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SOB! ASPECTS O! 7BE .STATlC S:EMAN7ICS Ol .tCGIC PB.OGIUl!S i.ITH 
!OIA£IC FUBCtIOBS 

.JBS21ilC'l 

Patrizia Asirelli 

Is t. di Elab. dell •Informa.zione - c. J.B. 
1. S. Maria, 46 - 156100 PlSl - Italy 

le comsider logic programs in the Horn clauses fora of logic 
vith monadic functions, ana prese.nt two aiEroaches tc derive a 
set o.f eg:aations from a given set of clauses.·- The derivation is 
obtained bJ a data f·lov analysis o.f the -vai:iables, involved in 
each clausa.l definition. .Bach equation expresses the semantics 
of a procedure, by means of a set elt"J.z:essiClJJ which, .hJ 
transformation of the set of equations, can te recluced to a 
solved form •. The set expression thus obtained .rei:i:ese.nts, for 
each i:.rocedu.ce its greatest., approximate., set of solutioas;· i.e. 
a set w.hich contains the denotation defi11ed, f c.:r: the same 
pi:ocedure, .hJ the standai:d semantics. '.the approximate solutions 
caA be seen in the contest cf abstract in~~rpcetatioas of 
prograu. to get, by a static analJ.sis of their definitions., 
some 0£ their _properties. 7.he apprc:zimate sclutio.ns, being 
e.zpres.sed by means of set e.xpressions, coula tJteD le used as a 
toc.l for program verificatio.n a.nd constructicn. 

1 •. 11110DUC7IOI 

le p:esent an approach to t!ie stat.ic anal1sis of programs, 
written in a s.iaple logic language, aefiued as in 11-21, where 
procedures are de.fined by . .means of Hoi:n clauses vith monadic 
fa.nctlons,. and where aJ..l clauses ai:E no11 negati-ve. . T.h 1:1s a sort 
of ~EJ:J s.i•ple PBOiOG J3-SJ.. ' 

We .first define aJ1 algebraic semantics cf clausal definitions, 
in the sense of i:epresenting possible .set cf solutions for a 
procedure, by means of equations and set expressions. 

By static semantics of a program ve 1eaD all that can de 
de~uced. statically, about the set of solutions 101: a logic 
progEam, as expressed by its standard seia~tics i2J. 

the aias cf this paper fall into the same f.tame110-ck of J6J, b,at 
for iogic languages instead of algoxith•ic languages. As in 
J6l, 1e get set e~fress~ons which rep.tesent ie the most gene.ta! 
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case, appxoximation to the set of denotations of a procedure as 
defined by the sta~dard semantics. ie also consider And/Or 
g.raf.lis 17-81, i:epresentation of p.cog:i::ams instead of flow-cha.rts. 
7hus, di£ferently from J9J, we do net tr] tc get set eipressions 
which denote the exact set of solutions, tut only an 
approximation of it. At present the wcrk is auch .sEmpllfied, 
vitb resfect to J6J and J9J, since we consider problems 
originated onl7 by the use of mo.nadic functions, tr.e-ated 
s1mbolically, w1thout looking. fct noY, for Ute fix~oints of 
tbeix associated symbolic eipression. 

The same problem as been tackled for monadic lcgic ii:ograms ~ith 
monadic functions; -the next Section will give a brief .s1J11mar1 of 
results obtained, for that case, in J 10 t.. Sec·tion J will 
present two approaches to deduce, staticallJ, a set cf eguations 
from a given set of clauses. In Section 4 we vill pre.sent 
transfromations of such equations tc get a set cf eguations in 
solved for•- Section 5 contains fev considerations on thE 
defined transformations and their z:elatio!l.s to ether works. 
Section 6 eitend.s the results of tbe previous sEctions, to 
clausal definitio.n vith monadic functiolls. ie conclude 11ith a 
brief suamaLJ in Section 7 •. 
Appendix 1, at the end of thE pai:er, gives an examtle of the 
coast.ructio.u of a set o.f eguations for a given set of clauses, 
in the monadic case; Appendix 2 gives an e:xa•_Ele cf a set of 
eguaticns that can be obtained, according tot.he secona appr-0acli 
presented in Section 3. I-n A.PEEDdii 3 a set cf a~iom.s is given 
to .be used fo.i: tran.sfor:mati.-0ns of eguatioas obtaine<1 she.n 
£unctions u:e used in clausai defiDiticGs. 

2 •. BJSULTS ZBO! 7BE !OBADIC CASE 

Given a set of clauses A, definin9 n pi:ocedua::es Pi, aonadic, ve 
consiaer the set of clauses defining each :Et0cedu.1:e.and its 
co.1:resio-11dent A.nd/0.r graph,17-Sj. Then ve trace tbe values ilov 
0£ the variable appearing at the rcot cf the And/Or gx:aph. The 
denotation of a Erocedure Pi, Dh(Ii), (results cf the procedure 
PiJ, can be deri~ed in terms of unicn and intersection of 
deuotatioDs of the predicates involved in the definition of Pi. 
Thus we can de.rive, say, a_n 0/0 graih, cci:resio11dent to the 
And10·1: gi:aph in object, by interpreting And nodes and or nodes, 
respectively as intersection and union Cf-EJ:ations, and replacing 
each ato•ic formulas Qj {X) (where X .is the variable traced), by 
the coz:respondeut set Dh fQj). By Db {Pi) we denote the de.notation 
of ·the predicate Ei, as defined by the operational semantics 
associated to Byperresolution and Instantiatio11 u1le.s, I 2J. 
ApEendi% 1 show~ an eiampie of the all process; from the 0/U 
graph there obtained, the following eguation can be dexived: 

n JD k 
(Pi}== ( 0 {Qj)) tl (f. ( 0 (Bj})] D ( 0 99.! (gj. {Sj})) tJ {a} U {h} 

j= 1 j=1 j:1 
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Whexe: 
each {BjJ, {Qj} denotes the set of values, solutions of 

procedures Bj aJid Oj, resFectively, de~ived from 
the static anaiysis of their clausal defiDition. 

{f.7}, is a notation vbicb, given a SEt (er set e~Eression) T, 
denotes a set of data that, using a common set notation, 
can be e.ipressed as: { f 1.J) 1 1 e 1' } • 

.!2.!(gj, (Bj}) denotes:- a set expression T such that: 
(gj. 7} e {Bj} ; 

- the empty set, U, cthe.twise. 
le have -called •R!~• the function vhicb _produces a set of 
eguatio.a such as the above one, starti11g fi:ca a given set of 
clauses •. fhen ve shov, inductively, that when predicates are 
de.fiJJed by clauses vhere: fu:.actio.n.s sJmliols axe not used or 
else, they are used not .cecursivelJ, then the set e.xpressi·on 
deJioted by {Pl can.be computed to a set of values such that the 
following relatio.n ho.lds: 

t E JJ.h (P) if:f t E {P} i.e. llh (P).= ( PJ 

lhen clauses use function s1mbol.s recarsi vely, ei·thei: directlJ 
0.1:. not. that is, 11hen clauses are such as follows: 

OJ: 
i (.f (X)) <- Q ,1) , P (X) 

P (X) <- Q (.X) ,B (X) 
c 4:f fJ)) <-11 CXJ 

the.ave Deduce equations of the fer ■: 

!P} == If. 7} 

vhei:e t contains re£erences to the symbolic set JP} itself • .I.n 
those cases we neea to f.ind the fiipci.nt of Euch set expressions 
1. Then, if ve ace able to find a nQtation for such fiipoints so 
that by replacement of T in (f.1} we get a nctatioa which is 
recu.Esi~e, hut self-contained and, if we are t.hen al:le to define 
u.nio.n and intersection betvEen such sets then we ca~ i:epresent 
tbe demotation of a predicate bJ a set expression which is 
fi.Jlite, independent o:f otJier predicates and which cam be built 
hJ tlle static analysis of clauses. In f10J we suggest such a 
notation a.nd give tranformation .cu.les fer deducing such 
notations from the set of eguatio.ns obtained ill the fi.Est place. 
on the other hand ve show that those set e:xi:ressioiu: can be left 
sya~clic, and transformed Clf~TJ•s are only partially 
transformed), · to obtain a sEt cf eguaticns, in scl1ed for•, 
which £ep£esent a new set of clauses. the ne~ set of clauses are 
the seapli£ied version of the set of clauses given in the first 
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place. thus, we defined an.algoi:itha lJg~~! such that the 
following 4iagra ■ coD•utes: 

DB 

Deduce 
A------->EA 

7 
r 
a 
n 
s 
f 

------>EA' 

fig. 1 

lfhere DH=(.DhU1).DhlP2·), •••• Dh{Pn)J, for alJ. predicates P1 ••• Pn 
defined in A a.11d A•. 

I · "!hat is, tJae set of eq..ua tions EA• ca.n also te dEJ:i ved from a set 
of clauses A', such that: de.noting by Dh {Pi), the denotation 

A 
of Pi as defined .by the standard .se1a.11tics, vhen Pi is defined 
in a set of clauses A; the11: A' and A ai:e such that, for all 
: .. procedui::es Pi defined in A., £i is defined also in l" and: 

Dh CEi) = Db (Pi) :: Dh fPi) if clauses in A de net contai.n 
l A' 1ocal variabies; 

Db (Pi)~ Dh (Pi) otber~ise. 
A A1 

ftoi::eover, A• can be ohtainE d by ·trans£ or 1a ti ens cf A. 

Eg ua ti ens .BA•• obtained by transforming eguations EA, may 
co..ntain references to s1mbolic sets J.EiJ, 11here Pi is an 
undefi.ned predicate. such symbclic SEts ca.n he eliminated 
(i:eplaced by the empty set {J). In any case such eguations 
eithEr represent a ground set of values ex else,-they may be 
considered as. 1:=atter:n.s fo.c the computation of tbea. 'they can 
al.so tE used as a tool. fo:c programs develci•ent and programs 
co11position, 11here symbolic set are used to define parametric 
specifications .. 

3. 2110 A.PPllOACBBS 'lO T . .BB EXTiN~ION 01 .DEt0CE 

'lo introduce the problem of static semantics, for n-adic 
programs, let•s consider the follc•iDg clau.sEs: 

1) 11 (a,b) <-
2) P (a.X) <-
3) PUC. Y) <-Q (X, I) ,.P (X, Y) 
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IIJ R (J.l) <- C (.J,2) Z (2.I) 

In gEnEral we h.ave clauses such aE: 

PCJ1,. 12, ••• Xn)<- t1(t11, •• tm1J, ••• Qn(tn1, •••• tnl) 

For the mo•ent ve do not consider functions, thus •e assume all 
. terms tij to be variables, ~ither local ct ~ct. 

lie de11cte bJ JP} a set of tuples, each one of •·bicb is ■ea.nt to 
represent a solution for E, acco~ding with the definition of 
Dh U) ill the .1tue case. 

Let•s observe that Db(P) in case of clause 1) is given ty 
{<a,b.>}; thus an obvious vay to acdifJ t.he lll.!~ function. , is 
to produce the same resul.ts for clau,1;es which·ate asse.ttions. on 
the ct.her .laalld, follo11ing the same ap,Proach, for the ·second 
clausE ve get · a tu,Ple such as {<a, 1>], 11hexe 1, IIEans "all 
possible values", J10J • 
.lo% tlle saJ1e c·ia use it is: 

DhiPJ=t <a, t>.I ~ t e B~rtrand universe} 

if we let (?J denote the Her~rand Universe of the set 
defining P, we can represent DhlP) as: {a} X Ii}. 
way ,to. make tJaings egual. is then to define thE 
pi:oducts betwee• sets as usual, sc that: 

of c1auses. 
l.n obvious 
cartesia.11 

{<a,'l>}=={a} X 121 -
as if 3 11~re an ether constant sy.11bcl •.. 7he seaalltics cf (<a, 1>} 
has to .he defied as Dh (E) above, so tba-t tPJ and D.11 (P) 
reeresent the same set of valuEs. 1n genezal, a tuple as 
<a,.t,i.c,d> i:eprese.nts a set o.f tuples whose first tvo and last 
tvo projections are fiied, and the middle cne is one of all 
possible data •. Given the meaning of such a notation, :we can 
redEfine ]educe so that, for all assei:tions, the following set 
eiEression will. be constructed: 

ill C: flt1 ,t2 , •••• ,tn)<-

for a.ll vi= ti if tiis a constant symbol 

v. = •1• if t. is a ,ariable •. 
~ ' 

Let P be a m-adic procedure and let it be def.i.ned bJ n 
assertio~s; then we can deduce t~e £olloving eguation: 

1 1 1 2 2 2 n n n 
fE}== ( < •1 • v2 , ..... vm>,<v1 • Yi ••••"m>, •••• <11 • '2••••v.,.>J 

If a procedu.re 
(.P} , we de.fine 
(P}_ j, j= 1: m. 
j-th ai:gu ■ent 

P has m argume.nts, than 9iven the set of tuples 
them projections of (PJ, eacb one dEnoted by 
Thus. each {P}_j dEmote the ~et cf values for the 

of predicate P, and it is dE_fi11ed l::y: 
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jJ?}_j== { vJ J ~ i= 1:n and -11 < v~, •• vj , •• -v1> e U} } 

Given {P} as above, it is, obviousl1: 

n 
(i} £ Il lP)~j 

j=1 

The sa:se holds when we Deduce each IE}_j, by t.he data £1011 
analysis of vatiables, for all other tJfe cf cla11ses. lie 
present two approaches: one leads to a set of eguations which 
allows to £ind, for each given procedure Ei, an aiproximation of 
Dh Ui)'; the other approac.b. leads to a set cf eg11ations 11bich 
cou.ld be :re£ined to find an approximation of Dh (P.i), -v.hich. is 
the closest one that can he found statically, by the data flow 
analysis of variables. 

3.1 jjrst .!E(lJ:OfSJ! . , 

Like ~or the monadic• case, we consider the And/Or gEaph which 
correspond to a clause: then we ti:ace the -val1Je flcus of .!J:! 
E,iab:1,.§, .ll.9llllent§ .9! !l!!! 123di_e.1.! 12~4.!!.9 defi.ned. .Por each 
variable Xi such t.hat its trace hinds it tc the j-th axgument of 
a call to _11:cocedui:e Q, ve consider {C}_j as the set originating 
values for that variable. As in the 11011adic case 11e then 
inteJ:fJ:et a.s intersectio.n all And nodes and as union a11 or 
nod.as. Just as an examplE, let u.s see that, Ercceediag as 
abcye, fox clause 3 we ■oul.d deduce: 

{E}_ 1== {Q}_ 1 0 {.FJ_ 1 
(P}_2== iQ}_2 0 11}_2 

ibile fox clauses 4: 

{E}_ 1:= {Q}.;..1 
{P}_:2= {1}_2 

lie ca,n see that {P}_1 X {E}_2 derived abovE, do 12ot 
coi:rectly the semantics of P as defined by the 
se~ant.ics for the corresponding ciauses. ln general, 
assertions, (P} and Dh(P), represent the sase set cf 
all other clauses we have: 

Db (P) i {P} 

represent 
standard 

while for 
data, for 

that is, tlae static semantics, def.ined l:ly the data flow a.nal.ysis 
of variables, defines for a predicate P, a denctation which 
contains the denotation defined by the standard semantics. lie 
can easily see that, for eiample, the standard .semantics defines 
for E, relati-velJ to clause 4, the following: 

Dh(i)=={ <t1,t2) J Y<t1,k) e Dh(C) and <k,t2> E th(l) } 

6 



I ! 

I ! 

491 

while the set e.zi:ression we get for Ii}, can be.ezpres..sed as: 

{I?}== {<t1 ,t2 > I ¥- k1 ,k2 : <t1, k1 > e 1,1 and <k2, t2> E {Fl } 

to conclude, given a set of clauses A, for eacb pi:edicate Pi, 
defi.ned in A, by this approach 'i1E 11culd get a set cf eguations 
as fcllovs: 

n 
{Pi}:=. U 

j=1 

m 
IT {~i}j-k 

k=; 1 
foe Ei de£ined ty D clauses, 
and Pi being .a 1-adic i:rccedure •. 

(Pi}j-k== T for 7 a set exi:.r;essian defi.ni..ng the set 
0£ possible values foi: the k-th ai:gument 
of Pi, defined by the j-th clause. 

Let• s cbsei:·ve _ that this va y ve find the greatest appi:oxima tion 
of each Dh(Pi) that can be found by tbis 1ethcd. iet•s also 
ohser-Ye that the set of eg·uations EA a.re such tllat the follo11i.119 
diagram conmutes: 

]~~!! 
DB CA) <-·------1------------>EA 

J I 
I ~ I 
I t J 
I i: I 
j a J 
i D I 

fig. 2 

J s • 
J f • 
+ 'V' 

DH (1 1 ) <~----

Where DB (.IJ: {Db iP1) • l>.b (l:2) , •••• Dh (.En) J 
A. A . A 

.DB (A•)= {Db (P 1),, Db IP2) , ••• Dh Un) l, ana Db {.Ei), · Db (Pi) 
J' A1 A' I A' 

de£inea in section 2, fig •. 1. 
In .fact ve can easily prove that, gi ve.n a clause 1i tll local 
vai:iables tlaat binds together some procedure calls, ignori.119 
.local variables completely, we get a11 a Etrc:zimatic.n of its 
denotation, which is the denotation of an analogous clause, 
vhei:e all local variables, in all irccedure calls are different, 
one fro ■ each ether. 7hat is. given, .foE examRle: 
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Indeed ve find the denotation of Pde.fined as: 

PCl,l)<- Q(X,Z1), £(Z2,Y), B(I,Z3}, !(Z4,ZS) 

Th.as 11e get a set of equations EA, that can also te derived from 
a set of clauses A', such that the denotatioE c.f all ftocedures, 
defined in i ate containea· in tbe denotation of the sa~e 
procedures defined in A•. I • . E. 
Dh (Ei) f Dh (Pi) for all procedures Pi •. 

1 1 1 

The previous telation shows that by ignoring 1ocal variables, 
the method of data flow analysis of vaxia.hles, e.11su.te partial 
consistenc_y vi th .standard se.mantics • .I.11 fact, ·the aet.llod allows 
to .find sets of values such that, so1e of the values a.te coi:rect 
soluticns, ~bile others aren•t. Yet no value, outside tbose 
sets, can be a cotrect solatioD. 

To obtain a set expression for P reiresenti~g a set, nearer to 
DhtP). we should define, given clause q above, two subsets for 
{Cl and jl}, 1,g} and {!} respectively, such that: 

1,g1~= t<t1 .,t2·> J ]ta: <t1 ,t2> E {C) ,,U!,g <t2,t3) e {l}} 

Ill= t<t1 ,t2> · J 3 ta: <t1 , t2> e (11 ,g~ <ta,t1 > e ltl J 

7hE previous sets can also be obtained as follows: 

~)== Hn n ( Hl}_ 1 X ( {Q}_2 n {F)_ 1)) 

(1}-== {F} n I {F}_ 1 n (C}_2) X {P}_2)) 

Then, defiaing fP}_1 and (E}_2 we should consider {~)_1 and 
(1}_2 instead of {Q} and ff). let, alt.hcugh ~} a:nd {l} 
repi:esent the set o.f tuples of t and l, satisfJing clause 4, 
because of the carte.sian product x, (PJ vculd _still be greater 
than Dh(R); i.e.: -denoting by Ul the set ottained hJ 
considering {21 and {!) instead of HH a:11d {.F}, it is: 

Dh (i) ~ {!} ~ {i} 

Thus (£} would still he an approximation of th{P) • 
.Everything 11reviously said about (ia:c-tial ccnsistenc1, still 
holds. Yet fl} is less approximate than (P}. 

!he SEt eipression {El, represents the least aEfroximation we 
can get for the set of solutions of i, bJ the static analysi~ of 
its clausal definiton, Lollowing the af~rcach of tracing 
vaEiables. ?hi~ happens just because the clausal definition of 
P was such that only tMo procedure calls shared a variable. In 
general if a procedure calls a~E such that each cne shaLes one 
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(ot ■01:e), variable vith othe.cs, the.n the least approxiaatE 
soluticn need to be found by an iterati~e trccess: 
1) First defi~e each {~!} for each procedure call; this would 

give a restriction of {Qi} in tei:ms cf cthet irccedures with 
vhich Qi sha.ces its argumenu. Since the saae is done for all 
p.rocedure calls, there may be tuples cf ether frocedures, 
satisfyi.ag the sharing conditions with Qi, which do not 
satisfy other sharing conditions in the same clause. this, in 
geDeral, •Eans that: · 

2) ie need to ~efine a {-'i}' identical to l~jJ tut ••ere the 
sets involved are the restricted ones, •lJ's instead of 
{!} ~s- l 

3) !he process of refining (.SU} has tc go en until we get two 
sets, sa1 {.gi} • and {.Q!J", such tha·t, eitbei: 1,g.-i} •= {_gi) "• or 
else lQi}" is emptJ. 

!hi~, informally described, refining EECcess, •ill terainate. 
Let•s i.a fact reai.nd ,.that, foi: all predicates C and!, vith t110 
arguae.nts (tlle same holds fer predicate vi th a.DJ JI uaber of 
ai:guaeDts), it is: 

1,1 ~ -{Q}_ 1 X (QJ_2, 

JQJ:! Hi} n ( {Q}_ 1 X {C)_2 l 

and also: 

and 

( {QJ_ 1 n {:f}_ 1) X C (Q}_2 n {F}_2) ~ IQ}_ 1 X HH_.2 and 

, 101_ 1 n 1.r1_ 1> x ·, fQJ_2 n tPJ_2l n 101 s <t,1_ 1 x ,~1_2Jn 101& 101 

thus, the refining functioJl is monotone descendent and it stops, 
either -producing an eaptJ se·t, (), oi: p:cducing t.be same set •. 
lloreower·• a he.a the .Process stops• all sets such as [g} and (l} , 
represent, the e:xact set of tupl.es satisf.11.ng al.l conditions in 
the clause.·. 2.han the set of sclution.s fer the ~rcced11xe defined 
by t.he clause· i.n object, should he bui.ld in ter:as o.f t.hese last 
sets •. 

!he abcve pi:ocess can be defined, perhaps- ■ore cleai:.ly, if we 
consider all va.ciables, Either lccals ci: .not, i11vclved in a 
clau~e •. lor each variable VE defime a set expression 
rep . .tesenting its possible values, deducing s-uch set e.xpression 
fro.■ tbe And/0.r g.rap.h of the clause. illus. given a clause such 
as: 

PCi1, 12, ••• Jn)<- Q1Ct11, •• tm1) ••• , tn(tm1, •••• t~k) 

.J.et• s denote by X the set 11. X2, •• ,l.n ana bJ Y the set 
Y1,t2, ••• lv of local variables in the p.rEviuoos clausE. then for 
soae of the a.llove tij it is eitlJeE 

tij ~ X • OJ: 7ij ~ Y • 

9 
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Consider the J.nd/Or graph, G, cori:esponde-n·t tc the abcne c.lause, 
and ttace all variables in it. Then for each vuiatle Zi, with 
Zi e X , or Zi E Y, consider the subgtafb G2i of G vbich 
ccrtes,cnd to the trace of Zi, and tras£crn it as fcllc~s: 

-the toot is labe1led bj { a1ZiJ 

-all And nodes become nones; all Gr nodes 1:ecome U nodes; 

-all nodes QjCtj1, •••• tja), are replaced by an 
arcs leading out, .respectivelJ, to a nodElatellEd 
Qj(tj1, •••• tjm) such tbat therE eiists a k= ~:r, 
tj.t=Zi. .1i,pelldix 2 gives an eza•ple. 

node 11ith k 
:ty {CjJ_.k; for 
11ith 1.Ss~r and 

lie can deduce { a1Qj}, in the same va1 11E deduced W), by 
defining such {a1Qj} in terms of {Cjj and {u1Zi}, depending on 
the variables of Qj in the clause. Ma 1d.ng suxe that by i 11e 
alva1s get a di.f.fetent set identifier, we can get a set of 
eguations which can be transformed i11to S<lllE solved for,11, 1:J a 
tran.sfor•ation p:toces.s analogous to the one presented in ne.xt 
section. 'the set of equations in solved .foi:a, thus ol':taine,a, 
can bE transformed again bJ the abcve mentioned refini.ng 
functicn. 

1:he set of eguations VE get hJ this ai:fi:cach can te summa.1:ized 
,as follovs: Given a set of clauses A, , 
'"- let P be the set of procedure sya.bols, dEf ined, oJ: just 
used, in c1ansal de.finitions of A; 
- let'{P1,R2, •••• Pll} e P , be the set of procedure defined in 
A; 
then, fox a1l Pi an equation is built which leeks as fellows: 

u m , 
Ui}= U ( IIfajX. h 

. .j= 1 Jt= \ Jlc! 
with x e Xij and Xij the, set 

jk 

o.f Yariables, terms of Pi in the j-th clause. 

I.et Z;j be the set of a1.l variable s111hcls, lccal ,01: net, in the 
j-th clause defineg Pi, then: Por each variab1e s1mbol 
Yj.t e Zij' we have a set of equations as fol.lo11s: 

{ajJ }== 1 •here Tis a set expression containing 
jk sjmbolic sets such as (ajCw}. 

For eacb froceduxe Qw, called in 
have a set o.f eguations such as: 

r 

the j-th clause defining Pi, we 

I ajCvJ= fQv} n f II {ajY l ) 
s=l js 

Qw, in the j-th clause defining 

if r-1 is the numbe~ of 
argument of cw and all ?· 5 
are the vatiables, texas 1of 

ii. 

-- ~- ·--------~---------------
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4. 7BJJSIOB8J1l01 01 EQUAtlONS 

We vill only consider the approach seen in 3.1, since we believe 
that t.lie ·transfar.aatio.ns 11e are gcitg ta define, can be 
accordingly aodified to he applied to equations as aefined in 
3.2 atove.. · 

%bus, from J.1 above, •e bave that: given a set cf ciauses J, 
DedueetJ), _pi:odaces a .set of eguations, as in the ao11adic case, 
vith the further complications of fJ:Ojectic~s. Js to transfo~m 
the .se-t cf eguations define iD 3. 1 aboYe, let as chserve that 
the beat result ve· would iite to get, is a "a se-t of eguaticns, 
eacla one o.f vhic.b associates a gi:ou.nd set (a set of cons·tant 
s71.bcls), to a procedure. Si.nee so.me procedures may .te defined 
in t_er ■s of ·11ndefi.ned procedures, and since 11e believe that this 
is a useful inforaation to keep, we want final set expressions, 
associated to procedures to mantai.n such i:e;fere.nces •.. 'lh us: 

lie .say that a set of eguations is in '!ill~~ !2t.1•, if and ODlJ 
if., each eguation has the for■: 

{Pi)==t o.r {Pi}j_lt= 1: 

for al.l p.roceaure s1mbols Pi, and al.I int~gez j and k, and a.ll 
set ex,.ression ! such that: 

1) ! i.s a ground set; else 
2) t i.s the eaEtJ set {} ; else 
3) 2 is a set expression which containssy•bolic sets (Qj} and 
such tJiat {Qj} does .not appear on the left-band aiae of a.ny 
o·Uae.E _eguation (Qj is an u.ndef.ined procedure). 

le define .now the .following tran.sfcu:11a Uc.11 algcri th.a 

_ti::a.nsu: 
1) 8EFlJ :cule BB 1; 
2) apply EB, until possible; 
3) apply s azicas, u.ntil possible; 

.D II 

l1G.t all eguations o:f the for•: {Pi)-== U II (Pi} j_k 
j=1 .k= 1 

replaces each occurence 0£ '(Ri}_k•, in all set eziressions of 
all cthe:i: eguatioJJ.s, hJ 

J1 
U {ij j_k 

j=1 

11 



Since from Deduce ~e get equations such as, for examFlE: 

{P}= 4 JP} 1_ 1 X •• )C {P) 1_m) O ........ a ((l:} u_ 1 X •• X lI) u_m) 

(P} 1_ 1= ( (M}_ 1 n {i} _2) X ( {1:} _ 1 n fD}_J) · 
••• {Pl 1_•=·-····--·--· ·-· ••• 

(P} u_ 1=•••• ·--IP} u_ a==•••~--••• 

{111 =: (111} 1_ 1 X •• X {PJ} 1_mm) tJ ••• o ((!J Jc-1 X •• X {!} k_1n) 
••• 

Bul.e liB1 allows to eliminate all references of -· tyi:e 1 {P}_v• 
and replaces them by a more detailed set exi.ce~sion in terms of 
• {Pl j_• • • s. BJ BB 1, · the previous e:xample 11ould be ti:ansfor11ed 
in: 
{P}== ( (Pl 1_ 1 X •• XiPJ 1_m) U •••••• U ( U}u_ 1 X •• X(P] u_m) 

{I?} 1_ 1== ({ll}_ 1 n {'l}_2) X ( ((P} 1_ 1 u •• a U} n_ 1) n {DJ_3) 
••••••• 

with a.ll. otbeJ: eguations modified accc.tdinglJ. 

JliJ1i'1..!!i9D Bule IEB) 

Given an eguation such as: {Pi}j_l== 1 
such that 'lco11tains' {Pi}j_.k•, replaces 1 {Pi}_j_k• iJJ T, by the 
e11i:t1 set l]. 

-Ror all set expressions t: 
{} 1l 1 -== 1 
n n 1 := u 
-for all gxound sets D i 

i 

n 
i=1,n: fI £ is dE~ined as usual; 

i=1 i 
Opei:ations of 
moreovEr s 
dist:cibu tvi t_y 

O and n are 
will contain 
of u alld n. 

defined for ground sets as nsual; 
axic11s Jo:c asscciati,itJ aDd 

iu1e IB1 defined 
rule E& above, to 
the monadic case 
obsei:vation that, 

for the monadic case, as bee~ modified 
take i.nto account projecticDS cf tui:les. 
rule Ei was an obvious conseguEnce of 

given a recui:sive clause such as: 

PCl) <- Q(X),B{X),P(X) 

into 
.For 
the 

accoi:ding to its ~tandard semantics, no denotations, different 
from those generated by all other clauses defiEing E, ~ill be 
gene.Ia ted bJ that clause. In the n-adic case, the analogous. 

12 
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llappe.as for recursion over the saae arguaent <1f a-Erocedure. 
7llat is, consider the foliowing clause: 

P (X,X) <-P ll,Z) ,BU, I) 

Prom the standard semantics we have ttat the i;:cevicas clause 
adds tuples tc the denotation of E, defined ty the ether clauses 
defining P, in the sense that it adds tui;les whe.te onlJ the 
second elemeats may he new. Said it anothEr way, considering 
the greatest set of solutions fc.:c E, de.noted bJ: 
Dh(P)-1 X ~h(P)-2, the above ciause may ad~ ele•ents to DhCP)-2, 
not to Dh(P)•1. Thus, si11ce :we are ncv looking fc1: the greatest 
a,P.E.EC:ziaatio11 o£ Dih(P), 11e can collside.r the atove clause having 
the saae greatest set of solutions of P def.ined as: 

P CJ.J) <-P• (X,J) ,:& {Z, Y) 

P (X,l) <-P 1 (J, l) 

and where P' is defined as the 1:est of P. 
defined h1 u clauses and the one considered 
k-th, then P' is defined so that: 

k-1 u 
DhfP')== UJ>h,P)i D ( U DhU)j 

i=l j=k+1 

that is, if 2 was 
1re1iou~l1 vas the 

1lh•s ve define .JB so that each time 11e have egua·tions such as: 

{.P}i_j= {{P}i_j O '11) X ( ••• 

we replaces all occui:eoces of • (PJ i __ j •, en tlJe left hand side 0£ 
Uae pr,nicus eguatio11, hy the empty set • (} •• 

!.ransf1 as defined above 11il.l certainly stops, since tlae nuaber 
of substitutions BR1 has to do is finite: aoi:eo~er, each 
substitution i.Ioduces a set of equations such that the sa11e type 
of sets {P]_k, foi all predicates, will not appear a~ymore in 
an1oae clause, unless Pis undEfi.ned (thus nc eguation exists 
fer (I}); ll1 needs to be done onlJ once. 
The sa ■e, oz course, b.ol.ds for EB; 
S axio,as ai:e obviouslJ convergent, and a point. vi.11 le reached 
so that no o.ne of them can be ai::Elied anyaci:e. 

luEther transf:comations a.re defined bJ the ~allowing algorithm: 

7:ca11sf2 

1) ai:ElY liB2; 
2) aEply !B; 
3) aEply S axic•s; 
4) repeat from 1) 
any ac.re. 

to 3) until all of t.hea. ca11nct be applied 

13 



B~Elacement .!.!!1.§ 2 (BR2} 

Given an eguations of type: {P}Lk= 1 
where i is a set eipxession; ~eplaces each occurence of• {P}j_k• 
by Tin all set ex~ressions of all otbet eguaticEE. 

EB and S axioms are define as in lE~ill• 

Bule Bi2 is a transformation aaalcgous tc BB1. 

t1ansf1 sto{ls, as 11el.l as 'Iransfj does. tet•s in fact observe 
that: . 
BB2 is applied after i~§£1 is ccmpletEd; nc eguaticn. such as 
(P}j_K=i, will be such that T contains '{F]j_i• itself (because 
of !Ji in __.ID!§i 1) ;. 
At each step, BB2 eliminates all references tc sets such as 
• l P} j_.k•; thus, the next time 1lB2 won •t be applied to the same 
eguation: since this-applies to all eguation.s ana since there 
are a finite number of eguatio11s, after a 11bile, BB2 aill not be 
aEplicable anyaore. · 
Eecause of the same sort of considerations, about EB·aud s 
uicas, we can conclude that ~t!.!!§f2 terai»atES, F~oducing a set 
oz eguatioas each oDe of 11hich has associated: eithe.t a ground· 
set, CL I} oi: else a set exp.cessioD ccntaiDing i:e.ferences to 
undefined procedui:es, i.e. it produces a set of eg~ations in 
solved .!.9ll. 

At the e11d, since refe.1:ences to {E}j_k do not appear in any set 
ezpression and since they where built jost fer the sake of 
transformations, all eguations for such set~ can ie eli•inated; 
a.ll that vi.11 remain is a set of eguaticns, fci: the Frocedures 
defined in tlie set of clauses given in the f ii:st place. 

5. f .Ei BElUBIS OJI 1:RABS!'OBMA7IONS 

The transformation process, presented im Section 4. is such that 
the follo~i.ng diagram commutes: 

C: -

~:9.S.! 
DB (.l) <-------- ------------)!JI 

I 1 I 
I J j 2 
I J J .t 
I r J I a 
I ]~ a J I n 
I .n ,J J s 
J t l f 
J 1 I 1 
J I J 

'1, I I 
DH,A')<--------- •----------->!1 1 

Ded.Y.£.! 

'I 
r 
a 

+ n fig. 3 
s 
f ... 
"' 
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In fact, l&.!!1§!1 and 7ransf2 stcEs, ircducing a 
equations, EA•, in solved form; thus, the aigocith• 
T.raDsf 1 followed by .I!A.!!§!2 is so.11112lete. It ensu.res a 
to the set of eguations given in the first place. 

set of 
give.n tJ 
solution 

Furthermore, the set of equations EA•, can te deducea from a set 
of clauses A', such that A and A' have the ~ame greatest 
aRpi:oxi•ate set of solutions, .!U!, with: .fill=fl!CP1) ••••• RJ!(Pn)J, 
vhere each R.b (.Pi) . is the greatest set of approximate solutions 
of Pi1 for all .PJ:ocedu.res Pi defiDed in A. 
In fact, BB·1, BB2 and s axioms, d_o net alte.r the se ■a.ntics of 
the .set o:f eguations the1 are applied to; t.bu.s, the set of 
clauses correspondent to the set of eguations. tefore and after 
BB1, iB2 and s axioms, can be cbtal~ea bJ a similar 
transformation of clauses in A •. 

T.he tra.nsforaation process given in Sec-. q, is e9oi 1alent to the 
non•deterainistic algorithm, give.n in 111 J • which ti:ansform a 
given set of eguations into another one. in soved fc~a, to find 
an eJficieat unification algorithm. BB1 aJJd 5B2 are analogoas 
to '.JAriabl§ lliaination•• J11--12J, and to thE JU!j.2Jdi,D.9 
transfi:oaatioll defined in Program Transforaatio.ns. J13-14J. EB 
is analogous to the transformation vbich e.tases e13uations such 
as x=x. ~n J11J, and Compaction in 112j. Also· EB is Equivalent 
to J:eirese.nt by (} the failurE of transfctaa ticns. t 111 for 
eguaticns: :r-=t, •here t coutaiu x., 

.For all procedures Pi, defined in I and J', their denotations, 
as defJned by the standard sEmantics is such that: 

Db Ui) ~ Dh (Ri) th us .OB (A) ~ DB (J•) 
1 1 1 

vith DB(A). DB(J').Dh (P~) and Db (Pi) defined as foi: fig. 1, 2. 
. A 11 

The above results is due to the methcd c.f ~ct conside.ting local 
variables at all, as -it has been shown in SEctio.n 3. 1. 

6. ClltJ,SAL ll.llllH7iONS WltB l!OliADlC lU:NCJIOliS 

I.a SEc·tion 2 ve introduced a .notation fer function~, used in 
j10J. low •e axe going to see how to exte~d results cf previous 
sections J-4, for clauses with fumcticns. 

Runcticns can be, either in terms of pxocedure teing defined by 
a clause or else. te terms of Erccedure calls. 
J.et•s fir.st obse.r~e that: 

PfftiJJ<- Q1(J), •••• Qn(X) is equivalent to: 

P (f (.J) <-P' ll) 
P' UJ <-Q1 (X) ••••••On (X) 

15 
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7herefcre, we can consider {P'} to be eg~ivalent to {P} vbere 
the clausal definition of P does .net ccntain a111 function, on 
its defini tioII fai:t. I. e. 

·. n 
{P}== {f. [P•J) and (E'}= fl {Ci} 

i= 1 

' 
Shus fer the above definition of i, ve can deducE: 

n 
UJ= {.f. ( fl {Ci})} 

i=1 

1ha.s. 11hen functio.as are terJlls of a procedure .tei.ng defined l:y a 
clause, the result of thE procedu.:re, xe1ati'Ve1J to that 
particular argument, in that particulac cla-use, is given by: 

{P} j_k== {£. 7} 

vbere 7 is derived in the same •ay as ~n 3.1, as if the function 
f didn•t appear at all •. 

On the other hand if a variable x, a.cguaent cf a procedure 
defi»itiou, is also the acgu~ent of a fumctica •g•, in a 
procedure caJ.l to Q. then, instead of considering {Q}_.k, we 11ill 
.con.sider: dom (g,, HH_k). Which is a conseguEDce cf the meaning 
of .9.9..1 (Section ~), and the consideration that: 

PIX)<- Q If fl) 

is such that the solutions·for P, vill te all those values •v•, 
such tbat: f(v) E ~blQ), i.E. a set D such tbat 'ff.CJ• e (Q}. 
lo:c example, from: 

Pjf(X),g(I),m(n{Z)))<~ Q(X,h{Y)J, R(m(X),Z) ve have: 

(P} 1_ 1== {f. ( JOJ_ 1 n _g.Q_! (m, {R} _ 1))} 
fl!] 1_2= {g • .9.!t!(h, JC}_2)} 
(Pl 1_3·= {m. jn. IB}_2]} 

!he second approach in 3.2, needs tote sJ.i9htly modified 
accoi:ding to the previous notaticns. 

Fci: 11hat co:ncern transfor.mations, rule EB 1 and BB2 need to be 
modified so that replacements are not app.lied to i:eferences io 
non-atomic sets (i.e. sets sucb as (f.'l}) a.nd in ai:guments of 
them function. 7he solved focm of .set EXEression.s is thus, 
sucb that symbolic sets, defined bJ ether eguaticm~ may appear 
on.ly in set expressions which are part of non-atcaic sets, oc 
argume11t of the function .Q.2.!• Everything previously said about 
transformations in SectioD 4, still held~. 

16 
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At this point a further transformation can te done to expand a 
bit 11ore set expressions in .non-ato.aic sets, aDd in argwaent.s of 
do ■, to get .scme more information atout tbe .results of 
procedures, avoiding .non termina ticrn cf transfcrmatic.ns, because 
of recursive set expressions. Altl:ough it will Dct be dealt with 
in this paper, we believe a notation, for non-atomic sets, can 
be found, such that, by a simila.E precess cf ~ramsfcrmations, 
the fixpciut of such set expressions can te derived. He vill 
the.a .be able to represe.n·t data, .built b1 recursive .aiplicatio.ns 
of functions, .hJ a self-contained, .Eecursive symbolic 
ezp.ression. !or the moment ve Eropose the fcllcving .further 
ti:a11sfcrmatio11s, for the set of equations obtained J:y tlle 
modified algorithms 7ransiJ and 1,1.nsf2. 

,J.ransf3: 

- applJ BBl so that replacemts take pl.aces im J1c.11-ato11ic sets 
and in set exEres2ions, argument of~-
- given a·set o.f a eguations, choose cne of the fer•: (P}j k==1:; 
1) reElace each occurense of the left hand side of the-given 
eguatioD, by its right ha.11d·side 1 in ill set upressions of 
other eguations •. 
2) aEply ss axiom~; 
.3J choose an eguation of the fora {.P} ik=-=1, which has not been 
chcasen Jet: 
4) repeat 1-3, u.nUl all eguations have .teen cbcosen o.nce •. 

Axioas SS (old S axioas plus axioms for non-atomic sets and do• 
exEre.ssions) are listed in Appendix 3. 7hEJ can te prottd 
convergent and consistent •ith Ue meaning cf .ncn-atomic sets 
and tbe 4.9.1 function •. %he set expressions still represent 
approxi•ate soluticns of procedures. 

7 •. C05CJ.USJ:O.RS 

We have considered logic programs in the Born clauses fora of 
logic wit.la monadic functions. lie ha,e the.n presented two 
approaches tc derive, from a given set of clauses a set of 
eguatic11s. ,the set of eguations obtai11ed re,1:esent, fo..r each 
procedure, its greatest, appro.ximate, set o.f solutions; i.e. a 
set 11hich co.atai.ns the denotation de.fined bJ the standard 
se aa ll tic.s. 

Bguations .are derived .from clauseJ: bJ a data flew analysis, fo.c 
the Yariab.les involved i.n the clause, carried on o-ver the 
co.r:respondent And/Cr g.caph. 

Given a set of eguatio.ns (derived as in the first cne 
aEprcaches presented), we define a transformation 
which reduces eguations to a sol~ed fora. 7he set cf 
thus obtained is such that each equation ex,Eresses, 
ez_p.cession, the set o.f appro:xima te sol·uticns fer 

of the two 
algorithm 
eguations 
.by a set 

a given 
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procedure. By aFproximate set of soluticns for a procedures, we 
Dean a set of values {when possible) scue cf ~hich a~e coirect 
soluticus for the given procedures, while scme others are ~rong 
soluticns. In aDy case, no other values, outside the afpro.rimate 
set cf sclutions, can be correct. 

The aim of t~e paper is not to find tLanfox1aticns in order to 
obtain more efficient programs, as it is the case for Program 
transformations and SJnthesis J1J-14-15J. our aim instead, is to 
fi»d some properties of a program, ftom the static amalysis of 
its definition, in the framewoLk of Abstract lzterpretations of 
Progra11, 161. lt is because of this that., foi: eJraaple, we 
believe that refences to undefined procedures should 1:e kept in 
set expressions, for they coul.d be used a.s a tcol fer program 
vei:ificatioll, 1rogi:am construction a.nd co•i:osition cf programs 
which have been defined SEFaratelJ. 
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Jj.f !IDll 1 

E (X) <-Q 1 (X) , •••• Q.n (X) 
.E If (XI) <..,;B1 fJ), ••• ·.Bm (X) 
P ,x) <-S 1 (g.1 (X)), ••. S.k (g.k (l)) 
E (a)<- R (b) <-

Its correspondent And/0.r: graph can be drav.D as follow~: 

Prem the pre~ious graph, ve can deduce the following: 

{f. ( ) } ·•~.6 

{R1} .J.·~ ~11} 
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APPEND.IX 2 

(i} 

A 
(C}_4 IF}_ 1 

lR}== ll} X {Yl X {Z} 

111== t tQl_ 1 n 101_2> n tlil _2 
ll}== {0]_3 ntP}_2 
Ul== l1l}_3 
111== IQJ_4 n 1.11_ 1 
Ii 1}= {PJ_3 n !R}_ 1 

1'}-== {Q} n (il} X (.I} X (l} X {W}) 
ll }== IQ J n ( ( I 1 X ( I} X ( li 1} ) 
UJ= lB} n ( 1~ 1} X (.X} X {Z}) 

{ i 1} . 

~ 
11}_3 JB}_ 1 

{Z] 
I 

[B}_3 

1- Por all set expressio.ns A and B, suc.h that .A a.nd Bare 
ground sets: 

- Au B -== t ~' X € A or XE E} 
- An B== l X j XE A ana Xe E} 

2- .Eor all set expression D . . 
- D 0 n -== D' 

- i: n u = {} 
- D u l?J == (:} 
- t n {?} = D - fD u B) n D = D n (D u B) .=D n tB 0 D) -- D 
- .D n B) 0 D = D u (D n 13) .= D u If n t> :: Jj 
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3) lor all atomic sets D, and all ncn-atcaic EetE B 

- D n H == n 
q) Por all .u·_on-atomic sets, and for all l,v a.11d n: 

-ff .f.f ••• ff -UJ •• J = U 
l v 11 

- lt • .OJ o ff • f?}}= {f • f?JJ 
l l 1 

· -(f .DJ n lf • {?}}== {f .DJ 
l l l 

5) For all non-atomic sets and all set eiireEsic~s a, 
D and all 1~· k, s: -------.. ---· ···--· -·- ·- . 

Jf .BJ n (f • DJ={} iff l'i'k 
l k 

- ff • {f • BJ J u If • ff • J>}} == (f • C {f • BJ u ff • .DJ)) 
l k l s l k - s 

- ff - Jf • HJ} n {f - {f • D} l == {f - ({f .BJ n {i .;. D}) J 
1 Jt l s l k E 

-Ror all functions f: 

h.!Cg, U )== U 

- and for all ground sets D: 

.2.9.! (g., D)={} 

-Per all set eipressions T: 

doa(g, 7) U .9.2.!S(g, T)--j.2._!fg, T) 
m<g, i> n mcg, T>=m,g, T> 
..9.2.1(9, {g.t})== T 

D .D _ 
lli (g, U ~ )= U .9.2.! (g, T ) 

i=1 i i=1 i 
D D 

S9.!(9,fl7)== fl.9.2.1(9,7) 
i=1 i i=1 i 
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