A

ON COKPILING PROLOG PROGRAMS ON DEMAND DBIVEN ARCHBITECTURES.

Bellia M. (*), levi G.({(*), Martelli M. (+)

{*) Dipartimento di Informatica
University of Pisa (Italy)

{+) CNUCE Institute of CANR
Pisa (Italy) :

ABSTRACT

A compiler is proposed that maps Prolog clauses into a
language (LCA/1) with clauses annotated according to functiomnal
dependencies. LCA/1 has a demand driven computation rule and
allows to cope with streams and lazy coastructors.

The compilation eliminates the non-determinism related to
the choice of the 1literal to compute and guarantees an
efficient computation.

3519

1« Introduction.

Non-determinism in Prolog comes in tvo flavours [1]. The
first one is related to the full declarative programming style
and comes from the absence of any ordering in the literals
occurring both in the clause right-part and in the goal. The
second one is related to the relational calculus and comes fronm
the existence of superposable claases (i.e. clauases whose left
parts atomic formunlas are unifiable).- :

Both of the above: features contribute to making Prolog a
milestone of the logic based programzing languages and, at the
same time, the basis for all the -applications where calculus
and reasoning merge: expert systems, relational knowledge base
management, softvare systems specifications and various aA.I.
applications are only some of thenm [2,3,48].

Nevertheless, all these powerful Prolog aspects cause a high
complexity in the Prolog run-time support because a non
accurate choice of the literal to be computed can make highly
non-deterministic even potentially deterministic computations.
This is a direct consequence of the first type of
non-deternminism because Frolog programs do not explicitly state
for each variable which literals “compute" the value and which
literals use such a. wvalune.

Obviously, ‘specific interpreters choose particular
strategies such as the 1left to right evaluation of the
literals, but this is a very strict choice and does not solve
the problem. Incidentally, it is worth to note that this kind
of complexity cannot te reduced by running programs on
efficient and Prolog oriented machines.

In order to avoid the first type of non-determinism and to
speed up the computation of those relations vhich are
(nulti-output) functions, many authors [5,6,7] have
experimented control languages to attach algorithms to Prolog

prograns [8]. The authors have considered some logically based

functional languages [9,10] and defined a functional logic
language, LCA {11], which is a clause language with terams

‘constrained to be either ‘input or output terms. LCA could

integrate Prolog, as an algorithmic component which allows to
explicitly express programs imvolving functions and to compute
then in a simple and efficient way.

Nevertheless, all the proposed solutions are partially
inadequate. In fact all of them loose transparency with
respect to declarativeness: i.e. the resulting prograsms

contain procedural features.

Our aim is:

= to save the Prolog expressive power with its uniform view of
relations and functions;

— to develop a technigue for automatically eliminating the
first type of non-determinism by ~attaching algoritihms to

. clauses.

- to develop an efficient interpreter able to compute the
intermediate form obtained with the above step. ‘
The basic idea to achieve this goal is to define a language

520

2

{LCA/1, a gemneralization of LCA) whose programs are sets of
“fully annotated" (Horn) clauses. Full annotation means that
all the variables (not the terms) occurring im a clause for
goal) are annotated as INput or OUTput variables. Different
occurrences of the same variable are possibly annotated in
different ways. The *fully annotated" clauses nmust obey sone
syntactic constraints ensuring that each OUT variable can be
computed in exactly one way.

The language interpreter has been defined along the lines of
the interpreter already givem for LCA. Its main features are:
— a demand driven computation rule;

— the ability to handle lazy data constructors;
- the ability to handle only thke second {(and really semantic)
type of non-determinisnm.

The second step is to define a tramslator from Prolog
programs dJato fully annotated prograas. The translator
associates to each clause of a Prolog program a set of folly
annotated clauses. Each of thenm expresses both the specific
state that +the variables in a goal must satisfy in order to
apply the clause {(i.e. the variables which are already bound or
not), and a specific functional dependency among the atonic
formulas {(i.e. which coxputes what). All the <£fully annotated
clauses, associated. to each clause, only depend uponm the
variables occurring 'in the clause and are not superposable.

The compilation of Frolog programs onto a demand driven
machine seems a promising solution to save on one hand, all the
features of Prolog programming and, om the other hand, to earn
the efficiency of running programs om a demand driven
architecture.

Section 2 will give a brief introduction to LCA/1. Sections
3 and 4 treat the translation in detail, while sectioa 5 will
describe the LCA/1 intergreter.

2. The 1LCA/1 language.

In this section we «ill not describe all the details of
LCa/1, because it is guite similar to other proposals [11], but
ve will point out the main differences.

The first one is that in a term the occurrence of a variable
symbol x is always annotated by IN or OUT. We call these terams
fully annotated data terms and we refer to variables annotated
by IN (OUT) as input (output) variables. '

The atomic formula will contain only fully annotated data
terms.

let us introduce some definitioms:

- constant term: a term without variables;
- ipput term: a term with input variables only;)
- output term: a tern with at least one output variable.

The following are examples of fully annotated clauses:

3

*(s(xm),ym #Zou7) <-- *‘xm'ym"owr)'*“m'ym 'zour)
IS(X)07 ,00Z,y) <= RIX LY eV o) st UV 0T 020 ()
(S (T,) aYoureZour) < *(x in? Your?r Yoout) :*’(",NJ.Y‘N #Zoy7)
REV(X ¥, ,s¥our) < BEV!Y;,N:zouT)'APP(ZJN #X,yenil,¥sy7)
REV {(X,,*Yoyr r¥,y) <— REV (YouT'ZIN"APP(zour'xm -nil,w)

where s and . are function symbols and *, +, REV and APP are
predicate symbols. v

The predicate * holds if the third argament is equal to the
product of the first two arguments, and the predicate REV kolds
if the first argument is the reverse 1list of the second
argument. Moreover, the intended meaning of the first clause
of * is that, for any x and y, the result of the product of
s{x) and y is the sum of y with the product of x and Y, ¥hile
the second clause of * means that for any triple of numbers x,
Yy and z, 2z is the result of the product of s(x) and y if z is -
the sum of y with the product of x and y.

Exanples of fully annotated goals are the following:

<== *(s{s(0)).,5{0),%x,,,)

= ¥ (s{s{xy)) +S{Your) eZoyrd st (S (S (D)) 4X y; »S(S{S{0))))
<== REV{a.b.c.nil,z,,,)

== REY (a.XOUT.C.nil,C.h.a.Dil)

The syntax of the language has to satisfy some constraints
to have thke desired properties. = Im the following, we assune
familiarity with the terminology and the notation used in [1].

Let M ,yf{a) (Moyr{a)) be the multiset of the input (outpat)

variables of an atomic formula a.
Let H<-- al,a2,-..,2n be a clause, where H is the conclusion

atomic formula, the ai's are the atonic conditions, and all the
atomic formulas are fully annotated (al,a2,-..,an can also
indicate a goal).

" o —-——— c— w—

1. 1) For each clause and for each ai, M,,{H) M, .(2i) = g.
1.2) For each clause or goal the multiset U M,,7{ai) must
be a set. i€[1n]

This condition ensures that every variable is computed in
exactly one way by only one atomic formula.

Condition 2. .
For each atomic forrula ai in a clause or goal, each
variable belonging to M ,,(ai) must belong to M,,r{ak) (or to
M,,{H) in the case of a clause), vhere ak is an atoxzic
formula of the clause or goal such that i ¥ k.

This condition forbids to have atomic formulas whose input
variables do not occur as output variables of ‘other atomic

formulas.

e rultiset M,, (d) must be a set.

522
4

This condition is complementary to Comdition 1 (about the.
unigqueness of the computations), and forbids to put comnditions
on the input variables of the conclusion atomic formula; i.e.
the nnification process does not =need to control eguality om
the input variables. This allows to have a simple and
{rossibly) parallel unificatiom algorithm.

Constraints on the values computed by different variables
are alloved and efficiently handled by the primitive predicate
EQp. The semantics of EQp corresponds to the Prolog assertion:

EQP{XyecesX)<—[(EQi1{x,x)<--0)-
————)
p+i-times

Note that because o0of Conditioms 1,2 amd 3 all variable
symbols occurring in M,,;{(H), must belong either to M,,{H) or .
to M ,,s(ai), for some ai in the clause, or must mot occur in
thke clause right part.

As a comsequence, any output variable is either computed by
one atomic formula only or must be coansidered bound to the set
of all the terms of the Herbrand Universe.

- LCA/1 is a generalization of LCA [11] mainly motivated by
the compilation of Prolecg clauses. Such a generalization is
obtained by redefining the term structure and ty relaxing sone
constraints of 1LCA. Nevertheless, the main properties of the
LCA semantics are saved in the operational semantics of LCa/1.
Thus, the defipition of the LCA/1 interpreter is structurally
similar to the one defined in [11]. Section 5 briefly analyses
the external evaluation rnle and the new formulation of the
computation rule needed to handle full annotatiomns.

‘3. The compiler.

The compiler from Prolog into LCA/1 is a mapping of clause
structures of Prolog into LCA/1 ones. ,

This mapping is based on the concept of state of the
computation, i.e. the state of the variables during the
computation of the current goal: each variable can be already
bound {totally or partially computed) or not. The variable can
be considered, in the first case, as a possible input and, in
the second case, as a possible output for an atomic foramala.

A second aspect of the concept of state is related to the
applicability of a clause. 1CA/1 allovs to explicitly define,
for each conclusion atomic formula, which variables are assumed
to be input (and +thus mnmust be bound to a value by the
unification), and which variables are assumed to be ouatput (and
will have a value “"computed" by the clause) at resolution time.

. The first aspect of state is also present in Prolog {bound
and unbound variables in the unification process)a

The main idea of the iransformation is that a Prclog atomic
formula implicitly expresses a finite number of possible

S23

5

different states {the second aspect) and this namber
combinatorially depends upon the number of variables occurring
in the clause. 1 Prolog clause can then be mapped into a set
of fully annotated clauses, each of then expressing a
particular state. _

As an example of the transformation, the three clauses in
(*) are some of .the eight fully annotated clauses defined by
the following Prolog clause: :

*{s{x) eYs2z) <= *.(Xaypﬁ):“’(‘i:}':zl-

Let us take the first clause of {(*), i.e.:
*(5(¥JN):Y,N:zouT) f’? *{X 1y s Yin 17001):*‘”1u01,nczou1’~;

This clause explicitly defines a state of applicability,
where the variables x angd Y must be bound and where the
variable z is coamputed by the the clause itself.

4. The transformation.

in order to formally define the transformation from PROLOG
progranms into LCA/1 programs ve will use the following sinmple
sStructures. ‘ ‘

DEFINITION 1 {variable Seguence or seguence).
To each termt we cam associate the variable seguence
containing all the variatle occurrences as found by a pre-order

tern traversing process.

As an example, <X,Y¥,%X,2> is the Sequence associated to the
tern f{x,9(y,X),z).

If t is a constant ternm, the Seguence associated to t is the
empty sequence. Let s be the sSequence of length n associated
to the term t, s[i] (or t[i]), for each ie[1,n], selects the

i-th variable in s.
In the following, the concert of segquence will be

generalized to atomic formulas by associating to each foramula

-0f the form P(t1,...,tk) the sequence obtained by concatenating

the seguences S1,-«-,5k associated to the terns tl,...,tk
respectively.

DEFINITICN 2 {annotated seguence) . s
let s be a sequeuce of length n, we define {IN,OUT} as the
set of all the annotated sequences generated by s.

The apnotated segquence ve{IN,OUT}s‘ differs from s becaase,
for each ie{1,n], v[i] is the variable s[i] annotated by IN or
by CUT. We call v{i] an annotation for the variable sfi].

The set {IN,0UT}®* contains exactly 2 annotated sequences.

DEFINITION 3 (substitutign Seguence).
let s be a sequence and v be an annotated sequence of the
same length of s, we define a Substitution as the pair (s,¥)-

6

DEFINITION 4 {substitution applicability).

Let t be a term and S be the substitutiom (r,v), we say that
S is applicable to t iff r is egual to the sequence associated
to t.
‘ The application of S to the term ¢t results in the term t°
such that:

- Mi€[1,n], t*[i] = v[i],

if n is the leangth of s.

The transformation maps a <clause ¢ into a set U(c) of
annotated clauses. It will be described in a two step process. .
First of all, given a clause c¢ of the form H<--1L, we conpute
the set U0'(c) of partially annotated clauses. The clauses in
U*{c) have all the variables occurring in H replaced by
annotated variables. In the first step, the local variables of
¢ {i.e. variables not occurring in the clause conclusion) are
- ignored.

The second step takes care of the 1local variables by
providing the computdtion of a fully annotated clause for each
clause in the set U'(c). In the same way, the second step is
atle to provide the transformation of a goal statement into the
corresponding fully annotated goal.

4.1 The computation of U? {C)a

Let c be the clause H<~-11,...,1n, the computation of U? (c)
proceeds as follows:

1) Define {IN,0D0T}® , where s is the variable segquence
associated to H.

2) Compute the subset Kg;{lH,OUT}s' which contains all the
annotated seguences having multiple occurrences of the sane
variable annotated by IN. Note that, the set K could be
enpty. The set is empty if and only if the sequence s does
not contain multiple occurrences of the same variable.

3) %‘re{IN,oum}s -K, 1let ({s,r) be a substitution. Conmpute
H*<--1L' U?(c) as follows:
+ H' is the atomic formula resulting from the application
of {(s,r) to H; .
+ L' is the sequence 11?,...,1m' such that:
- n <= m, and
- M ie[1,n], and for each variable x occurring botk in
1i and in the seguence s, 1i' contains xz annotated as
followus:
1) if x occurs in r annotated by 1IN, then each
occurrence of x is replaced in 1i' by x,, .
2) if x occurs in r only annotated by OUT, then one of
the following helds:
a) 33jel[1,n] suck that iyj and 13j* already contains
an occurrence of x,,; - Then each occurrence of
x is replaced in 1i? Ly x,, .

525
7

b) ¥ je[1,n], such that i#j, 1j* does not conmtain
occurreaces of x,,,. Then
1) if 1i contains exactly one occurrence of x,
then the. occurrence . of x is replaced in 1it
by Xoyr- .
2) if 1i contains p+1 occurrences of x, then
+ the first occurrence of x is replaced in
1i* by x,,, and all the other occurrences
are replaced by different renamings of x
annotated by OUT. :
+ let X1gyr seeesXPour be ' the above
introduced renamings. Then
EOp (x,4,x1,y 4ece,xp,y)
is a special atomic formula 1u® in L® for
sSome uE€n+l,n]. ‘

‘4) NMreK, we add to the set resulting from step 3) the clause
H'(--l",.v-,ln',...,lh',-..,lm' (a <= h < m)

obtained as follows:

+ for each variable x occurring in r more than once, let
Xl inseee,xp,, be a renaning for each occurrence Lat the
first. Then

BQP (xnn !xllu l‘?'lelN)
is an atomic formula lu' for some uE[h+1,n]

+ let r' be the annotated Sequence r vhose variables are
renaned according to the above step, then (s,r') is still
a substitution and B*<--11¢,...,10%,...,1h? is the result
of step 3) applied to (s,r*).

4,2 Example.
Let us consider the clause c: '
A(x,d(x)) <-- B{x,y) eE(X,X)
where 4 is a function symbol, A,B and E are predicate symbols
and x, y are the variables occurring in the clause sach that Y
only is local. Then, the conputation of. U*' {c) proceeds as

follows:

1) s=<x,x> . .
{IN,00T} ={<x,, ¢X,, 2,<x,, % out2s<XoyrsX,y 2+<Xoyr #Xoyr 2}

2) R={<X,y X,y >}

3) ¥ s ez, Xour2s<Zoyr#X 824 <Xoyr 4 X gy D)
+ 5=y X gy
H'=2(x ,,3(X00,))
L'=B(X neY) s E(X,4 eX,y)
F SEXKoyr eXyy >
H'::A(XQUT ld(xlN))
L.=B(x|~ Iy’iﬁ(xlu leu)
¥+ STXgyr (X our >

H‘:A (x ouT la (xOUT))

I"=E{xou'rly} IE(x IN II|N)

or '
Lf=B(x‘N,y),E(xbUT,x1ouT),EQ1(x,N,x1,~)

4y M €KX, 1X.n 0}

+ EQ1(x,, »,X1,,)
+ =KX, ,x1,, >
B'—A ‘xm ld(X1m ’)
L'=B{X,\ oY) ¢ E(X,n X,) ,EQI(X,, ,XTin)

The computation defines two U'{c), each one containing four
fully annotated clauses, which differ in the right part of the
clause obtained from the substitution s=<xX,,;¢Xoyr >

4.3 Remarks about U? {c)

———— o v——

For each Ptolog clause ¢, U'{c) contains at 1least one
clause. Moreover, U'(c) contains exactly the clause c¢ iff the
conclusicn atomic formula of ¢ has no variables.

——— e ——— a— —

U'(c) as computed by steps 1)-&) is not unique. In fact,
step 3.2) could lead to more than omne U'{c), if @more than one
atopic formula in the right part coantainms a variable which, in-
the sequence r, is only annotated by OUT.

Actually, we are not concerned with the choice of U?(c),
although the problem of choosing the best atomic formula is the
key issue for optimizatiorn.

Proposition 3
The followlng properties hold for the annctations of the

clauses in U'{c):

Property 1 No conclusion atomic formula contains more than one

occurrence of the same variable annotated by 1IN, as
guaranteed by the subset K in steps 2) and 4).

Property 2 No clause right part contains more than one
occurrence of the same variable annotated by OUT, as

guaranteed by step 3).

Property 3 For each clause vhose conclusion atomic formula
contains a variable annotated by OUT, only one of the
following cases holds:

1-the same variable annotated by IN occurs in the
conclusion atomic formula also;

2-the same variable annotated by OUT occurs in exactly one
atomic formula in tke clause right part;

3-the same variable ampnotated by OUT occurs in the
conclusion atomic formula only.
This property is guaranteed by the variable renamings

St

9

introduced in point 2.b.2 of step 3).

2roperty 4 For each variable annotated by IN im a clause
atomic formula, only one of the following cases holds:
- the same variable annotated by IN occurs in. the clause
conclusion;
—~ the same variable annotated by OUT occars in exactly
another atomic formula of the clause right part.
_ This property is guaranteed by point 1) and 2.a) of step
3). ' :

4.4, The computatioh of U{c)

The computation of U{c) provides the annotation of the local
variables occurring in c. local variables are variables wvhich
occur only in the right part of the clause. Such variables are
left unchanged by the computation of U'{c). Thus the following
property holds:

Proposition 4 ‘
¥C€ = H<-L, ¢ € U'({c) iff there exists L' such that:

H<--L* € U{c).

Thus, in order to obtaim U(c), for each clause & of g? {c),
only L* has to be computed. -

Let H<--11,...,1n be a clause in U'{c), then U{c) contains
H<==11? jaue,1ln? {n<=m) such thats:s.

3) ¥1ie€[1,n] such that 1i 4is already a fully annotated
atomic formula (i.e., 1li does not contain local variables)
then liv=11i;

€6) Let i € [1,n0] be such that 1i contains at least a local

variable x, then one of the following cases holds:
1) 3j €[1,n], such that i¥j and 1j' contains an occurrence
of X,,, - Then each occurrence of x is replaced in 1i' by
b S
2) %r:j € [(1,n], such that iyj, lj* does not contain
occurrences of x,,r , then:
a) if 1i contains exactly one occurrence of x, then the
occurrence of x is replaced in 1i' by Xy«
b) if 1i contains p+1 occurrences of x, then the
following steps are performed:
- the first occurrence of x is replaced in 1i° by
Xoyr and all the other occurrences by renamings of
x annotated ty OOUT.
- let X1,,; see=¢XPoyr be the above introduced
annotated renamings for x. Then
: C EQPU(X,y #X1,y geeesXPy)
is the atomic formula lu®, for some u€[n+1,m],
added to the right part of the transformed clause.

S<L%

10

4.5 Exanmrle

As an example of compatation, let us consider the
computation of -U{cl) and U(c2) in the case of the following
predicates for the additionmns

cil: +{0,Y.y) <=
c2: +(s{X),Y,s5(2)) <= +{x,7.,2)

where s is the successor function.

U(c)={+{0,Y v e Y1) <= EQU{y,, ,¥Y1,,) , (1)
*(o’ym’you'r) <= (2
+(oly ouT JY|N) < (3)
+(0,¥00 ¥ ,.) <} » ()

U(C2}={+‘s(x|u)lyln ls(z |N)) <= +(x|n 'y"‘ 02"‘) ‘5)
""s(xm)vym 1S(25yr)) <= #(x, &Y, ¢Zour) (6)
H(S{X,0) #¥our sS{Zn)) <= (X sY oyr7Zin) (7
+(SAX\y) s Toyr #S5{Zoyr d) <— #(X,, +Tyr ¢Z0ur) (8)
+ (S (xou-r) ly IN ,S ‘2 IN)) <‘- +(xou'r lym IZIN) (9)
+{S(Xoyr) e |y 75(Zour)) <= #(X 41 +Y,, ¢Z0ur) (10)
+(s(xou1")lyour ls(zlﬂ)) <—- +(x0UT!y°u7 lz|u) (11)

+(s (Xourd ¢¥ yy ¢S (Zour }) <= #{Xour #Y¥oyr #Z0ur)} (12)

Note that U{cl1) and U{c2) are unigque.

4.6. Remarks about U{(c).

Because of Proposition 4, some properties, already given for
the set U'(c), hold for the set U(c) as vwell. In the
following, we state the properties which hold for the set U{c)
and we show hov the clauses in U{c) satisfy the conditions
given for the annotated clauses of LCA/1.

Eroposition 1!

Proposition 1 holds in thke case of U{c) also. However, U{c)
could contain exactly one clause c', such that cyc', depending
on the occaurrence of local variables im c.

Proposition 2!

Proposition 2 holds in the case of U(c) also. In fact, in
addition to tke non-unigqueness of U'(c) (caused by step 3.2),
step 6) could hold for nmore than one U(c) for similar
motivations. The remarks given about U'{c), concerned with the
choice of the best atomic formula, apply to U{c) as well.

Froposition 3'

_ Properties of U'{c), involving oply the clause conclusion,
cbviously hold even for U{c), rcamely properties 1 and 3 of
Proposition 3. In addition, clauses in U(c) satisfy Properties
2 and 4 kecause of steps 5) and 6).

529

1

We will now show that, if ©Proposition 3¢ holds, thé
conditiomns given for the clauses of the language introduced in
Section 2 are satisfied.

= Condition 1 Point 1 jis achieved by property 4t of

Proposition 3%, because, when it is applied to the conclusion
atomic formula, the first case holds. Point 2 is guaranteed
by property 2¢ of Proposition 3%, :

= Condition 2 The condition immediately follows from property

£

"4 of Proposition 3'.

- Condition 3 The condition is guaranteed by property 1' of
Propositiom 3+, - : ‘ :

As a final remark let us note that property 3 of Proposition
3 is not essential and follows directly from the other
properties in the Proposition.

Finally, a few words about the goal. A goal is a special
clause structure whose left part is "empty", and, thus, it only
has local variables. The computation of U'(c), in the case of a
goal ¢, is the set {c}. Given Ut {c)={c}, the computation of
U{c) proceeds as in_the case of any other clause structare. It
results in the set {c*} whosg unique clause is a fully
anuotated goai and satisfies all “the above propositions.

4.7 Exangle

As an example of a goal computation let us consider the
following clause c:
<-= +{3,1,v)
The computation of ¢ is:

U(c) = {<—- (3,1 s Vour)}

Note that the solution is unique.

5. The language interrreter.

While mentioniag the language features, vwe pointed out in
- Section 2 how LCA/1 is a generalization of LCa, proposed for
 functional (even if non-deterministic) computations in
. Prolog-1like programning enviroments. Thus the language
interpreter we propose is defined along the same lines of the
'LCA interpreter given in [11]. It has a similar algebraic
definitiom and it handles some features, like lazy constuctors
and streams, in exactly the same WaYe
Nevertheless, some relevant differences aust be considered,
mainly with respect to:z
— the evaluation order of the goal atomic formulas;
= the clause unification mechanism.

12
5«1 The evaluation order and the demand driven rule.

The evaluation order of atomic formulas in a fully annotated
goal is established on the basis of a demand driven rule.

Each fully annotated goal contains some of the. following
three types of atomic formulas:

1) constant formmlas: atomic formulas whose terms are only
constant teras; o

2) input formulagzl'atomic fornulas whose terms are either
constant or input terms and contaim at least one input term;

3) output formulas: atomic formulas containing at least one
output teran. :

The first two types of formulas correspond to formulas vwhich
only put constraints on the goal or on the values of the
variables occurring 1in the goal. As a matter of fact, atoazic
fornmulas, whose predicate symbol is EQp, are of the second type
and their evaluation constraints the evaluation of the formalas
which use the same variables. Annotaticns allow us to define
global each variable annotated by OUT which occurs in a goal
and such that:s _

+ the variable does not occur annotated by IN in the goal
or
+ the variable occurs annotated by IN in input formulas onlye.

Thus a goal could be partitioned into two parts. One part
consists of the set of all the atomic formulas which contain at
least one occurrence of a global. This part provides the
computations of the "results" of the goal evaluation.

The atomic formulas of the second part do not contain
globals and only provide the computations of intermediate (and,
possibly unessential) values.

The evaluation of a goal proceeds as follows: the constant

formulas are evaluated first, then the input formulas

containing globals are considered. Fimnally, when the goal does
not contain any constant nor input formulas with globals, the
output <formulas which contain at least one global are
evaluated. :

The evaluation of an atomic formula of the second or third
type could require the evalmation of output formulas including
atomic formnlas not containing globals. In the case of the
evaluation of formulas not containing globals, -input formulas
are evaluated first.

Note that the order is statically defined by the
input-output relation arong atomic formulas. The relatiom is
induced by the occurrence of the same variable amnotated by IN
and OUT respectively in differeant atomic formulas. The relation
we have defined is a partial order. Hence the choice of the
formula, where more than one choice is possible, is unessential
to a right seguentialization of the computation.

13
5.2 The clause application mechanism

The clause application mechanism allows to apply a clause to
an atomic formula in the goal, and results in the evalmation of
goal atomic formulas. Whenever the value of a variable is
needed to apply a clause, the atomic formula computing that
variable is selected (by the Demand Driven Bule) for the
evaluation. - .

The mechanise is @mainly based on a tera uaification
mechanisa which provides: B '

- the binding of the input wvariables which occur in the

- coaclusion atomic formula of the clause with the
corresponding input or constant terms of the goal atoaic
formula; '

- the binding of the outpat variables whick occur in the goal
atomic formula with the corresponding output or constant
terns of the conclusion atomic formula of the clause.

Thus, the application of the unification to terms is not
syanetric. In fact, unification behaves, on one hand, like a
match of input terms-in the goal atomic formula to input terms
in the clause conclusion, and, on the other kand, like a match
of output terms in the clanse conclusion to the output terms in
the goal atomic formula.

The unification of a term in the goal atomic formula, tg,
with the corresponding term in the clause conclusion, tc, has
the folloving properties.

Proposition 5
The term tg is unifiable with tc if one of the following

cases holds:

1) tg is a constant termn;

2) tg is an input term and tc is either an input or a comstant
tern; :

3) tg is an output term and tc is either an output or a
constant term. . ~

Proposition 6

The unification of tg and tc resumlts in the pair of unifiers
(A ,,¢eAour) Tespectively for input and output variables, if and
only if:
1) tg is a constaat term and A,y is such that:

tg = [tcjlm

Note that, if tc is an ountput term, the unification
requires the evaluvation of the right part of the clause in
order to compute the output variatles occurring in tc.

2). tg is an input term and A4,y is such that:

tg = [tc],
IN

532
14

In tkhis case, the unification <could regquire the
evaluation of the goal in order to compute the variables
occurring as inputs in tg and corresponding to terms
(different from variatles) in tc.

3) tg is an output tern such that:z
3.1) tg is an output variable. Then

[tg‘l 2 our = tc

that is, A,yy contains a binding of the variable tg to
the term tc. Moreover, tc must be a constant teram or anm
ontput term containing only output variables.

3.2) tg is a term of the form f{tgl, ..., tgk) (where f is a
data constructor aamad at least one of the tgi's is an
output term), then:

[th Z’OUT B {tCJ}' IN

If this is the case and if tc is an output variable,
the unification needs the evaluation of the right part of
thke clause to obtain for tc the term f(tcl, ..., tck).
Then, the unification proceeds through the unification of
tgi, tci for each i from 1 to k.

Note that, because of 3.1, if #tc is an output wvariable, its
value f{tcl, ..., tck) contains output variables only. Thus, to
obtain an unification, tg must also be a term containing output
variables only.

A special case arises when tc is an output variable which
does not occur in the right part of the clause, i.e. there are
no atomic formulas in the goal wkich can compute values for the
variable. In this case the variable is comnsidered bound to all
terms of the Herbrand Universe, and the value of the variable
‘1is denoted by HU. The &match of such a variable to an output
term tg nmust bind the variables in tg to HU also.

5. 3 Exanple
As an example of a computation of a fully annotated progranm,
let us consider the evaluation of the goal in the example in
4.7 with the clauses U{c1) and U{c2) in 4.5. :
== {3,80y1 7oy)
resolved by (8)
withs A =1x5, =2}

o _ -0 - o
Aour= (U outr =Your #Vour =S{Zoyr)1}

J/ deriving:

<—- + ‘21Y:u7 'zgu'r)

533

15

(8)

A =Xy =1
| Rour= Aour Uiy =Thyr 1Z0ur =5 (2hyr 1]
L 1Yy v20r)

8 |

w =[x}, =0}

U Aour™ AUy, =15, oZiur =5(23,)3
<== +{0,¥5ur +Zour)

0

2% =0

Aowr= Aoy UL¥2,, =12y, ¢220r =Your}
V4 1

NN L

1201‘: ‘:UTU {Y:ur =HU }

6. Conclusion

.The design of new machines for logic based 1languages,
including the functional omnes, requires the project of
unconventional architectures oriented to efficiently handle the

‘language computation rules.

Thus it is important to define a {small) nucleus of
primitive rules which, on one hand, guarantees to express each
language computation step and, on the other hand, becomes a
nodel to tailor the language architecture.

In this +trend, we have considered the selection of atomic
formulas in the goals of a Prolog computation. As a matter of
fact, the selection has a remarkable relevance in the Prolog
ioplementation because:

- the selection affects the efficiency of the computations:
i.e. it.can cause too long computations;

- the selection requires a specific mechanism which can even
affect the efficiency of the mechanism to handle the
non-determinismn. :

Actually, the selection is handled in two different Ways.
The first, common to all the Prolog implementations, pakes a
static selection. This is achieved either by ordering the
atomic formulas fronm left to right [12], or by ausing
annotations [5]. The former does not cope with -efficiency,
vhile the latter 1looses the declarative transparency and does

531

O

16

not guarantees efficiencye.

The dynamic handling of the selection is the second approach
[12]. It allows efficient computations but requires mechanisas
which are complex and hard to build.

A promising solution to this problern seemns to be a
compilation of the Prolog clauses into fully annotated clauses.

An annotation assigns a role to atomic formulas by
distinguishing between the one which, for a given variable,
pnust compute a value and the ones which will use that value.
In this way, a functional dependency is statically imposed on
the atomic formulas. Then the selection is handled by means of
a demand-driven mechaniss.

In addition to it, the proposed compilaticn allows us to
reduce both the overhead of the unification nechamnisa {(which
beconres a matching mechanism) and of the computation
environment (only the output terms unifiers, 1,,, , Bust be
kept) . ,

However, some opes questions can be considered.

The first is the choice of the object program whemn more than
one is possible. The choice is semantically unessential (as we
will point out in the folliowing) and does not affect the design
or the efficiency of the demand-driven mechanism. However, it
is essential in order to shorten the conputations.

Given a set S of Horn <clauses, the <choice solutions are
strictly related to a selection <functiom vhich guarantees, for
each goal for S, a derivation (if any) «ith the smallest
nunber of input clauses [14].

The use of partially annotated clauses (clauses 1like those
occurring in U' (c)) together with the results concerning the
superposition [15] seems a promising approach towards the
definition of such a functior.

Por what the semantics is concerned, it is simple to prove
that any object obtained by the compilation is semantically
egquivalent to the original Prolog set of clauses {source
pregram).

The proof could ignore the problexs arising froa
superposable clauses and showv that the derivation of the fully
annotated clauses is a special case of the LUSH resolution
applied to Horm clauses.

Finally, the programming environment, the proposal allows to
define, deserves some remarks.

Programming applications often need to integrate declarative
programming with procedural one. Such an integration will
allow to easily combine declarative and procedural knowledge
{(i.e. algorithms) and is currently been pursued by several
projects, notably Bobinson's LOGLISP [16].

. To obtain it, attention has to be put on the integration
level which must allow, on one hand, to easily merge
declarative with procedural conmputations, and on the other
hand, to maintain, as small as possible, the nucleus for tke
different types of computatioa.

535

LCA/1 seens a good candidate for the integration level, in
particular it allows = the same .nucleus to conpute both
declarative and procedural prograems. Moreover, the proposed
compiler could be lightly modified in order to be ‘applied to
programs of partially annotated clauses, thus including pure
Prolog programs, 1CA programs and programs whose clauses
contain both Prolog and LCZ atomic foraulas. :

EEFERENCES

[1] Rowalski, R.A. Predicate Logic as a Progranmming language.
Information Processing 74, ©North Holland, 1974, pp.
556-574. : :

[2] Kowalski, BRB.A. logic for Problem Solving. Artificial

: Intelligence Series, N.J. Nilsson Ed., North Holland,
1979.

[3] Logic Programming. Clark X.L. and S.A. Tarnlund Eds.,
Academic Press, 1982.

[4] Proceedings of the 1st Iai'l Logic Progranming Conference.
Marseille, 1982. _ :

[5] Clark, K., McCabe, F. and Gregory, S. IC-PROLOG Language
Features. In {3], pp. 253-266.

{6] Gallaire, H. and Lasserre C. Metalevel Control for Logic
Programs. In [3], Pp.173-185.

[7] Pereira, L.M. and Porto, A. Intelligent Backtracking and
Sidetracking in Horm Clause programs - The Theory.
Departamento de Informatica, Universitade Nova de Lisboa,
Rep. 2/79 CIUR1, October 1979.

[8] Kowalski, R.A. Algorithm=Logic+Control. Comm. of A.C.M.,
22, 1979, pp. 424-431.

[9] Bellia #., Degano P. and Levi G. The call by name

‘ semantics of a clause language with functions. In [3], pp.
281-298. '

[10])Bellia, M., Dameri, E., Degano, P., Levi, G. and Martelli,
Y. Applicative Cornmunicating Processes in First Order
Logic. Lecture ©Notes in Conmputer Science, 137, Springer
Verlag, 1982, pp. 1-14.

[11])Bellia, M., Dameri, E., Degano, P. Levi, G. and Martelli,
M. A Formal Model for Demand-driven Implementations of
Rewriting Systems and its Application to Prolog Processes.
I.E.I. Internal Report, IEI-B81-3, 1981. :

[12]4oss, C. The comparison of several Prolog systems. Proc.
of First Logic Programming Workshog, Debrecen,
- 1980, pp.198-200. ’

[i3]Pereira, 1.M. and Porto, A. Selective Backtracking. In
[3]), PE-107-116.

[14]Hill, BR. LUSH-Besolution and its complitenmess. DCL Memo

‘ No.78, Univ. of Edimburgh, 1974.

[15])sato, I. and Tamaky, H. Enumeration of success patteras iz
Logic Programs. To be presented at 10th ICALP.

[16 JRobinson, J.A. and Sibert, E.E. LOGLISP: an alternative to
PECLOG. Machine Intelligence No.10, 1982, pp. 399-420.

