadic
functions, and vhere all clauses are ncr negative. Thus a sort
of very simple PEOLOG }3-5}. .

We first definme aam algebraic semantics cf clausal definitioas,
in the semse of representing possible set c¢f scluticns for a
procedure, by means of equations and set expressions.

By static semantics of a program we @mean all that can de
deduced, statically, about the set of soluticns for a 1logic
program, as expressed by its standard sermantics |2].

The aias cf this paper fall into the same framewcrX of |6], bat
for logic languages instead of algorithmic languages. As in
16], ve get set expressions which represent im the mcst general

1

b3 _

case, approxinmation to the set of denotations of a procedure as
defined by the standard semantics. We alsc consider And/Or
graghs |7-8], representation of programs instead of flow-charts.
Thus, differently from |9}, we do nct try tc get set eapressioams
which dencte the exact set of sclutiocns, kut only an
approximation of it. At present +the wcrk is =uch semplified,
with 1respect to 6§ and }9), since we consider ©Froblems
originated only by the use of wmomadic functions, treated
symbolically, without 1looking, fcr now, for the fixpoints of
their asscciated symbolic expression.

The sane problem as been tackled for monadic lcgic fprograms with
monadic functions; the next Section will give a brief summary of
results obtained, for that case, 1in |J10}{. Section 3 will
present two approaches to deduce, statically, a set ¢f eguatioms
from a given set of clauses. In Section 4 we will preseat
transfromations of such equations tc get a set «<¢f equations in
solved form. Section 5 contains few «copsiderations on the
defined transformations and +their relaticns tc cther works.
Section 6 extends the results of the previous sections, to
clausal definition with @ponadic functicrs. %e ccnclude with a
brief summary in Section 7..

Appendix 1, at the end of the paper, gives an exasgple of the
construction of a set of equations for a given set of clauses,
in the monadic case; Appendix 2 gives an example cf a set of
eguaticns that can be obtained, according toc the second approach
presented in Section 3. In Appendix 3 a set of axicms is given
to be used for transformations of equatioms obtained wshen
functions are used in clausal definitichns.

2. BESULTS FEOM THE MONADIC CASE

Given a set of clauses A, defining n procedures Pi, socmadic, we
consider the set of clauses defining each procedure and its
corresgondent And/Or graph,§7-8f. Then we trace the values fiow
of the variable appearing at the rcot cf the And/Cr graph. The
denctation of a gprocedure Fi, Dh{Ei), {(results of the procedure
Pi), can be derived in terms of unicn and intersection of
denctations of the predicates involved ip the definition of Pi.
Thus we . can derive, say, an (/0 gragth, ccrresgondent to the
Andy/Or graph inm object, by interpreting 2And nodes and Or nodes,
respectively as intersection and union cperations, and replacing
each atonic formulas Qj{X) {where X is the variaktle traced), Ly
the correspondent set Dh {Qj). By Dh{Ei) uwe dencte the denctation
of the predicate Fi, as defined by the operational semantics
associated toc Hyrperresclution and Instantiation zxules, |2{.
Aprpendix 1 shows an example of the all process; from the (/U
graph there obtained, the follcwing eguation can be derived:

n m k
(911==xjn,mjn U if-(jf_\1iﬂj})} u !jgg.sﬂtgjc {sj1)) U {a} U (b}

4%%

Where:
each {Bj}, [Qj} demnotes the set of values, solutioans of
procedures Rj and Qj, resrectively, derived from
the static analysis of their clausal definition.
{f.T}, is a notation which, given a set (cr set expressiom) T,
denotes a set of data that, using a common set notation,
can be expressed as: { f{y) 1 Yy € T}.
don{gj, {Bj}) denctes:- a set expression T such that:
{gj-T1} € {R3};
- the enmpty set, {}, cthervise.
e have called *Deduce’ the function which [fproduces a set of
equaticn such as the above one, starting frcz a givem set of
clauses. Then ve show, inductively, that when predicates are
defined by clauses where: functions symbtols are not used or
else, they are used not recursively, then the set exrression
dencted by {P} can. be computed to a set of values such that the
following relaticn holds:

t € Jdh(P) iff t € {F} i.e. LDh(E)={P}

‘When clauses use function symbols recursively, either directly
or noct, that is, when clauses are such as follous:

B{£(X)) <~ Q{X), P{X)

B(X)<- C{X),R{X)
CI{E(X)) <2 ()

or

then we Deduce eguations of the fors:
{B}== ({f.T}

vhere 1 contains references to the symbolic set {P} itself., 1In
those cases we need to find the fixpcint of such set expressions
1. Then, if we are able to find a notation for such fixpoints sa
that by replacement of T in (f.T} we get a nctatiom which is
recursive, but self-contained and, if we are then akle to define
union and intersection between such sets then ve cam represent
the denctation of a predicate by a set expression which is
finite, independent of other fpredicates and which cam be built
by the static apalysis of clauses. In {§10] we suggest such a
notation and give tranfcormation rules fcr deducing such
notaticns from the set of equations cbtained in the first place.
On the other hand we show that those set exfressions can be left
sysbalic, and transformed ({f.T}'s are only partially
transformed), to cobtain a set c¢f equaticms, in sclved forn,

- which represent a new set of clauses. The new set of clauses are

the semplified version of the set of clauses given in the first

483

place. Thus, we defined an.algorithm Izxansf such that the
folloving diagranm commutes: ‘

Deduce

>EA

~rhitn B8 M3

A

v
DEA?*

Deduce

Where DH={Dh(E1) ,Dh{P2) ,eee-Dh(Pn)}, for all predicates P1,..Pn
defined in A amnd A?Y,

That is, the set of equations EA? can also Lke derived from a set
of clauses A', such that: denoting by Lh (Pi), the denctation
: A

of Pi as defined by the standard sesantics, wken Pi is defined
in a set of clauses A; then: A' and A are such that, for all
procedures Pi defined in A, Fi is defined alsoc in A* and:

Dh {(Ei) = Dh {Pi) = Dh{Pi) if clauses in A dc mct contain
A ' A local variables;

Dh (Pi) C Dh (Pi) othervise.
A A

Moreover, A' can be obtained by transforsaticas cf A.

Equaticns EA®', obtained by transforming equations EA, Bmay
contain references to symbolic sets {Ei}, where Pi is an
undefined predicate. Such symbclic sets can be eliminated
{replaced by the empty set {}).. In any case such equations
either represent a ground set of values c¢1 else,-they may be
considered as rpatterns for the computation of then. They can
also ke used as a tool for programs develcpzent and programs
copposition, where symbolic set are used to defime parametric
specifications.

3. T30 APPROACHES TO THE EXTENTION CF LELUCE

To introduce the problem of static semantics, for n-adic
progranss, let's consider the follcwing clauses:

1) E(a,b)<~-
2) BlagX)<~-
3) BX,X)<-Q(X,1), P(X.Y)

487

4) EBE(X,I)<~ C(X,2) F(Z2,1)
In general ve have clauses such as:
B(X1, 22,0aeX¥D)<~ C1{t171,0et@1),eeaQn(tDl,ea.atnk)

For the nmomeant we do not coisider functions, thus we assume all

_terms tij to be variables, either 1local cr ncte

We dencte by {P} a set of tuples, each one of which is seant to
represent a solution for E, according with the definition of
Dh(E) in the =ame casea

Let'’s observe that Dh{(P) in case of clause 1) is given Ly
{<a,b>}; thus an obvious way to =nodify the Deduce functiom , is
to produce the same results for clauses which are assertioms. On
the cther hand, following the same approach, for the second
clause vwe get ‘a tuple such as ([<a,2>}, where 2, nmeans "™all
possible values",]10].

For the same clause it is:

Dh{P)=f <a, t> | ¥ t € Herktrand Universe}

if we let (?} denocte the Herbrand Universe of the set of clauses.
defining P, we can represent Dh{P) as: {a} X {7}« An obvious
way ,to make things egual is then to define the cartesian
products betweea sets as usual, sc that:
{€a,d}=={a} X [?} .

as if 2 were an cther coanstant sysbcl. The sepantics of [<a,2>}
has tc be defined as Dh({E) akove, so that {P} and Dh(P)
represent the same set of values. Ir general, a tuple as
<a,t,7,c,d> represents a set of tuples whose first two and last
two projections are fixed, and the pmiddle cre is ocne of all
possible data. Given the meaning of such a notation, we can
redefine Deduce so that, for all assertions, the following set
exgression will be constructed:

{(V1, 72, Vn)} _i__g_g C s E‘t1 'tZ'---.'tn)<-

" for all v, = t,

; if t;is a constant syasbol

v,= 2% if t, is a variable..
Let P be a m-adic procedure and let it be defined by n
assertions; then we can deduce the fallowing eguation:
1 1 1 n n
{E}== { < v1, ﬁz""‘ﬁm>'<’$' vi,...vi),....<v:, vzf...qm>}

If a procedure P has m arguments, than given the set of tufles
{P} ,ve define the m projections of (P}, each one denoted by
{P}_Jj, j=1:me Thus, each {P}_j denote the set cf values for the
j-th argument of predicate E, and it is defined Ly:

490

{B}_j== { v: 1% i=1:n and ¥ < vi, <¥ ,eovi> € (B}]

Given {P} as above, it is, obvicusly:
n
{E} CII {RP}_J
=1

The same holds when we Deduce each ({E}_Jj, by the data flow
analysis of variables, for all other tyre cf clauses. le
present two agrproaches: one leads to a set of equations which
allows to find, for each given procedure Fi, an approximation of
Dh{Pi); the other approach 1leads tc a set cf egquations which
could ke zrefined to find an approximation of Ch(Pi), which. is
the clcsest one that can be found statically, by the data flow
analysis of variables. - -

3.1 First approach

like for the monadic case, we consider the And/Or graph which
correspond to a clause; then vwe trace the value flcys of all
variables, arquuments of the predicate being defined. For each
variable Xi such that its trace binds it tc the j-th argument of
a call to procedure ¢, we consider {C}_J as the set originating
values for that variable. As in the ©monadic case e then
intergret as intersection all And nodes apd as union all Ot
nodes. Just as an example, let us see that, prcceeding as
abcve, for clause 3 we mould deduce:

{E}_1== [Q}_1N (F}_1
(B}_2== {Q}_2 N (F}_2

While for clauses U4:

{E}_1== ([Q}._1
{}_2== (F}_2

We can see that {P}_1 X {E}_2 derived akove, do act represeat
correctly the semantics of P as defined by the standard
sesantics for the corresponding clauses. In general, while for
assertions, {P} and Dh{P), represent the same set ocf data, for
all cther clauses se have:s

Dh (E) £ {P}

That is, the static semantics, defined by the data flow analysis
of variables, defines for a predicate P, a denctation which
contains the denctation defined by the standard semantics. We
can easily see that, for example, the standard semantics defines
for F, relatively to clause 4, the followings

Dh (E)=={ <t1,t2> | ¥<t1,k> € Dh({) and <k, t2> € Lh(¥F) }

491

while the set exfression we get for {E}, can ke expressed as:
{E}==[<t1,t2> § ¥ k1,k2 : <t1,k1> € [¢} and <k2,t2> € {F} }

Io conclude, given a set of clauses A, for each predicate Pi,
defined in A, by this approach we wculd get a set cf equations
as fcllcyus: :

n m
{Pi}== U II {Ei}j=~k for Fi defined Ly n clauses,
=1 k=1 and Pi being a g-adic fprccedure.

[Bi}j-k== T for T a set expression defining the set
of possible values for the k-th argument
of Pi, defined by the j~-th clause.

Let's observe that this way we find the greatest approximation
of each Dh{(Pi) that can be found by this methcd. 1let's also
observe that the set of eguations EA are such that the followiang
diagram conmmutes:

Deduce

BB(A)<-;

--A —=====-->Ea
! 1
i T 1
i t |
i r 1
i L |
i s |
1 £ 1
v v
DH {A?) (===~
Where LH(A)= {Dh (E1), Db (E2),eee-Dh {En) }
A A . A
DH{A')={Dh (P1), Db {B2),.--Dh (En)}, and Lh [Ei), Dh (Pi)
At At At A A?

defined im Section 2, fig. 1.

In fact we can easily prove that, givenm a clause sith local
variables that binds together some procedure calls, ignoring
local variables completely, we get an apprcximaticn of its
denctation, which is the denctation of an analogous clause,
vhere all local variables, in all frccedure calls are different,
one from each cther. That is, given, for example: _

P (X,Y)<- Q(X,21), F(21,1), BR{Y,22), H(22,2Z1)

492

Indeed we find the denotaticn of P defined as:
P(X,1)<& ¢(X,21), B(Z22,Y), E{Y,23), K{Z24,25)

Thus we get a set of equations EA, that can also te derived frox
a set of clauses A', such that the denctatior cf all procedures,
defined in A are contained in the denotation of the same
procedures defined in A'. I. €.
Dh (Ei) € Dh {Bi) for all procedures Pi. .

2 A®
The previocus relation shouws that by ignorimng 1ocal variables,
the method of data flow analysis of variables, emnsure partial
consistency with standard semantics. In fact, the method allows
to find sets of values such that, soze of the values are correct
scluticns, while others aren't. Yet noc value, outside those
sets, can be a correct solution. ‘

3.2 Second approach

To oktain a set expression for P rerresenting a set, nearer to
Dh{P), we should define, given clause U4 above, twoc sulbsets for
{C} and {F}, {Q) amd {F} respectively, such that:

1C)==(<t1,t2> | 7Jta: <t1,t2> € {C} and <t2,t3> € [F}}
{E}=={<t1,t2> | Jtaz <t1,t2> € (F} apd <t3,t1> € (€]}

The previous sets can also be obtained as follows:

€)== Q1 N {(Q}_1 X ({Q}J_2 N (F}_1))

(E}== (F} N ({F3_1 N [¢}_2) X {F}_2))

Then, defiaming {P}_1 and (F}_2 e should coansider {Q}_1 and
{E}_2 instead of {Q} and [F}. Yet, althcugh (€} and [F}
represent the set of tuples of ¢ and ¥, satisfying clause 4,
because of the cartesian product X, {P} wculd still be greater

than Dh(P):; i.e.:z .denoting by (£} the set olktained by
considering {Q} and {F} instead of {Q} amd {F}, it is:

Dh(F) € {B} € (E}

Thus {E} would still be an approximation of Ch{(E).
Everything previously said akout gpartial ccnsistency, still
holds. Yet {P} is less approximate than (P}e.

The set expression {P}, represents the least agrrcxzimation we
can get for the set of solutions of E, by the static analysis of
its clausal definitom, £following the agrprcach of tracing
variables. This happens just Lbecause the clausal definition of
P was such that only two procedure calls shared a variable. In
general if n procedure calls are such that each <cne shares ome

8

493

{(or more), variable wvith others, then the least approximate

soluticn need to be found by an iterative fprccesss

1) First define each {Qi} for each procedure call; this would
give a restriction of {Qi} in terams cf cther prccedures with
which Qi shares its arguments. Since the saze is done for all
Frocedure calls, there may be tuples cf cther frocedures,
satisfying the sharing conditions with ¢i, which do not
satisfy other sharing conditions in the same clause. This, in
general, means that:

2) Fe need to define a ((i}*® idemtical to {{i} Lut where the
sets involved are the restricted ones, {f}'s instead of
{F}'s.)

3) The process of refining {Qi} has tc gc cn until se get two
sets, say {Qi}"® and {£i}"™, such that, either {gi}*=(Qi}", or
else [Qi}" is empty.

This, informally described, refining frccess, will terminate.
Let's in fact reazind that, for all predicates ¢ and F, with two
arguments (the sase holds for predicate with any number of
argusents), it is: - :

{c} € {Q3_1X (Q3_2, | and alsc:

16}z (G} N (4Q)_1 X(€}_2) and |

((Q}_1 N (F}_1) X ((Q_2 N {F}_2) € {e}_1X {c}_2 and

(163_1 NEFI_1) X ({2}_2 NEFI_2) N (G} € (1€}_1X 1CI_2NIQIC (0}

Thus, the refining function is monotone descendent and it stops,
either producing an empty set, {}, cr frcdocing the same set.
Morecver, when the process stops, all sets such as {g} and (F},
represent, the exact set of tuples satisfying all conditions in
the clause. Than the set of scluticns fcr the rrccedure defined
by the clause in object, should be build in terss of these last
sets.

Ihe abcve process can be defined, perhaps more clearly, if we
consider all variables, e€ither lccals c¢r not, inveclved in a
clauvuse. For each variarkle ve define a set expression
representing its rpossible values, deducing such set expression
froa the And/Or graph of the <clause. 1bus, given a clause such
as:

P{X‘l, X.Z,-..Xn)‘(' Q1‘t11"’tm‘l)...' Cn(tlﬂ,-..-tnk)

let's denote by X the set X1,X2,..,%n and by Y the set
Y1,Y2,2--1¥ 0f local variables in the previucus clause. Then for
some of the above tij it is either

tij ¢ X,o0rTij CY .

494

Consider the And/Or graph, 6, correspondent tc the above clause,
and trace all variables in it. Then for each variatle Zi, with
Zzi € X , or 2i € Y, consider the subgraph G2i of G which
ccrresgcnd to the trace of Zi, and trasfcras it as fcllcus:

-the rcot is lahelledvby {o12i}
—-all And nodes become nddes; all Cr nodes Lecome U nodes;

-all nodes Qj{tjl,eee-tjm), are replaced by an ncde with k
arcs leading out, respectively, to a nodelatelled ky {Cj}_k; for
Qj(tjleeeeatijm) such that there exists a k= s:r, with 1<s<r and
tjk=2i. Appendix Z gives an exanple.

We can deduce {o01Qj}, in the same way we deduced {gj}, by
defining such {01Qj} in terms of {Cj} and {o012i}, depending on
the variables of Qj im the clause. Making sure that by i we
always get a different set identifier, we «can get a set of
equations which can be transforzmed intc scsme sclved form, Ly a
transforsation process analogous to the one presented in next
section. The set of equations in solved form, thus okttained,
can be transformed again by the abcve aenticned refining
functica.

The set of equations we get by this apprcach cap ke summarized
.as follows: Given a set of clauses A,

‘- let P be the set of procedure syabols, defined, or Jjust
used, in clausal definitions cf A; '

- let {P1,P2,2exeEn} € P , be the set of [frocedure defined in -
A;

then, for all Pi an equation is built which lccks as fcllowus:

u]
{(pi}== U | Hia;x J) vith ¥ € Xjjand Xjjthe set
-J=1 jk

of variables, terms of Pi in the j-th clause.

Let”ZW be the set of all variable symbcls, lccal or mct, in the
j=-th ‘clause defineg Pi, then: For each variable symbol
1jk eZij' se have a set of eguations as follgus:

[aji 1== shere T is a set expressicn containing
jk symbolic sets such as {ojC¥}e.

For each fprocedure Qu, called in the j-th clause defining Pi, ve
have a set of equations such as:
r
{ojCul==(Qw} N (II ({o3YL }) if r-1 is the number of
s=1 Js arqgument of Cw and all !,
are the variables, terms
Qw, in the j-th clause defining Ei.

of

10

49

4. TRANSFORMAIION OF EQUATIONS

We will only coasider the approach seen in 3.1, since w%e Lelieve
that the -traansformations we are gcitg tc define, can be
accordingly modified +to be applied to equations as defined in
3.2 akove.. '

4.1 1he transformation process

Thus, from 3.1 above, we have that: given a set of clauses A,
Deduce jA) , produces a set of eguations, as in the monadic case,
with the further complications of frojecticns. As tc transfornm
the set of equations define in 3.1 above, let us cbsexve that
the Lest result we would like to get, is a a set of equations,
each one of which associates a ground set (a set of constant
sysbcls), to a procedure. Since some procedures nay te defined
in terms of undefined procedures, and since ve believe that this
is a useful information to keep, vwe want final set exfpressicns,
associated to procedures to mantain such references. Thus:

We say that a set of eguations is in 'sglved form® if and oaly
if, each equation has the foram:

(Ei}==1 or ([Pi}j_Xk== T

for all procedure symbols Pi, and all.intggex j and k, and all
set expression I such that: ’

1) T is a ground set; else

2) T is the engty set ({}; else)

3) 1 is a set expression which containssymlbolic sets ({Q3j} and
such that |[Qj} dces not appear c¢n the 1left-hand side of any
other equation ((j is am undefined procedure).

e define now the following transfocrratica algcriths

Iransfl:

1) apply rule BR1;

2) apply EBR, until possible;

3) arpply S axioms, until possikle;

Replacezent Bule 1 (EE1)

’ n B
For all equations of the fors: {Pi}== [gﬂ& {Fi} j_k
. =1 k=

replaces each occurence of * {Pi}_k*, in all =set exgressions of
all other equations, by . :

n
U {E}J_k
3=1

1

b B

476

Since from Deduce se get equations such as, for example:
{(B}== ({P}1_1Xea X{P}1_B) U weeecal {{E}u_1X <o X{E}u_m)
(B} == ((M}_1N{I3_2) X ({E}_1N{D}_3) "

’;;;- | £ TP

‘E} u_ll==.-.;..--.

Bule BR1 allows to eliminate all references of ~ . type ? {P}_w?
and replaces them by a more detailed set exgression in terms of
* {P} i w'*s. By BR1, ' the previous example wculd be transfornmed
ins

{P}== ((P}1_1X ee X{P}1_B) U weeaealU ({EJu_1Xa- X{P}u_m)
{E}Y1_1== ({M}_T1N{T}_2) x (({B}1_1 V..U (E}u_1) N {£}_3)

with all other equations modified acccrdingly.

Elinipation Bule (ER)

Given an equation such as: [Pi}j_k== 1

such that T contains * (Pi}j_k°*, replaces * {Bi}j_k* in T, by the
enpty set {}.

§1ntgg§;§'axions (s)

-for all set expressions 1I:

3] 11==1
{} NI == (] n
-For all ground sets D , i=1,n :][] T is defined as uswual;

i i=1 i
Operaticns of U0 and [are defined for ground sets as usual;
ROLEOVEr s will contain axicss for asscciativity and
distributvity of U and N .

Bule EB, defined for the monadic case, as been =modified into
rule EE above, to take into account projecticns cf tugles. For
the monadic case rule EFE was an obvious consequence of the
observation that, given a recursive clause such as:

CB{1) < Q(X),B{X),E{X)

according to its standard semantics, no denotations, different
from those generated by all ether clauses defining E, will be
generated by that clause. In the n-adic case, the analogous

12

49%

haprens for recursion over the sane argusent ¢f a .rrocedure.
That is, cossider the following clause:

P(X,1)<-P[2,2),B{Z,Y)

From the standard semantics we have thkat the [Xevicus clause
adds tuples tc the denotation of f, definmed ky the cther clauses
defining B, in the sense that it adds tuples where only the
second elements pmay be new. Said it another way, comsidering
the greatest set of solutions fcr E, dencted by:
Dh{E)-1 X Dh(F)-2, the above clause may add elesents to Dh{P)-2,
not to Dh{P)~-1. Thus, since we are ncv looking fcr the greatest
apprcximation of Dh{P), we can comsider the akove clause having
the same greatest set of solutions of P defined as:

P(X,1)<-P" [X,F),E{Z,Y)
and where P! is defined as the rest of P. That is, if P was

defined by u clauses and the one considered freviocusly was the
k-th, then B* is defined so that:

k-1 u
Dh(E')== UDh(B)i U { U Da(E)]
i=1 _ J=k+1

Thns wve define ER so that each time we have eguations such as:

{E}i_3= ({P}i_3J U T1) X { eee

we replaces all occureances of *{P}i_3j', cn the left hand side of
the previous eguation, by the empty set *{}*.

Iransfl as defined above will certainly stors, since the nusber
of substitutions BR1 has to do is finite; =mcrecver, each
substitution froduces a set of equations such that the same type
of sets ([P}_k, for all predicates, will not appear anymore in
anyone clause, unless P is undefined (thus nc egquation exists
for {E}); BR1 needs to be done only once.

The same, of course, holds for ER;

S axioss are obviously convergent, and a point will le reached
so that no one of them can be apgplied anymcre.

Purther transfromations are defined by the followimng algorithm:

Transf?

1) arrly ER2;

2) arply EB;

3) apgly S axicas;

4) repeat f£frcm 1) to 3) until all of thenm camnnct bLe applied

anyucrIe€a

13

T8,

Beplacement Rule 2 (BRZ)

Given am equations of type: {P}i_k= 1
where 1 is a set expression; replaces each cccurence of * (P} j_k?*
by T in all set expressions of all cther equaticus.

EE apd S axioms are define as in Iransfl.

-t

Rule EE2 is a transformation analcgous tc RE1.

Iransf?2 stops, as well as Iransf] does. Let®s in fact observe
that: ' :

BR2 is applied after trapsfl is conpleted; nc equaticm, such as
{P}j_EK=1, will be such that T contains *{P} j_k* itself {because
of EB in Iransfl);

At each step, BR2 eliminates all references tc sets such as
{B}j_k; thus, the next time RR2 won't be applied toc the same
equation; since this applies to all equations and since there
are a finite number of equatiomns, after a while, RR2 %ill not be
applicable anysore. -

Because of the same sort of considerations, about EB-aad S
axicms, vwe can conclude that Iransf2 tersinates, producing a set
of equations each one of which has asscciated: either a ground
set, cx [} or else a set expression ccntaining refereances to
undefined procedures, i.e. it produces a set of egquatioas inm
solved forsm.

At the end, since refexrences to ([F}j_kX do not appear in any set
expression and since they wbere bLbuilt Just fcr the sake of
transformations, all equations for such sets can ke eliminated;
all that will rezain is a set of equaticns, £fcr the procedures
defined in the set of clauses given in the first place.

S FEW BEMABKS CE TRANSFORMATICNS

The transformation process, presented inm Section 4, is such that
the fcllowing diagram comnmutes:

]

DB {A) {==mm == e e] g >
i

in

it PhIN B D M 2
-*

IS Y- N
-
(2]
(Vo]
[]
(¢}

P el ko]

i
|
|
{
I
i
|
i

W
DH{A")< “}te==mee=e===DE]!

Deduce

14

499

In fact, Iransfl and Iramsf2 stcgs, fprcducing a set of
equations, EA®, in solved form; thus, the algorithn given Ly
Transf1l fOllOied by Iransf2 is complete. It ensuresSa solution
to the set of eguatlon< g;ven in the first place.

Furthermore, the set of equations EA', can Le deduced from a set
of clauses A', such that A and A' bave the sazme greatest
approximate set of solut1ons, DH, with: EB‘{E&(E1),....Dh(Pn)},
vhere each Dh{Pi) is the greatest set of approximate solutions
of Pi, for all procedures Fi defined in A.

In fact, BR1, BR2 and S axioms, do ncot alter the semantics of
the set of equations they are applied to; thus, the set of
clauses correspondent to the set of equatioms, Lefore and after
BRI, EB2 and S axioms, can be cktaived by a similar
transicrnation of clauses in A. :

- The transformation process glven in Sec. 4, is equivalent to the

non~-deterministic algorithm, given in |11], which +transform a
given set of equations into another one, in soved fore, to find
an etficient unification algorithm. BE1 and EE2 are analogous
to ?'Variable Eligipation®, 111-12}, and to the Unfolding
transfropation defined in PFrogram Transformatiocms,]13-14§. ER
is analogous to the transformaticn which erases egquations such
as x=32, in |11}, and Compaction in J12j. Alsc ER is eguivalent
to represent by (} the failure cf transfcrmaticns, §11] for
equaticns: x=t, where t contain x. . :

For all procedures Pi, defined in 2 and A%, their demotatioas,
as defined by the standard semantics is such thats

Dh (Ei) C Dl.l (Pi) thus ODH(A) C DH(A")

vi:h BB(A);ADB(A'),Dh {Pi) and Dh (Pi) defined as for fig. 1, 2.
The above results is gne io the :;thcd cf pct considering local
variables at all, as it has been shown in 86ct10n 3. 1.

6. CLAUSAL DEFINITIONS WITE MOBADIC FUNCIIONS

In Section 2 we introduced a nctation fcr functions, used in
§10]. Now se are going to see how to extend :esults cf previous
sections 3-4, for clauses with functicas.

Functicns can be, either in terms of procedure te1ng defined by
a clause or else, Lke terms of fprccedure calls

let's first observe that:

P{f{X)) <~ Q1(X) jewe-Qn(X) 1is equivalent to:

P (£{X)<—P" {X)
B {X)<=Q1{X) yaeae,Qn(X)

15

500

Thexefcre, we can consider {EP'} to be egmivalent to (P} where
the clausal definition of P does nct ccntain any function, on
its definition part. I. e.

.
{P}=={f. {P*}} and (E'}== [1 {Ci}
i=1

Thus fcr the above defimnition of E, we can deduce:

n
{B}== (£ (] {ci})}

i=1

Thus, when functions are terms of a procedure teing defined Ly a
clause, the result of the grccedure, 1relatively to that
particular argument, in that particular clause, is given by: '

(B} J_k== {£.T}

where I is derived in the same way as in 3.1, as if the function
f didn®*t apgpear at all.

On the other hand if a variable X, argusent c¢f a ©procedure
defipition, is also the argqument of a functicm 'g?, in a
procedure call to Q, then, instead of considering {C}_k, ve will
consider:s dom{g, {Q}_k). Which is a comsequence cf the meaning
of dcg {Secticn Z), and the consideration that:

P (X)<- Q{f(X)

is such that the solutions for P, will ke all those values °'v?,
such that: f(v) € Dhi{Q), 4i.€. a set D suck that *{f.C]}"* € {0}
For example, from: .

B{£(X),9(Y),m{n{2))) <~ Q(X,h{Y)), R(m(X),2Z) we bhave :

(B}1_1== {f.(1Q}_1 N dom(m, (R}_1))}
{B} 1_2== {g.dom (h, {C}_2)}
{P} 1_3=={n. {n. {R}_2Z}}

The seccnd agpproach in 3.2, needs to te slightly modified
according to the previgus notaticns. N

Fcr shat concern transformations, rule ER1 and RER2 need to be
modified so that replacements are not applied to references inm
non-atomic sets (i.e. sets such as (£.17}) and in argqumeants of
the don function. The solved form of set expressions is thus,
such that symbolic sets, defined by cther equaticps may appear
only in set expressions which are rart of non-atcmic sets, or
arqument of the function dom. Everything previcusly said akout
transformations in Section 4, still hclds.

16

507

At this point a further transformation can ke dame to €xpand a
bit more set expressions in non-atomic sets, apd in arguments of
dor, to get scme mnore information atout the results of
procedures, avoiding non terminaticn cf transfcrmaticns, because
of recursive set expressions. Altkough it will nct te dealt with
in this paper, se believe a notaticn, for non-atozmic sets, can
be found, such that, by a similar rrccess cf trarsfcrmations,
the fixpcint of such set expressions can Le derived. We will
then be able to represent data, built by recursive agplications
of fuactions, by a self-contained, recursive synbolic
expression. For the moment wve [rropose the fecllcwing Further
transformations, for the set of equations obtained Lky tke
modified algorithas Transf] and Iransf2.

Transfi:

- apply BER1 so that replacemts take places iz 1ncn-atomic sets
and ip set exrressions, argument of don.

- given a set of n equations, chcose cne of the forz: {P}i_k==T;
1) replace each occurense of the left hand side of the given
equation, by dits right hand side, 4in all set expressions of
other equations. . o

2) apply SS axionms;

-3) choose an equation of the form {P}j_k==1, which has not been
choosen jyet; '

4) repeat 1-3, until all equations have teen chccsen once.

Axioms SS {0ld S axioms plus axioms for non-atomic sets and dom
exrressions) are listed in Appendix 3. They can ke proved
convergent and consistent with the &meazing ¢f ncn-atomic sets
and the dom function. The set expressions still represent
aprroximate soluticns of procedures. '

7. CCELLUSIORS

We have considered logic programs in the Horn clauses fors of
logic with &@monadic functions. We bhave then rresented two
approcaches tc derive, from a given set of clauses a set of
equations. The set of equaticns cbtained refpresent, for each
procedure, its greatest, approximate, set of socluticns; i.e. a
set which contains the denotation defined by the standard
senastics. ’ ' ‘

Equations are derived from clauses by a data flcw analysis, for
the variables involved in the «clause, <carried on over the
corresgondent Aand/Cr graph.

Given a set of equations (derived as in the first cne of the tio
apprcaches presented), ve define a transformation algorithn
vhich reduces eguations to a solved fors. The set cf eguationms
thus obtained is such that each equaticn exfresses, by a set
expression, the set of approxismate =scluticns fcr a given

17

502

e e—— T ———

procedure. By approximate set of soluticns for a procedures, we
mean a set of values (vhen possible) scme cf which are correct
soluticns for the given procedures, while scme others are wrong
soluticns. In any case, no cther values, cutside the approximate
set cf scluticns, can be correct.

The ais of the paper is nct to find tranforsaticms in order to
obtain more efficient programs, as it is the case fcr Progranm
Transformations and Synthesis §13-14-15]. CQur aim instead, is to
find some properties of a program, fros the static amalysis of
its definition, in the framesork of Abstract Interpretations of
Progras, 16}. It 1is because of this that, fcr example, vwe
believe that refences to undefined [fprocedures should ke kept in
set exgressions, for they could be used as a tccl f£fcr program
verificatiocn, [frogram construction and conpositJOn c¢f prograss
which have been defined sefaratelye

BEFEBENCES

11| Kowalski, R.A. - Predicate 1logic as Erogramming Language,
Brcc. Information Processing 74, North Eolland Puk. Co.,
Azsterdam, FE-569-574, 1974,

12} Van Emden, M. H. and Kowalski B.A.- The Semantics of
Eredicate Logic as a Programming language, Journal ACM, Vol.
23, No. 4, pp. 733-742, Oct. 1976

j3] Colmeraver, A. et al. - Un Systeme de Coxzpunication
Hoare—Machine en Francais - Fapport preliminaire, Groupe de
Eesearche en Int. Art., Universite d*pizx - Parseille -
Lusiny, 1972.

14} Warren,D., Pereira, L., BPereira, f. - ERCICG: the language
and its implementation ccmpared to LISP, PICCe SYyBf« On A.I.
and Prog. lLang., SIGPLAN Notices, Vol. 12, No. 8, and SIGART
News. No. 64, pp. 109-115, Auge 1977.

}51 Clark,K. L. and McCabe, F. - IC-EECLCG reference Manual, CCD
Besearch Beport, Imperial College, Icndon, 1979.

j6] Cousot,P., Cousot, R.- Abstract Interpretatiocnm : A Unified
Lattice Analysis of Erograns by Ccnstruction or
2pproximation of Fixpoints. In : SIGACI/SIGELAR Conf. Rec.
cf the Fourth ACM Sjymp. on Principle ¢f EFErogramaing
languages; Los Angeles, Cal., jan. 17-19, 3. 238-252, 1977

|71 Komalski, B.A. - 1Logic for Eroblem Solving; Artificial
Intelligence series, (Nilsson, ©FN.L. ed.), North BHollang,
1979.

18] Llevi, G., Sirovich, Fe~ Generalized 2And/0r Graghs.
Artificial Intelligence, 7, pp. 243-259, 1976

19] Baxque-Puchew, G.- Equations Loclecenres generalisees et
Semantique des prograsmes en lcgique du gfremier ordre
sonadigues. PhD Thesis, Eccle Kormale Superieure, Earis.

}10] Asirelli, P. - Horn Clauses Fcrs cf Lcgic: Algebraic Static
Semantics of Programs. Int. Rep. I.E.I., B82-23, 1982.

18

503

111) Sartelli, A., Montanari, U.- An Efficient Upification
Algorithm, ACH Trans. on Erog. Lang. and Systems, Vol. 4, n.
2, April 198z .

112} Cclmerauer, A.- PROILCG and Infinite Trees, ia Logic
Prcgrassing, K.l. Clark and S.—-A. Tirnlund eds., Accademic
Eress, 1982Z.

113} Burstall, B.A., Darliagtom, J.- A transformation system for
develcping recursive programs. Journal of the ACM 24, No. 1,
46-67, 1977. ‘

{14| Clark, K.l., Darlington, de=- MAlgorithm <classification
through synthesis. The Computer Journal 23, No. .1, 1980. .
115] Burstall, B.M. : Recursive programs: Erccf, transformation
and syanthesis. 1In "™Rivista di Infcrratica™ 7, rre. 25-42,

1976.

AEPENDIX 1

E (X) ('Q‘(X) '.oq.Qn‘X)

E ‘f (X)) <~R1 {X) .oo.'.Bm (X)
B(X)<-S1{g1{X)) ,<eaSk(gk (X))
Efa)<- P({b)<~-

Its correspondent And/ﬁr graph can be drawn as follows:

CE{X

P (X) B{f{X)) X) F{a) {r)

S1(g1(X))eceSk (gK (1))
B1{{)ee-00{X)

Frcm the previous graph, we can deduce the following:

C1(X)e-eCn{X)

{f. {)}
<IN
{R1} edwe {Rm}

dom (91, {S1})eeaadcr gk, {Sk})

{C13<fa. [CR)

19

504

- ABPENDIX 2

E(X,Y,2)<~- Q(X,X,Y,H), F(¥,Y,51), B{§1,X,2)

b3 m (¥} PUgE @
’<‘\ @5 2 /f\ N im_1 ()3
{8)_2
) (C1_4 (F3_1
(C1_1 - 10}_2 |

{P}== (X} X {1} X (2}

{2}== ({Q}_1N [03_2) N (K} _2
f1}== [Q}_3 N{¥}_2

iZ2}== ([R}_3

{¥}== {Q}_4 N{F}_1

(§1}= {F}_3Nn {R}_1

L£1=={Qkn ({1} x {X} X {1} x {¥})
E1==1Q1Nn (¥} X (¥} X (u1})
{E}=={B}N ({81} X {X} X {Z})
EEENLIX 3

1- For all set expre551ons A and B, such that A and B are
ground sets:

- AUB== (x| xX€ A or X € E}

- AN B== { X § x € A and x € B}

2= For all set expression D

- DO {} ==70°'

-INgq =0

- D U {?} == {3}

- LN §2} ==1D

- {CUBND=DN(DPYUB) =DN (B U D) ==L
- (DN B) U D =D (DN EB) =0 U (ENTL) ==T

3) For all atecmic sets D, and all ncp-atcaic sets B

- LT NH == ‘}

4) For all scm-atomic sets, and for all 1,% and n:

“{f o {f cea{f <{}}ee) == [}
1 ¥ n

=if D} U [f .{2}}==(f . [2}}
1 1 1

~{f D} N If .{2}}==(f -]}
1‘ 1 1

§) For all non-atomic sets and
D and all 1, k, sz

- [£ -H} N (£ .D}=={} iff 1yk
1 k :

-]

= If «(f <H}} U (f .{f .D}}== (f «{{f «B} U f{f
1 k 1 1 k -

1 k 1 1 k s

s
-For all functions f:
dam(g, [})==0}
- and for all ground sets [:
dom (g, D)=={}

-For all set expressions T:

don{g, TI) U dom (g, I)==dom (g, T)
dom (g, I) N dom{g, T)==dcm{g, T)
o (g9, {g.1})==T
n n
dei(g, U1)== Udon(g, T)
i=1 i i=1 i
n n
do2 {9, /2 T)== [] dom{g, T)
Ci=11i i=1 i

all set exrressicns H,

21

