SCHE ASPECTS OF THE STATIC SEMANTICS OF LCGIC PROGRAMS WITH MONAGIC FUNCTIONS

Patrizia Asirelli

Ist. di Elab. dell'Informazione - C.N.R. V. S. Maria, 46 - I56100 PISA - Italy

AESTBACT

We consider logic programs in the Horn clauses form of logic with monadic functions, and present two approaches to derive a set of equations from a given set of clauses. The derivation is obtained by a data flow analysis of the variables, involved in each clausal definition. Each equation expresses the semantics of a procedure, by means of a set expression which, by transformation of the set of equations, can be reduced to a solved form. The set expression thus obtained represents, for each procedure its greatest, approximate, set of solutions; i.e. a set which contains the denotation defined, for the same procedure, by the standard semantics. The approximate solutions can be seen in the contest of abstract interpretations of programs, to get, by a static analysis of their definitions, some of their properties. The approximate solutions, being expressed by means of set expressions, could then be used as a tool for program verification and construction.

1. INTEODUCTION

We present an approach to the static analysis of programs, written in a simple logic language, defined as in [1-2], where procedures are defined by means of Horn clauses with monadic functions, and where all clauses are non negative. Thus a sort of very simple PBOLOG [3-5].

We first define an algebraic semantics of clausal definitions, in the sense of representing possible set of solutions for a procedure, by means of equations and set expressions.

By static semantics of a program we mean all that can de deduced, statically, about the set of solutions for a logic program, as expressed by its standard semantics [2].

The aims of this paper fall into the same framework of [6], but for logic languages instead of algorithmic languages. As in 16], we get set expressions which represent in the most general case, approximation to the set of denotations of a procedure as defined by the standard semantics. We also consider And/Or graphs [7-8], representation of programs instead of flow-charts. Thus, differently from [9], we do not try to get set expressions which denote the exact set of solutions, but only an approximation of it. At present the work is much semplified, with respect to [6] and [9], since we consider problems originated only by the use of monadic functions, treated symbolically, without looking, for now, for the fixpoints of their associated symbolic expression.

The same problem as been tackled for monadic logic programs with monadic functions; the next Section will give a brief summary of results obtained, for that case, in [10]. Section 3 will present two approaches to deduce, statically, a set of equations from a given set of clauses. In Section 4 we will present transfromations of such equations to get a set of equations in solved form. Section 5 contains few considerations on the defined transformations and their relations to other works. Section 6 extends the results of the previous sections, to clausal definition with monadic functions. We conclude with a brief summary in Section 7.

Appendix 1, at the end of the paper, gives an example of the construction of a set of equations for a given set of clauses, in the monadic case; Appendix 2 gives an example of a set of equations that can be obtained, according to the second approach presented in Section 3. In Appendix 3 a set of axions is given to be used for transformations of equations obtained when functions are used in clausal definitions.

2. BESULTS FROM THE MONADIC CASE

Given a set of clauses A, defining n procedures Pi, monadic, we consider the set of clauses defining each procedure and its correspondent And/Or graph, 17-81. Then we trace the values flow of the variable appearing at the root of the And/Or graph. The denctation of a procedure Fi, Dh(Fi), (results of the procedure Pi), can be derived in terms of unicn and intersection of denctations of the predicates involved in the definition of Pi. Thus we can derive, say, an A/O graph, correspondent to the And/Or graph in object, by interpreting And nodes and Or nodes, respectively as intersection and union crerations, and replacing each atomic formulas Qj(X) (where X is the variable traced), by the correspondent set Dh (Qj). By Dh (Fi) we denote the denotation of the predicate Fi, as defined by the operational semantics associated to Byperresolution and Instantiation rules, 121-Appendix 1 shows an example of the all process; from the Π/U graph there obtained, the following equation can be derived:

Where:

can be expressed as: $\{f(y) \mid y \in T\}$.

 $- \pm ho$ can $\pm u$ cot ()

- the empty set, {}, ctherwise. We have called '<u>Deduce</u>' the function which produces a set of equation such as the above one, starting from a given set of clauses. Then we show, inductively, that when predicates are defined by clauses where: functions symbols are not used or else, they are used not recursively, then the set expression denoted by {P} can be computed to a set of values such that the following relation holds:

t \in Dh(P) iff t \in {P} i.e. Dh(P) = {P}

When clauses use function symbols recursively, either directly or not, that is, when clauses are such as follows:

P(f(X)) <- Q(X), P(X)

OL

 $P(X) \leftarrow Q(X), R(X)$ $Q(f(X)) \leftarrow P(X)$

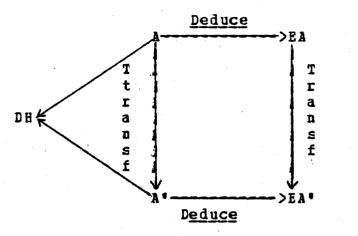
then we <u>Deduce</u> equations of the fcrm:

 $\{P\} == \{f.T\}$

where I contains references to the symbolic set {P} itself. In those cases we need to find the fixpoint of such set expressions 1. Then, if we are able to find a notation for such fixpoints so that by replacement of T in {f.1} we get a notation which is recursive, but self-contained and, if we are then able to define union and intersection between such sets then we can represent the denotation of a predicate by a set expression which is finite, independent of other predicates and which can be built by the static analysis of clauses. In [10] we suggest such a give tranformation rules for notation and deducing such notations from the set of equations obtained in the first place. On the other hand we show that those set expressions can be left transformed ({f.T}'s symbolic, and are only partially transformed), to obtain a set of equations, in solved form, which represent a new set of clauses. The new set of clauses are the semplified version of the set of clauses given in the first

place. Thus, we defined an algorithm <u>Transf</u> such that the following diagram commutes:

fig. 1



Where DH={Dh(F1),Dh(P2),....Dh(Pn)}, for all predicates P1,...Pn defined in A and A*.

That is, the set of equations EA⁴ can also be derived from a set of clauses A⁴, such that: denoting by Dh (Pi), the denotation

of Pi as defined by the standard semantics, when Pi is defined in a set of clauses A; then: A* and A are such that, for all procedures Pi defined in A, Fi is defined also in A* and:

Dh (Fi) = Dh (Pi) = Dh (Pi) if clauses in A dc nct contain A A' local variables:

Dh (Pi) C Dh (Pi) otherwise. A A⁴ Moreover, A⁴ can be obtained by transformations of A.

Equations EA*, obtained by transforming equations EA, may contain references to symbolic sets [Fi], where Pi is an undefined predicate. Such symbolic sets can be eliminated (replaced by the empty set {}). In any case such equations either represent a ground set of values or else, they may be considered as patterns for the computation of them. They can also be used as a tool for programs development and programs composition, where symbolic set are used to define parametric specifications.

3. TWO APPROACHES TO THE EXTENTION OF DELUCE

To introduce the problem of static semantics, for n-adic programs, let's consider the following clauses:

1) F(a,b) <-

- 2) P(a,X) <-
- 3) P(X,Y) < -Q(X,Y), F(X,Y)

4) $P(X, Y) \leftarrow Q(X, Z) P(Z, Y)$

In general we have clauses such as:

P(X1, X2,..., Xn) <- G1(t11,...tn1),..., Gn(tn1,...,tnk)

For the moment we do not consider functions, thus we assume all terms tij to be variables, either local cr nct.

We denote by $\{P\}$ a set of tuples, each one of which is meant to represent a solution for F, according with the definition of Dh $\{F\}$ in the same case.

Let's observe that Dh(P) in case of clause 1) is given by {<a,b>}; thus an obvious way to modify the <u>Deduce</u> function, is to produce the same results for clauses which are assertions. On the other hand, following the same approach, for the second clause we get a tuple such as {<a,?>}, where ?, means "all possible values", [10]. For the same clause it is:

 $Dh(P)=\{ \langle a, t \rangle \mid \forall t \in Herbrand Universe \}$

if we let $\{?\}$ denote the Herbrand Universe of the set of clauses defining P, we can represent Dh(P) as: $\{a\} X \{?\}$. An obvious way to make things equal is then to define the cartesian products between sets as usual, so that:

 $\{\langle a, ? \rangle\} == \{a\} X \{?\}$ as if ? were an other constant symbol. The semantics of $\{\langle a, ? \rangle\}$ has to be defined as Dh(F) above, so that $\{P\}$ and Dh(P) represent the same set of values. In general, a tuple as $\langle a, b, ?, c, d \rangle$ represents a set of tuples whose first two and last two projections are fixed, and the middle one is one of all possible data. Given the meaning of such a notation, we can redefine <u>Deduce</u> so that, for all assertions, the following set expression will be constructed:

 $\{\langle v_1, v_2, v_n \rangle\}$ iff C : $F(t_1, t_2, \dots, t_n) \langle -$

for all $v_i = t_i$ if t_i is a constant symbol

 $v_i = *?*$ if t_i is a variable.

Let P be a m-adic procedure and let it be defined by n assertions; then we can deduce the following equation:

 $\{\mathbf{F}\} == \{ \langle \mathbf{v}_1^1, \mathbf{v}_2^1, \dots, \mathbf{v}_m^1 \rangle, \langle \mathbf{v}_1^2, \mathbf{v}_2^2, \dots, \mathbf{v}_m^2 \rangle, \dots, \langle \mathbf{v}_1^n, \mathbf{v}_2^n, \dots, \mathbf{v}_m^n \rangle \}$

If a procedure P has m arguments, than given the set of tuples $\{P\}$, we define the m projections of $\{P\}$, each one denoted by $\{P\}_j$, j=1:m. Thus, each $\{P\}_j$ denote the set of values for the j-th argument of predicate P, and it is defined by:

5

 $\{P\}_{j==} \{ v_{j}^{i} \mid \forall i=1:n \text{ and } \forall < v_{1}^{i}, ..., v_{j}^{i}, ..., v_{m}^{i} > \in \{P\} \}$ Given $\{P\}$ as above, it is, obviously:

[F] <u>C</u> ∏ [P]_j j=1

The same holds when we <u>Deduce</u> each $\{F\}_j$, by the data flow analysis of variables, for all other type of clauses. We present two approaches: one leads to a set of equations which allows to find, for each given procedure Fi, an approximation of Dh(Fi); the other approach leads to a set of equations which could be refined to find an approximation of Dh(Fi), which is the closest one that can be found statically, by the data flow analysis of variables.

3.1 First approach

Like for the monadic case, we consider the And/Or graph which correspond to a clause; then we trace the value flows of <u>all</u> <u>variables, arguments of the predicate being defined</u>. For each variable Xi such that its trace binds it to the j-th argument of a call to procedure Q, we consider {C}_j as the set originating values for that variable. As in the monadic case we then interpret as intersection all And nodes and as union all Or nodes. Just as an example, let us see that, proceeding as above, for clause 3 we would deduce:

 ${P}_{1==} {Q}_{1} \cap {P}_{1}$ ${P}_{2==} {Q}_{2} \cap {P}_{2}$

While for clauses 4:

 ${P = 1== \{Q\} = 1 \ \{P\} = 2== \{F\} = 2$

We can see that $\{P\}_1 X \{F\}_2$ derived above, do not represent correctly the semantics of P as defined by the standard semantics for the corresponding clauses. In general, while for assertions, $\{P\}$ and Dh $\{P\}$, represent the same set of data, for all other clauses we have:

 $Dh(P) \subseteq \{P\}$

That is, the static semantics, defined by the data flow analysis of variables, defines for a predicate P, a denctation which contains the denotation defined by the standard semantics. We can easily see that, for example, the standard semantics defines for F, relatively to clause 4, the following:

 $Dh(F) == \{ \langle t1, t2 \rangle \mid \forall \langle t1, k \rangle \in Dh(C) \text{ and } \langle k, t2 \rangle \in Dh(F) \}$

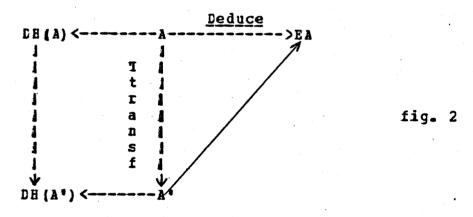
while the set expression we get for {F}, can be expressed as:

 $[P] == \{ \langle t1, t2 \rangle \mid \forall k1, k2 : \langle t1, k1 \rangle \in [Q] \text{ and } \langle k2, t2 \rangle \in [F] \}$

To conclude, given a set of clauses A, for each predicate Pi, defined in A, by this approach we would get a set of equations as follows:

[Pi]j-k== T for T a set expression defining the set
of possible values for the k-th argument
of Pi, defined by the j-th clause.

Let's observe that this way we find the greatest approximation of each Dh(Pi) that can be found by this method. Let's also observe that the set of equations FA are such that the following diagram commutes:



Where DH(A) = {Dh (P1), Dh (F2),...,Dh (Fn) } A A A DH(A') = {Dh (P1), Dh (P2),...,Dh (Fn)}, and Dh (Fi), Dh (Pi) A' A' A' A' A A' defined in Section 2, fig. 1.

In fact we can easily prove that, given a clause with local variables that binds together some procedure calls, ignoring local variables completely, we get an approximation of its denotation, which is the denotation of an analogous clause, where all local variables, in all procedure calls are different, one from each other. That is, given, for example:

 $P(X, Y) \leftarrow Q(X, Z1), F(Z1, Y), R(Y, Z2), R(Z2, Z1)$

Indeed we find the denotation of P defined as:

 $P(X, Y) \leftarrow Q(X, Z1), F(Z2, Y), B(Y, Z3), E(Z4, Z5)$

Thus we get a set of equations EA, that can also be derived from a set of clauses A*, such that the denotation of all procedures, defined in A are contained in the denotation of the same procedures defined in A*. I. ϵ . Db (Fi) <u>C</u> Dh (Fi) for all procedures Fi.

The previous relation shows that by ignoring local variables, the method of data flow analysis of variables, ensure partial consistency with standard semantics. In fact, the method allows to find sets of values such that, some of the values are correct solutions, while others aren't. Yet no value, outside those sets, can be a correct solution.

3.2 <u>Second</u> approach

X

A

To obtain a set expression for P representing a set, nearer to $Dh\{P\}$, we should define, given clause 4 above, two subsets for $\{Q\}$ and $\{F\}$, $\{Q\}$ and $\{F\}$ respectively, such that:

 $[C] == \{ \langle t_1, t_2 \rangle \mid] t_3 : \langle t_1, t_2 \rangle \in \{C\} \text{ and } \langle t_2, t_3 \rangle \in \{F\} \}$

 $[F] == \{ \langle t_1, t_2 \rangle \mid \} t_3 : \langle t_1, t_2 \rangle \in [F] and \langle t_3, t_1 \rangle \in [C] \}$

The previous sets can also be obtained as follows:

 $\{C\} == \{Q\} \cap \{\{Q\} = 1 \times \{\{Q\} = 2 \cap \{F\} = 1\}\}$

 $[\mathbf{F}] == \{\mathbf{F}\} \cap \{\{\mathbf{F}\} \mid 1 \cap \{\mathbf{Q}\} \mid 2\} \times \{\mathbf{F}\} \mid 2\})$

Then, defining $\{P\}_1$ and $\{F\}_2$ we should consider $\{Q\}_1$ and $\{F\}_2$ instead of $\{Q\}$ and $\{F\}$. Yet, although $\{C\}$ and $\{F\}$ represent the set of tuples of ζ and F, satisfying clause 4, because of the cartesian product X, $\{P\}$ would still be greater than Dh $\{P\}$; i.e.: denoting by $\{E\}$ the set obtained by considering $\{Q\}$ and $\{F\}$ instead of $\{Q\}$ and $\{F\}$, it is:

Dh (F) C $\{P\}$ C $\{P\}$

Thus $\{\underline{F}\}$ would still be an approximation of Lh(P). Everything previously said about partial consistency, still holds. Yet $\{\underline{P}\}$ is less approximate than $\{P\}$.

The set expression $\{\underline{P}\}$, represents the least approximation we can get for the set of solutions of F, by the static analysis of its clausal definiton, following the approach of tracing variables. This happens just because the clausal definition of P was such that only two procedure calls shared a variable. In general if n procedure calls are such that each one shares one

(or more), variable with others, then the least approximate solution need to be found by an iterative process:

- First define each {Qi} for each procedure call: this would give a restriction of {Qi} in terms of other procedures with which Qi shares its arguments. Since the same is done for all procedure calls, there may be tuples of other procedures, satisfying the sharing conditions with Qi, which do not satisfy other sharing conditions in the same clause. This, in general, means that:
- 2) We need to define a $\{\underline{Ci}\}^{\circ}$ identical to $\{\underline{Ci}\}$ but where the sets involved are the restricted ones, $\{\underline{F}\}^{\circ}$ s instead of $\{F\}^{\circ}$ s.
- 3) The process of refining {<u>Qi</u>} has to go on until we get two sets, say {<u>Qi</u>}^{*} and {<u>Ci</u>}^{*}, such that, either {<u>Qi</u>}^{*}={<u>Qi</u>}^{*}, or else {<u>Qi</u>}^{*} is empty.

This, informally described, refining process, will terminate. Let's in fact remind that, for all predicates C and F, with two arguments (the same holds for predicate with any number of arguments), it is:

 $[G] \subseteq [Q]_1 X [Q]_2$, and also:

 $[0] = [0] \cap ([0]_1 \times [0]_2)$ and

 $\{\{Q\}_1 \cap \{F\}_1\} \times \{\{Q\}_2 \cap \{F\}_2\} \subseteq \{Q\}_1 \times \{Q\}_2 \text{ and }$

 $({Q}_1 \cap {F}_1) \times ({Q}_2 \cap {F}_2) \cap {C} \subseteq ({C}_1 \times {C}_2) \cap {Q} \subseteq {Q}$

Thus, the refining function is monotone descendent and it stops, either producing an empty set, {}, cr producing the same set. Moreover, when the process stops, all sets such as { Ω } and {F}, represent, the exact set of tuples satisfying all conditions in the clause. Than the set of solutions for the procedure defined by the clause in object, should be build in terms of these last sets.

The above process can be defined, perhaps more clearly, if we consider all variables, either locals or not, involved in a clause. For each variable we define a set expression representing its possible values, deducing such set expression from the And/Or graph of the clause. Thus, given a clause such as:

P(X1, X2,..., Xn) <- Q1(t11,...tn1),..., Cn(tn1,...,tnk)

Let's denote by X the set $X1_{,}X2_{,}$, Xn and by Y the set $Y1_{,}Y2_{,}$. Yv of local variables in the previuous clause. Then for some of the above tij it is either

tij $\underline{C} X$, or Tij $\underline{C} Y$.

Consider the And/Or graph, G, correspondent to the above clause, and trace all variables in it. Then for each variable Zi, with Zi $\in X$, or Zi $\in Y$, consider the subgraph GZi of G which correspond to the trace of Zi, and trasform it as follows:

-the root is labelled by [o1Zi]

-all And nodes become nodes; all Cr nodes become U nodes;

-all nodes Qj(tj1,...,tjm), are replaced by an node with k arcs leading out, respectively, to a nodelatelled by $\{Qj\}_k$; for Qj(tj1,...,tjm) such that there exists a k= s:r, with $1 \le s \le r$ and tjk=Zi. Appendix 2 gives an example.

We can deduce $\{\sigma 1Qj\}$, in the same way we deduced $\{Qj\}$, by defining such $\{\sigma 1Qj\}$ in terms of $\{Cj\}$ and $\{\sigma 1Zi\}$, depending on the variables of Qj in the clause. Making sure that by i we always get a different set identifier, we can get a set of equations which can be transformed into some solved form, by a transformation process analogous to the one presented in next section. The set of equations in solved form, thus obtained, can be transformed again by the above mentioned refining function.

The set of equations we get by this approach can be summarized as follows: Given a set of clauses A, - let P be the set of procedure symbols, defined, or just used, in clausal definitions of A; - let {P1,P2,....Pn} $\in P$, be the set of procedure defined in A; then, for all Pi an equation is built which locks as follows:

 $\{Fi\} = \bigcup_{j=1}^{U} \{ \prod_{k=1}^{U} jk \} \} \text{ with } X \in X_{ij} \text{ and } X_{ij} \text{ the set}$

of variables, terms of Pi in the j-th clause.

Г

Let Z_{ij} be the set of all variable symbols, local or not, in the j-th clause defineg Pi, then: For each variable symbol Yjk $\in Z_{ij}$, we have a set of equations as follows:

 $\{\sigma j \} = 1$ where T is a set expression containing jk symbolic sets such as $\{\sigma j \}$.

For each procedure Qw, called in the j-th clause defining Pi, we have a set of equations such as:

{	(Π {σj¥ }) s=1 js	if r-l is the numb argument of Qw and	all Yis
Qw, in the j-th	clause defining	are the variables, Fi.	terms or

4. TRANSFORMATION OF EQUATIONS

We will only consider the approach seen in 3.1, since we believe that the transformations we are going to define, can be accordingly modified to be applied to equations as defined in 3.2 above.

4.1 <u>The transformation process</u>

Thus, from 3.1 above, we have that: given a set of clauses A, <u>Deduce(A)</u>, produces a set of equations, as in the monadic case, with the further complications of projections. As to transform the set of equations define in 3.1 above, let us observe that the best result we would like to get, is a a set of equations, each one of which associates a ground set (a set of constant symbols), to a procedure. Since some procedures may be defined in terms of undefined procedures, and since we believe that this is a useful information to keep, we want final set expressions, associated to procedures to mantain such references. Thus:

We say that a set of equations is in '<u>sclved</u> form' if and only if, each equation has the form:

 ${Pi} = 1 \text{ or } {Pi} = T$

for all procedure symbols Pi, and all integer j and k, and all set expression T such that:

T is a ground set; else
T is the empty set {}; else
T is a set expression which contains symbolic sets {Qj} and such that {Qj} does not appear on the left-hand side of any other equation (Qj is an undefined procedure).

We define now the following transformation algorithm

<u>Transf1</u>: 1) apply rule BB1; 2) apply EB, until possible; 3) apply S axions, until possible;

Replacement Bule 1 (BB1)

For all equations of the form: ${Pi} = U \prod_{j=1}^{n} {Pi} j_k$

n

10

Since from Deduce we get equations such as, for example: $[P] == (\{P\} \ 1_1 \ X \ \bullet \ X \ \{P\} \ 1_m) \ U \ \bullet \ \bullet \ \bullet \ U \ \{P\} \ u_1 \ X \ \bullet \ X \ \{P\} \ u_m)$ $\{P\} 1_1 == (\{M\}_1 \cap \{I\}_2) \times (\{F\}_1 \cap \{D\}_3) +$ [P] 1_==---------... [P] U_1==.... [P] U_ ==----- $[1] == \{[1], 1_1 \times ... \times [1], 1_nn, 0_{--0}, 0_{\{1\}}, k-1 \times ... \times [1], k_nn\}$ Rule BB1 allows to eliminate all references of type '{P}_w' and replaces them by a more detailed set expression in terms of * {P} 1 x**s. By BR1, the previous example would be transformed in: $\{P\} == \{\{P\} \ 1_1 \ X \ \bullet \ X\{P\} \ 1_n\} \ U \ \bullet \bullet \bullet \bullet U \ \{\{F\} \ u_1 \ X \ \bullet \ X\{P\} \ u_n\}$ $\{P\} 1_1 == (\{M\}_1 \cap \{T\}_2) \times ((\{P\} 1_1 \cup \dots \cup \{P\} \cup 1) \cap \{D\}_3)$ with all other equations modified accordingly. Elimination Rule (ER) Given an equation such as: {Pi} j_k== T such that I contains ' {Pi}jk', replaces '{Pi}jk' in T, by the empty set {}. Synthesis axions (S) -Por all set expressions T: [] 0 1 == 1 $\{\} \cap I == \{\}$ n -For all ground sets D , i=1,n : \prod D is defined as usual; i=1 i i Operations of 0 and \bigcap are defined for ground sets as usual: S will contain axicss for associativity BOLGOAGL and distributvity of U and Λ . Rule EB, defined for the monadic case, as been modified into rule EE above, to take into account projections of turles. For the monadic case rule EB was an obvious consequence of the observation that, given a recursive clause such as: $P(X) \leftarrow Q(X), B(X), P(X)$ according to its standard semantics, no denotations, different from those generated by all other clauses defining F, will be generated by that clause. In the n-adic case, the analogous 12

happens for recursion over the same argument of a procedure. That is, consider the following clause:

P(X,Y) < -P(X,Z), R(Z,Y)

From the standard semantics we have that the previous clause adds tuples to the denotation of F, defined by the other clauses defining P, in the sense that it adds tuples where only the second elements may be new. Said it another way, considering the greatest set of solutions for F, denoted by: $Dh(P)-1 \times Dh(P)-2$, the above clause may add elements to Dh(P)-2, not to Dh(P)-1. Thus, since we are now looking for the greatest approximation of Dh(P), we can consider the above clause having the same greatest set of solutions of P defined as:

 $P(X, I) \leftarrow P'(X, E), E(Z, Y)$

 $P(X,Y) \leftarrow P^*(X,Y)$

and where P^{*} is defined as the rest of F. That is, if P was defined by u clauses and the one considered previously was the k-th, then P^{*} is defined so that: k-1 u

Dh(F') = U Dh(P) i 0 (U Dh(F))i=1 j=k+1

Thus we define ER so that each time we have equations such as:

 $\{P\}i_j = \{\{P\}i_j \mid 0 \mid T1\} X$ (...

we replaces all occurences of "{P}i_j", on the left hand side of the previous equation, by the empty set "{}".

<u>Transf1</u> as defined above will certainly stops, since the number of substitutions RR1 has to do is finite; mcreever, each substitution produces a set of equations such that the same type of sets $\{P\}_k$, for all predicates, will not appear anymore in anyone clause, unless P is undefined (thus no equation exists for $\{F\}$); BR1 needs to be done only once.

The same, of course, holds for ER; S axious are obviously convergent, and a point will be reached so that no one of them can be applied anymetre.

Further transfromations are defined by the following algorithm:

Transf2

affly BB2;
affly FB;
affly S axicms;
repeat from 1) to 3) until all of them cannot be applied anymore.

Replacement Rule 2 (BR2)

Given an equations of type: $\{P\} j k = T$ where I is a set expression; replaces each occurence of $\{P\} j k$ by T in all set expressions of all other equations.

EE and S axions are define as in <u>Transf1</u>.

Bule BB2 is a transformation analogous to RB1.

<u>Transf2</u> stops, as well as <u>Transf1</u> does. Let's in fact observe that:

BB2 is applied after <u>transf1</u> is completed; nc equation, such as {P}j_K=I, will be such that I contains '{P}j_k' itself (because of FB in <u>Transf1</u>);

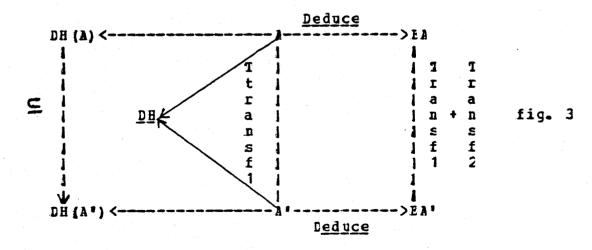
At each step, BR2 eliminates all references to sets such as "{P}jk"; thus, the next time RR2 won"t be applied to the same equation; since this applies to all equations and since there are a finite number of equations, after a while, RR2 will not be applicable anymore.

Because of the same sort of considerations, about EB and S axicms, we can conclude that <u>Transf2</u> terminates, producing a set of equations each one of which has associated: either a ground set, cr {} or else a set expression containing references to undefined procedures, i.e. it produces a set of equations in solved form.

At the end, since references to $\{F\}_jk$ do not appear in any set expression and since they where built just for the sake of transformations, all equations for such sets can be eliminated; all that will remain is a set of equations, for the procedures defined in the set of clauses given in the first place.

5. FEW REMARKS ON TRANSFORMATIONS

The transformation process, presented in Section 4, is such that the following diagram commutes:



In fact, <u>Transf1</u> and <u>Transf2</u> stcrs, producing a set of equations, EA, in solved form; thus, the algorithm given by Transf 1 followed by Transf2 is complete. It ensures a solution to the set of equations given in the first place.

Furthermore, the set of equations EA*, can be deduced from a set of clauses A*, such that A and A* have the same greatest approximate set of solutions, DH, with: EH= { [h (P1), Dh (Pn) }, where each <u>Dh</u>(Pi) is the greatest set of approximate solutions of Pi, for all procedures Fi defined in A. In fact, BR1, BR2 and S axioms, do not alter the semantics of the set of equations they are applied to; thus, the set of clauses correspondent to the set of equations, before and after BR1, FR2 and S axioms, can be chtained by a similar transformation of clauses in A.

The transformation process given in Sec. 4, is equivalent to the non-deterministic algorithm, given in [11], which transform a given set of equations into another one, in soved form, to find an efficient unification algorithm. BB1 and BB2 are analogous to 'Variable Elimination', 111-121, and to the Unfolding transfromation defined in Program Transformations, [13-14]. BR is analogous to the transformation which erases equations such as x=x, in [11], and Compaction in [12]. Also EB is equivalent to represent by {} the failure of transformations, [11] for equations: x=t, where t contain x.

For all procedures Pi, defined in A and A, their denotations. as defined by the standard semantics is such that:

Dh (Fi) <u>C</u> Dh (Pi) thus DH (A) <u>C</u> DH (A*) A.

with DH(A), DH(A*), Dh (Pi) and Dh (Pi) defined as for fig. 1, 2.

The above results is due to the method of not considering local variables at all, as it has been shown in Section 3.1.

6. CLAUSAL DEFINITIONS WITH MONADIC FUNCTIONS

In Section 2 we introduced a notation for functions, used in [10]. Now we are going to see how to extend results of previous sections 3-4, for clauses with functions.

Functions can be, either in terms of procedure being defined by a clause or else, te terms of procedure calls. Let's first observe that:

 $P(f(X)) \leftarrow Q1(X), \dots, Qn(X)$ is equivalent to:

 $P(f(X) \leftarrow P^{\bullet}(X))$ $P^{*}(X) < -Q1(X), \dots, Qn(X)$

Α.

Therefore, we can consider {P*} to be equivalent to {P} where the clausal definition of P does not contain any function, on its definition part. I. e.

$$\{P\} == \{f. \{P^*\}\} \text{ and } \{P^*\} == \bigcap_{i=1}^{n} \{c_i\}$$

Thus for the above definition of F, we can deduce:

$$\{P\} == \{f_{-} (\bigcap_{i=1}^{n} \{c_{i}\})\}$$

Thus, when functions are terms of a procedure being defined by a clause, the result of the procedure, relatively to that particular argument, in that particular clause, is given by:

 $\{P\}_{j_k} = \{f, T\}$

where T is derived in the same way as in 3.1, as if the function f didnst appear at all.

On the other hand if a variable X, argument of a procedure definition, is also the argument of a function g^{*} , in a procedure call to Q, then, instead of considering $\{Q\}_k$, we will consider: <u>dom(g, {Q}_k)</u>. Which is a consequence of the meaning of <u>dom</u> (Section 2), and the consideration that:

 $P(X) \leftarrow Q(f(X))$

is such that the solutions for P, will be all those values v^* , such that: $f(v) \in Dh(Q)$, i.e. a set D such that $\{f.D\}^* \in \{Q\}$. For example, from:

P(f(X),g(X),m(n(Z))) <- Q(X,h(Y)), R(m(X),Z) we have :

 $\{P\} \ 1_1== \{f. \{ \{Q\}_1 \ \bigcap \ \underline{dom} (m, \{R\}_1) \} \} \\ \{P\} \ 1_2== \{g.\underline{dom} (h, \{Q\}_2) \} \\ \{P\} \ 1_3== \{m. \ n. \ \{R\}_2\} \}$

The second approach in 3.2, needs to be slightly modified according to the previous notations.

For what concern transformations, rule ER1 and RB2 need to be modified so that replacements are not applied to references in non-atomic sets (i.e. sets such as {f.1}) and in arguments of the <u>dom</u> function. The solved form of set expressions is thus, such that symbolic sets, defined by other equations may appear only in set expressions which are part of non-atomic sets, or argument of the function <u>dom</u>. Everything previously said about transformations in Section 4, still holds.

At this point a further transformation can be done to expand a bit more set expressions in non-atomic sets, and in arguments of <u>dom</u>, to get some more information about the results of procedures, avoiding non termination of transformations, because of recursive set expressions. Although it will not be dealt with in this paper, we believe a notation, for non-atomic sets, can be found, such that, by a similar process of transformations, the fixpoint of such set expressions can be derived. We will then be able to represent data, built by recursive applications of functions, by a self-contained, recursive symbolic expression. For the moment we propose the following further transformations, for the set of equations obtained by the modified algorithms <u>Transf1</u> and <u>Transf2</u>.

Transf3:

- apply BB1 so that replacents take places in non-atomic sets and in set expressions, argument of <u>dom</u>.

- given a set of n equations, choose one of the form: $\{P\}j_k==T$; 1) replace each occurense of the left hand side of the given equation, by its right hand side, in <u>all</u> set expressions of other equations.

2) apply SS axions;

3) choose an equation of the form $\{P\}_{j=k==1}^{k==1}$, which has not been choosen yet;

4) repeat 1-3, until all equations have been choosen once.

Axions SS (old S axions plus axions for non-atomic sets and <u>dom</u> expressions) are listed in Appendix 3. They can be proved convergent and consistent with the meaning of non-atomic sets and the <u>dom</u> function. The set expressions still represent approximate solutions of procedures.

7. CONCLUSIONS

We have considered logic programs in the Horn clauses form of logic with monadic functions. We have then presented two approaches to derive, from a given set of clauses a set of equations. The set of equations obtained represent, for each procedure, its greatest, approximate, set of solutions; i.e. a set which contains the denotation defined by the standard semantics.

Equations are derived from clauses by a data flow analysis, for the variables involved in the clause, carried on over the correspondent And/Cr graph.

Given a set of equations (derived as in the first one of the two approaches presented), we define a transformation algorithm which reduces equations to a solved form. The set of equations thus obtained is such that each equation expresses, by a set expression, the set of approximate solutions for a given

procedure. By approximate set of solutions for a procedures, we mean a set of values (when possible) some of which are correct solutions for the given procedures, while some others are wrong solutions. In any case, no other values, cutside the approximate set of solutions, can be correct.

The aim of the paper is not to find tranformations in order to obtain more efficient programs, as it is the case for Program Transformations and Synthesis [13-14-15]. Our aim instead, is to find some properties of a program, from the static analysis of its definition, in the framework of Abstract Interpretations of Program, [6]. It is because of this that, for example, we believe that refences to undefined procedures should be kept in set expressions, for they could be used as a tool for program verification, program construction and composition of programs which have been defined separately.

BBFBBENCES

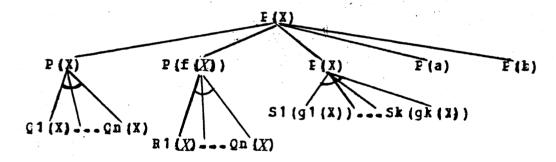
- [1] Kowalski, R.A. Predicate Logic as Frogramming Language, Frcc. Information Processing 74, North Folland Pub. Co., Amsterdam, pp. 569-574, 1974.
- 121 Van Enden, H. H. and Kowalski B.A.- The Semantics of Fredicate Logic as a Programming Language, Journal ACM, Vol. 23, No. 4, pp. 733-742, Oct. 1976.
- [3] Colmerauer, A. et al. Un Systeme de Communication Homme-Machine en Francais - Rapport preliminaire, Groupe de Researche en Int. Art., Universite d'Aix - Marseille -Luminy, 1972.
- [4] Warren, D., Pereira, L., Pereira, F. FRCLCG: the language and its implementation compared to LISP, PICC. Symp. on A.I. and Prog. Lang., SIGPLAN Notices, Vol. 12, No. 8, and SIGART News. No. 64, pp. 109-115, Aug. 1977.
- [5] Clark, K. L. and McCabe, F. IC-IECLCG reference Manual, CCD Besearch Report, Imperial College, London, 1979.
- [6] Cousot, P., Cousot, R.- Abstract Interpretation : A Unified Lattice Analysis of Frograms by Construction or Approximation of Fixpoints. In : SIGACI/SIGPLAN Conf. Rec. of the Fourth ACM Symp. on Principle of Frogramming Languages; Los Angeles, Cal., jan. 17-19, pp. 238-252, 1977
 [7] Kowalski, R.A. - Logic for Froblem Solving; Artificial
- [7] Kowalski, B.A. Logic for Froblem Solving; Artificial Intelligence series, (Nilsson, N.L. ed.), North Holland, 1979.
- [8] Levi, G., Sirovich, F.- Generalized And/Or Graphs. Artificial Intelligence, 7, pp. 243-259, 1976
- 19] Marque-Pucheu, G.- Equations booleennes generalisees et Semantique des programmes en logique du premier ordre monadiques. PhD Thesis, Ecole Normale Superieure, Faris.
- [10] Asirelli, P. Horn Clauses Form of Logic: Algebraic Static Semantics of Programs. Int. Rep. I.E.I., B82-23, 1982.

- [11] Martelli, A., Montanari, U.- An Efficient Unification Algorithm, ACH Trans. on Frog. Lang. and Systems, Vol. 4, n. 2, April 1982.
- [12] Cclmerauer, A.- PROLOG and Infinite Trees, in Logic Programming, K.L. Clark and S.-A. Tärnlund eds., Accademic Fress, 1982.
- [13] Burstall, B.H., Darlington, J.- A transformation system for developing recursive programs. Journal of the ACM 24, No. 1, 46-67, 1977.
- 14 Clark, K.L., Darlington, J.- Algorithm classification through synthesis. The Computer Journal 23, No. 1, 1980.
- [15] Burstall, R.M. : Recursive programs: Frocf, transformation and synthesis. In "Rivista di Informatica" 7, pp. 25-42, 1976.

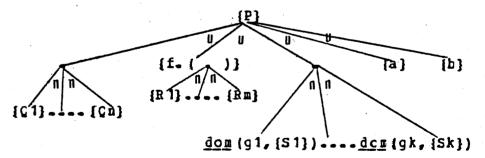
AFFENDIX 1

F (X) <-Q1(X),....Qn(X) F (f (X)) <-E1(X),....Bm(X) P(X) <-S1(g1(X)),...Sk(gk(X)) F(a) <- P(b) <-

Its correspondent And/Or graph can be drawn as follows:

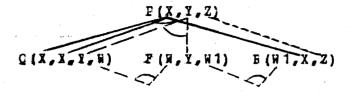


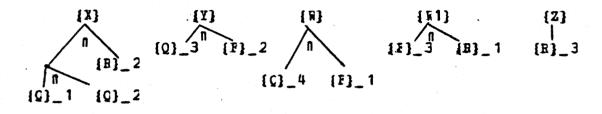
From the previous graph, we can deduce the following:



APPENDIX 2

 $F(X,Y,Z) \leq Q(X,X,Y,W) = F(W,Y,W1) = B(W1,X,Z)$





 $\{P\} == \{X\} X \{Y\} X \{Z\}$ $\{X\} == \{\{Q\}_1 \cap \{Q\}_2\} \cap \{B\}_2$ $\{Y\} == \{Q\}_3 \cap \{F\}_2$ $\{Z\} == \{R\}_3$ $\{X\} == \{Q\}_4 \cap \{F\}_1$ $\{X\} == \{P\}_3 \cap \{R\}_1$

 $\begin{array}{l} \underline{(C)} == \{Q\} \cap \{\{X\} \ X \ \{X\} \ X \ \{Y\} \ X \ \{W\}\} \\ \underline{(F)} == \{Q\} \cap \{\{W\} \ X \ \{Y\} \ X \ \{W\}\} \\ \underline{(F)} == \{B\} \cap \{\{W\} \ X \ \{X\} \ X \ \{X\} \ X \ \{Z\}\} \end{array}$

AFFENCIX 3

1- For all set expressions A and B, such that A and B are ground sets: - A U B == { x } x & A or X & F} - A \cap B == { X } x & A and x & E} 2- For all set expression D : - D U {} == D' - D U {} == {} - D U {} == D \cap C (D U B) =D \cap (B U D) == D - {} D U B) \cap D = D \cap (D U B) =D \cap (B U D) == D - {} D U B) \cap D = D U (D \cap B) =D U (E \cap C) == D

3) For all atomic sets D, and all non-atomic sets B - D | H == |} 4) For all non-atomic sets, and for all 1, w and n: $- \{f \cdot \{f \cdot \dots \{f \cdot \{\}\} \dots \} = \{\}$ 1 $\begin{array}{c} -[f \ .D] \ 0 \ [f \ .[?]] == [f \ .[?]] \\ 1 \ 1 \ 1 \ 1 \end{array}$ $-{f . D} \cap {f . {?}} = {f . D}$ 1 1 1 5) For all non-atomic sets and all set expressions H, D and all 1, k, s: $- \{f : H\} \cap \{f : D\} == \{\} \quad iff \quad 1 \neq k$ $\begin{array}{c} \{f \cdot \{f \cdot B\}\} \cap \{f \cdot \{f \cdot D\}\} == \{f \cdot \{\{f \cdot B\} \cap \{f \cdot D\}\}\} \\ 1 \quad k \quad 1 \quad s \quad 1 \quad k \quad s \\ \end{array}$ -For all functions f: <u>dom(g, [])== []</u> - and for all ground sets D: $\underline{\operatorname{dom}}(q, D) = \{\}$ -For all set expressions T: $\frac{\operatorname{dom}(g, \mathbf{I}) \cup \operatorname{dom}(g, \mathbf{I}) == \operatorname{dom}(g, \mathbf{I})}{\operatorname{dom}(g, \mathbf{I}) \cap \operatorname{dom}(g, \mathbf{I}) == \operatorname{dom}(g, \mathbf{I})}$ $\frac{\operatorname{dom}(g, \{g, \mathbf{I}\}) == \mathbf{I}$ $\frac{dor}{i=1} (g, U1) == U \frac{dom}{i=1} (g, T)$ $i=1 \quad i = 1 \quad i$ $\frac{dom}{i}(g, \Omega T) == \Omega \frac{dom}{i}(g, T)$ $i=1 i \quad i=1 \quad i$

21