
I

! I

The Personal Sequential Inference Machine (PSI):

Its Design Philosophy and Machine Architecture

Hiroshi Nishikawa Minoru Yokota
Akira Yamamoto Kazuo Taki Shunichi Uchida

Institute for New Generation Computer Technology
Mita-Kokusai Building, 21F.

4-28, Mita l~home, Minato-ku, Tokyo 108
Japan

ABSTRACT

As a software development tool of the Fifth
Generation Computer Systems (FGCS) project, a personal
sequential inference machine is now being developed. The
machine is intended to be a workbench to produce a lot of
software indispensable to our project. Its machine
architecture is dedicated to effectively execute a logic
programming language, named KLO, and is equipped with a
large main memory, and devices for man-machine
communication. We estimate its execution speed is about
20K to 30K LIPS. This paper presents the design
objectives and the architectural features of the personal
sequential inference machine.

54
Page 2

1. Introduction

The final goal of the Fifth Generation Computer Systems (FGCS)
project[l] is to develop the basic technology for a totally new
computer system which has the ability to handle knowledge information.
Inference is for the key mechanism in that system. That is the basic
motivation why our project chose logic programming as the basic
programming framework.

As one of the actual programming languages based on logic, there
is an on-going active move of using Prolog to build new computer
applications, especially in the artificial intelligence area.
However, the processing power of existing computers is not sufficient
for this purpose. It is quite important for the project to rapidly
establish the logic programming environments. To satisfy this aim,
the Sequential Inference Machine (SIM) is under the development in
ICOT.

SIM is mainly intended to be a software development tool,
however, the design of its architecture has many experimental aspects.
It seemed to be difficult to design the ideal machine at once. So we
have taken the following development steps:

1) designing a new programming language based on logic.

2) designing a personal sequential inference machine which is
specialized for that new language.

3) designing a new operating system running on that new machine.

4) designing an advanced sequential inference machine based on
the experiences from 1) - 3).

As the first step, the logic programming language, called Kernel
Language Version O (KLO), was designed to take the place of Prolog.
KLO is mainly used to describe system software, such as the operating
system kernel, compilers, and interpreters. Therefore KLO can be
regarded as a conventional assembly language except for logic
programming features. And a Personal Sequential Inference machine
(called PSI:) which is designed to execute KLO is now under the
development as the second step.

The following sections describe PSI design objectives, its system
overview, and its machine architecture.

2. Design Objectives

As PSI is considered as a main computing tool in t.lie initial
stage of the FGCS project, the main requirements for its design are
the high performance and an easy-to-use man-machine interface. Since
PSI must be available as soon as possible, the main efforts are

I I
, I

55
Page 3

focused on designing its processing unit and memory unit. However, in
another aspect, designing PSI can be considered as an experimental
step toward the target inference machine.

2.1 Performance Goal

As a software development tool, an adequate execution speed and a
sufficient . memory space must be provided in order to execute
real-world applications.

. On this point, it is suitable to compare them with the DEC-10
Prolog system[2]. Because, it is the most popular one and its
compiler generates very fast codes.

However, the DEC-10 Prolog system is limited in its memory size
(256K words) for users. It is relativity small for actual· Prolog
applications. This limitation may cause a serious problem in its use.
The lower execution speed might be compensated by longer processing .
time, however, there is no way to continue the program execution if
the system has used up such a memory space as a stack. From our
experience in using the DEC-10 Prolog system, we estimated that at
least a 10 times larger memory space must be necessary. In this
situation, the virtual storage system would be an attractive feature,
however, its implementation in the Prolog environment involves several
problems to be studied. We have to study such problems· more deeply as
the swapping ratio between main memory and secondary storage, namely
the locality of memory accesses, effective cache control mechanism,
and an effective garbage collection algorithm working real-time[3].
Therefore we decided to leave the virtual storage system as a future
extension. Instead of it, PSI is equipped with a relatively large
real memory, maximum 16M words. About execution speed, PSI is
designed to attain 20K to 30K LIPS {Logical Inference Per Second)
which is the similar performance to the DEC-10 Prolog compiler version
running on DEC-2060.

2.2 Personal Use

PSI is designed as a self-contained, personal machine in order to
provide its user with powerful computing facilities and an efficient
programming environment.

An easy-to-use, sophisticated man-machine interface is the most
important features for software development tools. To provide good
man-machine communications, PSI is equipped with a bit-mapped display
device and a pointing device (a mouse). And a multi-window system is
planned to be implemented on them. The input/output devices for
Japanese characters will also be included, and PSI will support a word
processing system for Japanese.

Page 4

2.3 Local Area Network

PSI is planned to be connected to a local area network in order
to give its user a more productive environment. Although any kind of
peripheral devices can be connected to PSI, an usual PSI system will
have a limited number of devices according to its own system
characteristics.

Through a local area network, the distributed processing system
connecting several PSI's can be built. Furthermore, the user can
access other machines from PSI, such as a relational data base machine
also being developed in the project, and conventional commercial
machines.

2.4 Flexibility

PSI has adopted microprogrammed control for flexibility and
extendability.

The project has decided on KLO as a machine level language,
however, its usefulness will be verified after PSI completes. In
addition, the research and development of new programming languages,
such as concurrent Prolog[4][5], is also one of the important subjects
in the project. Therefore PSI must be able to execute those
experimental languages as their test bed

2.5 Evaluation

Using PSI, several items of measurements are planned for
evaluation on programs behavior and machine design. One is to
evaluate characteristics about the execution profile of logic based
programs. Another one is to evaluate the validity about PSI
architecture and hardware design. Especially, the measurement of
memory access characteristics including cache hit ratio is one of the
important items, because memory access is the most frequent operation
in inference machines. The next advanced models of SIM will be
designed utilizing effectively these evaluation results.

2.6 Specialized Hardware Supports

As a first experimental inference machine, an effort has been
made to introduce several specialized hardware supports suitable for
executing a logic programming language in PSI. To improve unification
speed, PSI has hardware buffers. The role of these buffers is to
quickly refer to the binding values of variables. For dynamic data
type checking, each word has an 8 bit data tag (tag architecture). To

I

I I

Page S

make memory access operations faster, the connection between the main
memory and the processing unit was designed as tightly as possible.

PSI design objectives can be summarized as the combination of
high performance of the 32 bit "super mini-computer" with the good
man-machine interface of the "super personal computer".

3. System Overview

One of the key factors to determine a machine architecture may be
the design of the machine instruction set. PSI is a specialized
machine for executing the logic prog,-amming language (KL0),however, it
must have its own operating system to be a self-contained personal
machine. This section briefly summarizes the software system and
hardware configuration of PSI.

3.1 Language System

One advantage of a logic programming language is to use its
non-determinism effectively. However the non-determinate operation is
considered unnecessary for describing low-level system control such as
the kernel of · operating systems, because it mainly consists of
determinate operations and thus non-determinate operations would
produce redundancy. In general, if a machine architecture is
dedicated to some high- level programming language, it becomes
difficult to implement its operating system in that language on the
same machine. In this situation, a different programming language
could be used for system description, however, this approach would
degrade the uniformity of the system. And the machine architecture
should support two different types of language processing. To make
the entire system uniform, we decided to implement a PSI operating
system based on the logic programming concept. KL0 has been designed .
to make this possible.

Figure 1 shows the language system hierarchy. The system
programmer uses KL0 directly to develop a compiler, an interpreter,
and operating system kernels. From the user's view point, KL0 can be
regarded as a machine language of PSI, however, KL0 is basically a
high-level, logic programming language. Its features are summarized
as follows:

o a subset of DEC-10 Prolog

o an extended ability for hardware resource handling

o an extended ability for interrupt handling and process control

Page 6

o extended execution control facilities

KLO includes the normal unification mechanism and clause handling
mechanism like usual Prolog. From this view point the users can
regard PSI as a complete Prolog machine. On the other hand, the users
can also specify the machine level control with its extended
facilities in KLO.

compiler

KLO

interpreter

KLO

compiler

assembly language
interpreter \

assembly language 1 __

r
I
I
I
I
I
I
l
I
I
I
I
t

object code 7

interpreter

micro code

HARDWARE

I I
I I
L-------. _____ J

Figure 1.

I
compiler

I

I

object code

interpreter
micro code

HARDWARE

1
I
I
I
I
I
I
I
I
I
I
I

I I
I I

I------------'
language hierarchy

KLO

5 3

Page 7

3.2 Operating System Support

The kernel parts of the PSI operating system are written in KLO.
These are transformed into internal machine forms by the compiler
which is also written in KLO itself. Then PSI hardware/firmware
directly executes those internal forms. Furthermore, time crucial
parts of the operating system kernel, such as the garbage collector or
process switcher, are executed directly with firmware. The
applications programmers will use a higher programming language than
KLO. This language is executed with the interpreter or is compiled by
the compiler written in KLO into internal machine forms.

From the software side, it can be said that the PSI operating
system is written in completely a logic programming style. From the
hardware side, it can also be said that PSI architecture supports the
primitive kernel operating system functions.

3.3 System Configuration

Figure 2 shows the PSI system configuration. CPU has a
microprogram sequencer. The capacity of its writable control storage
is 16K words. The micro instruction is 64 bit long and is executed in
less than 200 nsec.

Main
Memory

Cache

PSI
CPU

network

IEEE 796 bus

hard disk keyboard bitmap display mouse

Figure 2. system configuration

CPU interprets internal object forms of KLO with its micro-coded
interpreter. Its hardware mechanism is mainly dedicated for the fast
unification. It includes several discrete registers, register files,
and an arithmetic operation unit.

Page 8

The memory unit has a relatively large main memory instead of
being equipped with a virtual memory system. A maximum of 16M 40 bit
words can be installed. To shorten memory access time, PSI is
equipped with a cache memory. It consists of 2 sets of 4K word
memory, and a write-back strategy is adopted. Since several stack
areas are required for interpretation of KLO and each stack area will
arbitrary grow during program execution, PSI introduces logical memory
addressing. Therefore the roles of the memory control unit are
address translation and cache control. If the required data exist in
the cache memory, PSI can fetch that data within one micro instruction
cycle.

A general purpose input/output bus is provided to PSI. To keep
design simplicity and generality, JEEE-796 standard bus(MUL TIBUS) is
adopted. As a minimum configuration, PSI supports a fixed head disk,
a floppy disk, a key board, a bit-mapped display, a mouse, a printer,
and a local area network interface. Since PSI is planned to be
connected to a local area network, the peripheral devices may be
selected according to their own characteristics.

PSI also has an additional parallel interface port, in order to
satisfy the requirement for connecting special 1/0 devices directly.
For example.this parallel interface will be used to connect the
relational data base machine or the voice recognition device, and etc.

4. Machine Architecture

The architecture of PSI was decided based on vanous
considerations. A KLO program is compiled into the internal object
forms of PSI. But the level of the object code has been decided to be
higher than that of ordinary machine instructions. So PSI is regarded
as a high level language machine. In order to attain high
performance, PSI adopted a tag architecture. Furthermore, a cache
memory and special purpose registers are provided to improve the
unification speed. PSI always refers to memory with logical address,
and also has hardware supports for multi-processing.

4.1 How to Design the Machine Instruction Set

KLO is a logic programming language, however, it is mainly used
for system description. Therefore, performance in its execution is
crucial. To take advantage of the source program information as much
as possible, we decided to employ a compiler and thus PSI executes
compiled codes instead of interpreting source codes directly. Even
though, after compiling KLO, there still remains many operations to be
performed only in execution time, such as unification, because of a

60

I I

I

Page 9

dynamic feature of the logic programming language. Then several
levels of machine instructions can be considered.

The lowest one may be the conventional machine instruction level,
and a KLO program would be compiled into small pieces of those
primitive machine instructions. The highest one is the internal form
which is translated one by one from a source statement of KLO. The
desirable machine instruction level depends on the characteristics of
the language.

Originally, KLO contains two different groups of elements. The
first group is user--defined clauses to be executed within the logic
programming framework. Namely, it is executed based on unification
and backtracking. The execution of them is slightly simple and
dominated with memory access operations. Therefore, it is undesirable
that such execution is broken into many small machine instructions,
because many instruction fetches are needed. In addition to this,
there is less room for macro optimization on the hardware side because
of low level machine instructions. This results in increased
redundancies in both execution time and memory usage. We considered
that PSI should have these unification and backtrack control
facilities by itself.

The second group is built-in predicates for such operations as
arithmetic operations and input/output operations[6]. Since the
execution of them is performed determinately, their object codes can
be represented in compact forms like conventional machine
instructions. These built-in predicates are introduced not only to
enhance the efficiency of frequently used operations but also to be
able to include such primitive operations as register handling and
direct memory manipulations used in the operating system.

Consequently the PSI machine instruction set has two types in its
internal object forms. The first one corresponds to user--defined
clauses. Actually, such a clause is compiled . into the sequence of
several internal object forms according to source clause definition.
PSI interprets that sequence as a machine instruction on the whole.
The others correspond to built-in predicates. Basically, a built-in
predicate is compiled into one internal machine form.

4.2 Internal Object Forms

A KLO program is translated into the corresponding internal
object form described above. How to represent data and clause is
shown in this section.

4.2.1 Internal Data Representation

Page 10

Through examining PSI machine architecture, providing it with
enough ability for increasing requirements from application areas is
considered. At least 32 bits are necessary for representing
sufficient magnitude of numbers and addressing space. In result, PSI
employs a 40 bit word representation as shown in Figure 3. The upper
8 bits represent tag bits (tag part), and the remaining 32 bits
represent the data itself (data part). 2 bits of the tag part are
used by the garbage collector and the remaining 6 bits indicate the
type of data included in the data part.

tag data

32

Figure 3. word format

PSI has several internal data types corresponding to ones in KLO.
The visible data types for user are listed below:

o symbol
o integer
o real
o vector
o string
o local variable
o global variable
o void variable

(a) Symbol

This indicates the identifier of an atom. In the data part, the
symbol number corresponding to an atom is stored. The printing image
of an atom is managed by the operating system. So there is no direct
relation between the symbol number and its printing characters.

(b) Integer, Real.

These are numerical data on PSI. The value of them is stored m
the data part.

(c) Vector

A vector is a block of continuous memory slots, and is used to
represent various structured data such as binary trees. As shown in
Figure 4, a vector is usually accessed by way of its descriptor.
However, this representation always needs an extra memory access
whenever a vector is accessed. Since it is supposed that the vector
which has a few elements is frequently used in programs, the direct
vector type is introduced in order to effectively access such vectors.
The conventional list structure is an example, and its representation

Page ll

is shown in Figure S. Comparing the performance of the structure
sharing[7] with that of the copying strategy on structured data
handling. PSI employs the structure sharing method similar to the
DEC-10 Prolog. Therefore the structured data are manipulated as the
pair of a structure (representing in a vector) and its values (located
in the global stack). This address pair is. called a molecule.

vect tag 1

tag 2

int N tag N

Figure 4. vector representation

vect 2

int

vect 2

int 2

vect 0 nil

Figure 5. list representation

(d) String

elem 1

elem 2

elem N

A string data type is introduced for manipulating a byte
(CHARACTER), double bytes (KANJI). and a bit (FIGURE) string data.
Like the vector representation, string data is also accessed by way of
its descriptor.

(e) Local/Global Variable

This data type indicates a local/ global variable included in a
clause. In the data part, the variable number is stored. The
instance of a local variable is created in the local stack. The
instance of a global variable is created in the global stack. Roughly
speaking.the difference between the two is that the instances of local
variables are cleared when the clause including them are executed

Page 12

determinately, however, those of global variables are not cleared.

(f) Void Variable

This type means that the variable can have an arbitrary value,
namely can be unified to any type of data.

4.2.2 Clause Representation

The definition of a clause in KLO is the same as the one in
Prolog. It consists of a head predicate and several goal predicates.
The compiler translates a clause into a corresponding internal object
form. As shown in Figure 6, each clause is represented as continuous
memory slots, called code, in PSI. A code is a similar data type to a
vector, and consists of a clause header, head arguments, goal
predicate name and its arguments.

compile

disc size

code
Header Part

(reserved)

int TYPE I Narg I Nl Ng alternative claus~ _
for p

Arguments L•var X

of Head \ L-var y

~.if code

L-var

L-var
\.

X

z
r

BLT Goal, add z y

--
Figure 6. clause representation

A clause header consists of four words. The first word indicates
the size of the code. The second word has an address to the code
representing the next alternative clause. The third word is a
reserved word. It might be used by the garbage collector. The last
word indicates attributes of the clause. TYPE shows the clause type.
For example, it is a unit clause, or having alternative clauses etc.

---- ----- --

' i

i

' I
i

I I
I

Page 13

Narg shows the number of arguments included in the head predicate.
Nl/Ng shows the number of local/global variables included in this
clause.

Following a clause header, the head predicate arguments are
located. Each argument is represented in the data types described in
4.2.l.

The remaining codes show the internal form of goals. There are
two types of goal representation according as the called goal
predicate is a built-in predicate or not.

(a) User-Defined Predicate Call

A goal . predicate name is compiled into the pointer to the code
representing the called clause. This pointer is stored in the data
part and the tag of this pointer is set to a code type. The goal
arguments are arranged continuously, following this pointer.

(b) Built-in Predicate Call

In the data part, a compact representation of machine
instructions is stored and it consists of an 8 bit operation code and
three 8 bit operands. The role of built-in predicates is to create
objects, test the attributes of objects, and manipulate objects etc.
A built-in predicates is compiled into one word object code basically,
so that it can be executed efficiently on PSI.

Each goal is compiled into the pointer of the corresponding
clause and its arguments. There are three connection types of goals,
which l>SI can directly interpret with its fmnware interpreter.

(a) AND Connection

AND connection shows that the goals are combined as an AND node
in the AND-OR search tree. Each goal is continuously located as shown
in Figure 7-(a). AND connection means that each goal is executed
sequentially and if a goal is failed, then backtracking occurs.

(b) OR Connection

This type is used to represent an OR connection included within a
clause. OR connection shows that each goal is combined as an OR node
in the AND-OR search tree. This connection is realized by an OR
instruction as shown in Figure 7-(b). At first execution, the first
goal is tried. When they fail, then the second goal is tried. Each
branch of the OR connection can be composed of several goals.
Therefore each branch of an OR connection is the same as an ordinary
alternative clause except that they are included in only one clause
and require no unification process.

{a) ANO connection

H:- 81 ,BZ,83.

Header Part

..._ Arguments ... of Head

Goa 1 81

-
-

(b) OR connection

H: - (81 ;B2) ,83.

Header Part

Arguments
of Head

Page 14

(c) CASE connection

H:- case(Indx,B1 ,82),B3.

Header Part

,- Arguments -
i- of Head -

BLT easel tndx
-

BR
-

Goa 1 82

Goal B2

BR

I/
Goal B1

Goal 83
BR ~

Goal B3
Goal 82

Figure 7. . goa 1 connections Goal 83

(c) CASE Connection

CASE connection can be regarded as the arrangement of indexed
goals. Figure 7-(c) shows the internal format of CASE connection.
One of the goals is selected by the result of CASE instruction and if
it is successively executed then the goal following the case block is
executed next. Even if backtracking occurs, unlike OR connection, the
remaining indexed goals are not executed.

4.3 Execution of PSI Internal Object Forms

For interpretation of the KLO program, the following four stacks
are needed:

o local stack
o global stack
o trail stack
o control stack

The use of these stacks' is similar to those of DEC-10 Prolog,
however, the control stack is separated from the local stack in order
to efficiently execute the extra control primitives of KLO.

lk'""
V

I✓

6G

I
, I

I

, I Page 1S

The local stack is an instance region for local variables.
Preceding the unification process. PSI allocates the stack entries
according to the number of local variables included in a clause.
These stack entries are popped up when the evaluation of the clause
including them is determinately terminated, or unification fails.
They are also cleared when it is pruned by a "cut" operation.

The global stack is an instance region for global variables.
Similar to the local stack, PSI allocates stack entries according to
the number of global variables. These entries are only popped and .
cleared when unification fails. In addition, a molecule generated
during unification and some control information are also allocated in
this stack.

The trail stack is used for undoing variables when backtracking
occurs. In .this stack, binding information (i.e. the cell address
where a value is stored during unification and whose content must be
changed to 'undefined' when unificatoin fails) is stored When the
instance value of a variable is modified, its old contents are also
stored in the trail stack in addition to its cell address.

In the control stack, various book-keeping information required
for the execution control is stored. All of them are pointers which
represent the execution environment of corresponding clauses. They
are used to return to the calling clause, or to the backtrack point
when unification fails.

There are some data types dynamically generated during program
execution. Some of them are described below.

(a) Reference

It indicates a pointer generated during unification.

(b) Molecule

PSI adopts the structure sharing method to represent structured
data described before. Since a molecule consists of two words in PSI,
it can not be located into a variable cell. Therefore, a molecule
itself is allocated in the global stack, and the reference to it is
located in the variable cell.

4.4 Address space

PSI has a 32 bit logical address space. It is composed of 256
logically independent areas. The size of each area is 16M words, and
managed by pages of lK words. The reason why the concept of area is
introduced is as follows:

(a) Since PSI supports multi-processing, it is desirable for the

G 1-

Page 16

operating system to assign completely independent areas to each
process.

(b) Since PSI firmware interpreter uses four stacks described in
section 4.3, it is desirable to be able to expand each stack area
independently. If these stacks are allocated to the same space, a
collision between stack areas will occur. At that time, one of them
must be moved to another space. This situation causes serious
overhead time.

Since four stacks are required for interpretation of a KLO
program, it means that each process needs at least four areas for its
execution environment. On the other hand, code areas might be shared
among many processes. If four areas are assumed to be used for code
areas, namely heap areas, a maximum of 63 processes can be created on
PSI from 256 areas.

Each area is divided into 16K pages. A page consists of 1K
words. An area is managed by PSI operating system in page units. PSI
allocates one page when a process needs more memory. On the other
hand PSI disallocates some pages when a process release memory.

In result, the memory address field is divided into an 8 bit area
number, 14 bit page number, and 10 bit offset as shown in Figure 8.

I AREA # I PAGE# I OFFSET

~\,
V /'--.:.....,,--1

8 14 10

Figure 8. address format

The address translation mechanism is shown in Figure 9. The
translation from a logical address to a physical address is performed
with an area table and a page table. Each area table entry shows the
base address of a page table located in the page map table
corresponding to an area. And each page table entry shows the
physical page address corresponding to a logical address page. As a
first step to generate a physical address from a logical address, the
area table is accessed using the area number, and a page table base
address is obtained. Then the page map table is accessed using the
sum of that page table base and a the page number. Finally
concatenating the output of the page map table and the page offset, a
24 bit physical address is obtained.

G8

I I

I i

Page 17

LOGICAL MDRE:SS A# PG# OFFSE:T

8 (ARl:A TAGLE) C PAGE MAP TABLE>

/
14

PTfJ
1S

<256 entries) PG#

l pp

(321< entries)

14

PHYSICAL ADDRESS
PP OFFSE:T

•

Figure 9. address translation

To achieve address translation, it is common to use a Translation
Lookaside Buffer(TLB). Each TLB entry contains a logical page address
and corresponding physical page address. TLB is a sort of cache
memory, and if the address pair corresponding to a logical address is
stored in it, there is no reference to the translation table existing
in the main memory. PSI does not adopt this method. Instead, the
area table and the page map table are located in special fast memory.
In result, the address translation process is performed within a micro
instruction cycle. The reasons why TLB is not adopted are shown
below:

(a) If the address pair is not in TLB, the translation table in main
memory must be accessed to generate a physical memory address.

(b) Since the garbage collector must search all memory space, it is
supposed that the memory access locality during garbage collection is
not so high. Therefore, TLB might not work well in that situation.

19

Page 18

(c) PSI does not adopt virtual memory. The total amount of page map
table entries can not exceed the number of physical pages. Since the
maximum size of main memory is 16M words, it is sufficient to have 16K
entries in the page map table.

The size of an area can extend from one page to 16K pages.
Before program execution, the maximum number of pages used in a area
cannot be predicted. Furthermore, a process needs at least four
areas, however, the utilization of each area is different among
processes. Accordingly, as the number of page table entries increases
during execution, a page table may collide with another page table
within the page map table. To avoid that case when possible, it is
desirable to locate each page table corresponding to an area as
dispersively as possible. Also, the page map memory size should be
larger than the number of physical pages. To satisfy this condition,
PSI has a page map memory of 32K entries. Since the standard physical
memory size is 4M words, the size of a page map memory is eight times
larger than that of physical pages.

If a page table collision occurs in page map memory, a trap
occurs and page table relocation must be done. There are many
algorithms to be considered. It is a future research theme to examine
which algorithm is better.

4.5 Hardware Supports for Fast Unification

Unification plays an important role in executing a KLO program.
To efficiently execute the unification process, the hardware support
mechanism is indispensable. The major part of the unification process ·•
is memory access and data type checking. The facilities employed in
PSI are as follows:

o Cache memory
o Tag bits
o Frame buff er

(a) Cache Memory

The merit of using cache memory is to reduce the cost of all
memory accesses besides stack access. PSI adopts the write
back-strategy for cache control, not the write-through strategy. A
cache memory manages logical addresses. Therefore, if the accessed
data exists in cache memory, no address translation is needed. The
address translation is required only if a cache miss-hit occurs. PSI
memory controller performs address translation during the cache memory
access in parallel. This mechanism creates no overhead time for
translation when the cache memory miss-hit occurs.

(b) Tag Bits

tO

, I

' I

Page 19

A tag is essential to effectively interpret a data type. To
realize fast unification depends on how rapidly the data types can be
examined. For this aim, tag bits are attached to all data, and they
specify the type of the data. A special hardware mechanism, which
decodes tag bit pattern efficiently, is provided in PSI.

(c) Frame Buffer

Frame buffer is the set of special registers provided for the top
of the stack frame. In this buffer, the arguments of a clause and the
cells of local variables are stored. Most of the unification is done
using this buffer. This reduces the number of memory accesses, and
faster unification will be realized. Furthermore, using this buffer,
Tail Recursion Optimization {TRO)[8] can be realized efficiently.

4.6 OS Support

Since PSI is designed as a self-contained system, it requires own
operating system. This operating system consists of an end-user
interface {command interpreter), a programming system {editor,
debugger), a file system, and so on. To provide its users with a
sophisticated programming environment, that operating system must be
an easy-to-use system, and provide good man-machine communications.
Considering that these systems are specified by KLO,it is desirable
that PSI must have operating system support functions.

To attain this objective, PSI has various hardware and r1rmware
supports. For example, such primitive operations as a memory
allocation or a garbage collection included in the memory management
system is directly performed by r1rmware. The process switching of
the process management system is also performed by r1rmware.
Furthermore, PSI holds the process information in fast CPU memory in
order to reduce process switching overheads. This is an essential
hardware support in PSI, because KL0 requires larger execution
environment than ordinary programming languages, and without that
hardware support the contents of many base registers must be saved
into the main memory at process switching.

In addition to higher level operating system support, there are
several KL0 built-in predicates which perform low level system
control, such as hardware resource handling, direct memory
manipulation, and input/output control. These built-in predicates are
effectively executed by r1rmware. ·

Besides this support described, garbage free regions is
introduced to support the operating system kernels. In this region no
garbage collection is done. This means that a program running in this
region can be executed even while a garbage collection process is
being executed. Those special processes unconcerned with the . garbage
collection are called supra GC processes. The aim of introducing this

Page 20

GC-less process is to maintain good man-machine interface even when
the garbage collector is working.

Summarizing those, the hierarchy from the end-user interface
language to the hardware on PSI is shown in Figure 10.

APPLICATION END-USER
LANGUAGE

r USER INTERFACE ' \

EDITOR DEBUGGER COMPILER

INTERPRETER KLO~

r SUBSYSTEM ' \.

WINDOW SYSTEM

FILE SYSTEM NETWORK SYSTEM KLO

r KERNELSYSTEM \. .I

MEMORY PROCESS DEVICE (supra-Ge)
MANAGEMENT MANAGEMENT MANAGEMENT MODE

KLO

GARGAGE COLLECTOR FIRMWARE
PROCESS SWITCH

HARDWARE

Figure 10. operationg system hierarchy

5. Conclusion

In this paper, we described the design objectives and the machine
architecture of a Personal Sequential Inference machine, PSI. Its
detail hardware design has almost been completed and the
microprogrammed KLO interpreter is now under the design. The rough
estimation of PSI execution speed is comparable to the compiled codes
of DEC-10 Prolog system on DEC-2060.

PSI is a first step toward the target inference machine which
will be attained in ten years. For designing next advanced SIM, we
are planning several evaluations on PSI. Many software products will
also be made on PSI. We believe that PSI will be a powerful and
useful workbe~ch for our project.

rl

I I

I I

I I

Page 21

ACKNOWLEDGMENTS

The authors express their grateful thanks to Dr. Takashi
Chikayama for his valuable advice, and to Mr. Kazuhiro Fuchi,
Director of ICOT Research Center and to Dr. Kunio Murakami, Chief of
First Research Laboratory for their continuous encouragement, and to
other memben of ICOT for their useful comments and discussions.

REFERENCE

[1] Outline of Research and Developments for Fifth Generation Computer
Systems. ICOT Research Center, April (1983)

(2) Warren, D.H.D. Implementing PROLOO - compiling predicate logic
program. Vol.1-2, D.A.I Research Report No.39-40, Department of
Artificial Intelligence, Univ. of Edinburgh (1977)

(3) Cohen, J. Garbage Collection of Linked List Data Structures.
Computing Surveys, 13-3 (1981)

[4] Shapiro, E.Y. A Subset of Concurrent Prolog and Its Interpreter.
ICOT Technical Report TR-003(1983) .

(5) Takeuchi, A., et al. Interprocess Communication in Concurrent
Prolog. Logic Programmjng Workshop, '83 (1983) ·

[6] Chikayama, T., et al. Fifth Generation Kernel Language. Proc.
of the Logic Programming Conference '83 (1983)

[7] Boyer, R.S and J.S.Moore. The Sharing of Structure in Theorem
Proving Programs. Machine Intelligence Vol.1-7, Edinburgh Up (1972)

(8) Warren, D.H.D. An Improved PROLOG Implementation Which Optimizes
Tail Recunion. D~A.I Research Report No.141, Department of
Artificial Intelligence, Univ. of Edinburgh (1980)

13

