
I 

! I 

The Personal Sequential Inference Machine (PSI): 

Its Design Philosophy and Machine Architecture 

Hiroshi Nishikawa Minoru Yokota 
Akira Yamamoto Kazuo Taki Shunichi Uchida 

Institute for New Generation Computer Technology 
Mita-Kokusai Building, 21F. 

4-28, Mita l~home, Minato-ku, Tokyo 108 
Japan 

ABSTRACT 

As a software development tool of the Fifth 
Generation Computer Systems (FGCS) project, a personal 
sequential inference machine is now being developed. The 
machine is intended to be a workbench to produce a lot of 
software indispensable to our project. Its machine 
architecture is dedicated to effectively execute a logic 
programming language, named KLO, and is equipped with a 
large main memory, and devices for man-machine 
communication. We estimate its execution speed is about 
20K to 30K LIPS. This paper presents the design 
objectives and the architectural features of the personal 
sequential inference machine. 
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1. Introduction 

The final goal of the Fifth Generation Computer Systems (FGCS) 
project[l] is to develop the basic technology for a totally new 
computer system which has the ability to handle knowledge information. 
Inference is for the key mechanism in that system. That is the basic 
motivation why our project chose logic programming as the basic 
programming framework. 

As one of the actual programming languages based on logic, there 
is an on-going active move of using Prolog to build new computer 
applications, especially in the artificial intelligence area. 
However, the processing power of existing computers is not sufficient 
for this purpose. It is quite important for the project to rapidly 
establish the logic programming environments. To satisfy this aim, 
the Sequential Inference Machine (SIM) is under the development in 
ICOT. 

SIM is mainly intended to be a software development tool, 
however, the design of its architecture has many experimental aspects. 
It seemed to be difficult to design the ideal machine at once. So we 
have taken the following development steps: 

1) designing a new programming language based on logic. 

2) designing a personal sequential inference machine which is 
specialized for that new language. 

3) designing a new operating system running on that new machine. 

4) designing an advanced sequential inference machine based on 
the experiences from 1) - 3). 

As the first step, the logic programming language, called Kernel 
Language Version O (KLO), was designed to take the place of Prolog. 
KLO is mainly used to describe system software, such as the operating 
system kernel, compilers, and interpreters. Therefore KLO can be 
regarded as a conventional assembly language except for logic 
programming features. And a Personal Sequential Inference machine 
( called PSI: ) which is designed to execute KLO is now under the 
development as the second step. 

The following sections describe PSI design objectives, its system 
overview, and its machine architecture. 

2. Design Objectives 

As PSI is considered as a main computing tool in t.lie initial 
stage of the FGCS project, the main requirements for its design are 
the high performance and an easy-to-use man-machine interface. Since 
PSI must be available as soon as possible, the main efforts are 
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focused on designing its processing unit and memory unit. However, in 
another aspect, designing PSI can be considered as an experimental 
step toward the target inference machine. 

2.1 Performance Goal 

As a software development tool, an adequate execution speed and a 
sufficient . memory space must be provided in order to execute 
real-world applications. 

. On this point, it is suitable to compare them with the DEC-10 
Prolog system[2]. Because, it is the most popular one and its 
compiler generates very fast codes. 

However, the DEC-10 Prolog system is limited in its memory size 
(256K words) for users. It is relativity small for actual· Prolog 
applications. This limitation may cause a serious problem in its use. 
The lower execution speed might be compensated by longer processing . 
time, however, there is no way to continue the program execution if 
the system has used up such a memory space as a stack. From our 
experience in using the DEC-10 Prolog system, we estimated that at 
least a 10 times larger memory space must be necessary. In this 
situation, the virtual storage system would be an attractive feature, 
however, its implementation in the Prolog environment involves several 
problems to be studied. We have to study such problems· more deeply as 
the swapping ratio between main memory and secondary storage, namely 
the locality of memory accesses, effective cache control mechanism, 
and an effective garbage collection algorithm working real-time[3]. 
Therefore we decided to leave the virtual storage system as a future 
extension. Instead of it, PSI is equipped with a relatively large 
real memory, maximum 16M words. About execution speed, PSI is 
designed to attain 20K to 30K LIPS {Logical Inference Per Second) 
which is the similar performance to the DEC-10 Prolog compiler version 
running on DEC-2060. 

2.2 Personal Use 

PSI is designed as a self-contained, personal machine in order to 
provide its user with powerful computing facilities and an efficient 
programming environment. 

An easy-to-use, sophisticated man-machine interface is the most 
important features for software development tools. To provide good 
man-machine communications, PSI is equipped with a bit-mapped display 
device and a pointing device (a mouse). And a multi-window system is 
planned to be implemented on them. The input/output devices for 
Japanese characters will also be included, and PSI will support a word 
processing system for Japanese. 
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2.3 Local Area Network 

PSI is planned to be connected to a local area network in order 
to give its user a more productive environment. Although any kind of 
peripheral devices can be connected to PSI, an usual PSI system will 
have a limited number of devices according to its own system 
characteristics. 

Through a local area network, the distributed processing system 
connecting several PSI's can be built. Furthermore, the user can 
access other machines from PSI, such as a relational data base machine 
also being developed in the project, and conventional commercial 
machines. 

2.4 Flexibility 

PSI has adopted microprogrammed control for flexibility and 
extendability. 

The project has decided on KLO as a machine level language, 
however, its usefulness will be verified after PSI completes. In 
addition, the research and development of new programming languages, 
such as concurrent Prolog[4][5], is also one of the important subjects 
in the project. Therefore PSI must be able to execute those 
experimental languages as their test bed 

2.5 Evaluation 

Using PSI, several items of measurements are planned for 
evaluation on programs behavior and machine design. One is to 
evaluate characteristics about the execution profile of logic based 
programs. Another one is to evaluate the validity about PSI 
architecture and hardware design. Especially, the measurement of 
memory access characteristics including cache hit ratio is one of the 
important items, because memory access is the most frequent operation 
in inference machines. The next advanced models of SIM will be 
designed utilizing effectively these evaluation results. 

2.6 Specialized Hardware Supports 

As a first experimental inference machine, an effort has been 
made to introduce several specialized hardware supports suitable for 
executing a logic programming language in PSI. To improve unification 
speed, PSI has hardware buffers. The role of these buffers is to 
quickly refer to the binding values of variables. For dynamic data 
type checking, each word has an 8 bit data tag ( tag architecture). To 
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make memory access operations faster, the connection between the main 
memory and the processing unit was designed as tightly as possible. 

PSI design objectives can be summarized as the combination of 
high performance of the 32 bit "super mini-computer" with the good 
man-machine interface of the "super personal computer". 

3. System Overview 

One of the key factors to determine a machine architecture may be 
the design of the machine instruction set. PSI is a specialized 
machine for executing the logic prog,-amming language (KL0),however, it 
must have its own operating system to be a self-contained personal 
machine. This section briefly summarizes the software system and 
hardware configuration of PSI. 

3.1 Language System 

One advantage of a logic programming language is to use its 
non-determinism effectively. However the non-determinate operation is 
considered unnecessary for describing low-level system control such as 
the kernel of · operating systems, because it mainly consists of 
determinate operations and thus non-determinate operations would 
produce redundancy. In general, if a machine architecture is 
dedicated to some high- level programming language, it becomes 
difficult to implement its operating system in that language on the 
same machine. In this situation, a different programming language 
could be used for system description, however, this approach would 
degrade the uniformity of the system. And the machine architecture 
should support two different types of language processing. To make 
the entire system uniform, we decided to implement a PSI operating 
system based on the logic programming concept. KL0 has been designed . 
to make this possible. 

Figure 1 shows the language system hierarchy. The system 
programmer uses KL0 directly to develop a compiler, an interpreter, 
and operating system kernels. From the user's view point, KL0 can be 
regarded as a machine language of PSI, however, KL0 is basically a 
high-level, logic programming language. Its features are summarized 
as follows: 

o a subset of DEC-10 Prolog 

o an extended ability for hardware resource handling 

o an extended ability for interrupt handling and process control 
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o extended execution control facilities 

KLO includes the normal unification mechanism and clause handling 
mechanism like usual Prolog. From this view point the users can 
regard PSI as a complete Prolog machine. On the other hand, the users 
can also specify the machine level control with its extended 
facilities in KLO. 
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3.2 Operating System Support 

The kernel parts of the PSI operating system are written in KLO. 
These are transformed into internal machine forms by the compiler 
which is also written in KLO itself. Then PSI hardware/firmware 
directly executes those internal forms. Furthermore, time crucial 
parts of the operating system kernel, such as the garbage collector or 
process switcher, are executed directly with firmware. The 
applications programmers will use a higher programming language than 
KLO. This language is executed with the interpreter or is compiled by 
the compiler written in KLO into internal machine forms. 

From the software side, it can be said that the PSI operating 
system is written in completely a logic programming style. From the 
hardware side, it can also be said that PSI architecture supports the 
primitive kernel operating system functions. 

3.3 System Configuration 

Figure 2 shows the PSI system configuration. CPU has a 
microprogram sequencer. The capacity of its writable control storage 
is 16K words. The micro instruction is 64 bit long and is executed in 
less than 200 nsec. 

Main 
Memory 

Cache 

PSI 
CPU 

network 

IEEE 796 bus 

hard disk keyboard bitmap display mouse 

Figure 2. system configuration 

CPU interprets internal object forms of KLO with its micro-coded 
interpreter. Its hardware mechanism is mainly dedicated for the fast 
unification. It includes several discrete registers, register files, 
and an arithmetic operation unit. 
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The memory unit has a relatively large main memory instead of 
being equipped with a virtual memory system. A maximum of 16M 40 bit 
words can be installed. To shorten memory access time, PSI is 
equipped with a cache memory. It consists of 2 sets of 4K word 
memory, and a write-back strategy is adopted. Since several stack 
areas are required for interpretation of KLO and each stack area will 
arbitrary grow during program execution, PSI introduces logical memory 
addressing. Therefore the roles of the memory control unit are 
address translation and cache control. If the required data exist in 
the cache memory, PSI can fetch that data within one micro instruction 
cycle. 

A general purpose input/output bus is provided to PSI. To keep 
design simplicity and generality, JEEE-796 standard bus(MUL TIBUS) is 
adopted. As a minimum configuration, PSI supports a fixed head disk, 
a floppy disk, a key board, a bit-mapped display, a mouse, a printer, 
and a local area network interface. Since PSI is planned to be 
connected to a local area network, the peripheral devices may be 
selected according to their own characteristics. 

PSI also has an additional parallel interface port, in order to 
satisfy the requirement for connecting special 1/0 devices directly. 
For example.this parallel interface will be used to connect the 
relational data base machine or the voice recognition device, and etc. 

4. Machine Architecture 

The architecture of PSI was decided based on vanous 
considerations. A KLO program is compiled into the internal object 
forms of PSI. But the level of the object code has been decided to be 
higher than that of ordinary machine instructions. So PSI is regarded 
as a high level language machine. In order to attain high 
performance, PSI adopted a tag architecture. Furthermore, a cache 
memory and special purpose registers are provided to improve the 
unification speed. PSI always refers to memory with logical address, 
and also has hardware supports for multi-processing. 

4.1 How to Design the Machine Instruction Set 

KLO is a logic programming language, however, it is mainly used 
for system description. Therefore, performance in its execution is 
crucial. To take advantage of the source program information as much 
as possible, we decided to employ a compiler and thus PSI executes 
compiled codes instead of interpreting source codes directly. Even 
though, after compiling KLO, there still remains many operations to be 
performed only in execution time, such as unification, because of a 

60 
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dynamic feature of the logic programming language. Then several 
levels of machine instructions can be considered. 

The lowest one may be the conventional machine instruction level, 
and a KLO program would be compiled into small pieces of those 
primitive machine instructions. The highest one is the internal form 
which is translated one by one from a source statement of KLO. The 
desirable machine instruction level depends on the characteristics of 
the language. 

Originally, KLO contains two different groups of elements. The 
first group is user--defined clauses to be executed within the logic 
programming framework. Namely, it is executed based on unification 
and backtracking. The execution of them is slightly simple and 
dominated with memory access operations. Therefore, it is undesirable 
that such execution is broken into many small machine instructions, 
because many instruction fetches are needed. In addition to this, 
there is less room for macro optimization on the hardware side because 
of low level machine instructions. This results in increased 
redundancies in both execution time and memory usage. We considered 
that PSI should have these unification and backtrack control 
facilities by itself. 

The second group is built-in predicates for such operations as 
arithmetic operations and input/output operations[6]. Since the 
execution of them is performed determinately, their object codes can 
be represented in compact forms like conventional machine 
instructions. These built-in predicates are introduced not only to 
enhance the efficiency of frequently used operations but also to be 
able to include such primitive operations as register handling and 
direct memory manipulations used in the operating system. 

Consequently the PSI machine instruction set has two types in its 
internal object forms. The first one corresponds to user--defined 
clauses. Actually, such a clause is compiled . into the sequence of 
several internal object forms according to source clause definition. 
PSI interprets that sequence as a machine instruction on the whole. 
The others correspond to built-in predicates. Basically, a built-in 
predicate is compiled into one internal machine form. 

4.2 Internal Object Forms 

A KLO program is translated into the corresponding internal 
object form described above. How to represent data and clause is 
shown in this section. 

4.2.1 Internal Data Representation 
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Through examining PSI machine architecture, providing it with 
enough ability for increasing requirements from application areas is 
considered. At least 32 bits are necessary for representing 
sufficient magnitude of numbers and addressing space. In result, PSI 
employs a 40 bit word representation as shown in Figure 3. The upper 
8 bits represent tag bits (tag part), and the remaining 32 bits 
represent the data itself (data part). 2 bits of the tag part are 
used by the garbage collector and the remaining 6 bits indicate the 
type of data included in the data part. 

tag data 

32 

Figure 3. word format 

PSI has several internal data types corresponding to ones in KLO. 
The visible data types for user are listed below: 

o symbol 
o integer 
o real 
o vector 
o string 
o local variable 
o global variable 
o void variable 

(a) Symbol 

This indicates the identifier of an atom. In the data part, the 
symbol number corresponding to an atom is stored. The printing image 
of an atom is managed by the operating system. So there is no direct 
relation between the symbol number and its printing characters. 

(b) Integer, Real. 

These are numerical data on PSI. The value of them is stored m 
the data part. 

(c) Vector 

A vector is a block of continuous memory slots, and is used to 
represent various structured data such as binary trees. As shown in 
Figure 4, a vector is usually accessed by way of its descriptor. 
However, this representation always needs an extra memory access 
whenever a vector is accessed. Since it is supposed that the vector 
which has a few elements is frequently used in programs, the direct 
vector type is introduced in order to effectively access such vectors. 
The conventional list structure is an example, and its representation 
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is shown in Figure S. Comparing the performance of the structure 
sharing[7] with that of the copying strategy on structured data 
handling. PSI employs the structure sharing method similar to the 
DEC-10 Prolog. Therefore the structured data are manipulated as the 
pair of a structure (representing in a vector) and its values (located 
in the global stack). This address pair is. called a molecule. 

vect tag 1 

tag 2 

int N tag N 

Figure 4. vector representation 

vect 2 

int 

vect 2 

int 2 

vect 0 nil 

Figure 5. list representation 

(d) String 

elem 1 

elem 2 

elem N 

A string data type is introduced for manipulating a byte 
(CHARACTER), double bytes (KANJI). and a bit (FIGURE) string data. 
Like the vector representation, string data is also accessed by way of 
its descriptor. 

(e) Local/Global Variable 

This data type indicates a local/ global variable included in a 
clause. In the data part, the variable number is stored. The 
instance of a local variable is created in the local stack. The 
instance of a global variable is created in the global stack. Roughly 
speaking.the difference between the two is that the instances of local 
variables are cleared when the clause including them are executed 
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determinately, however, those of global variables are not cleared. 

(f) Void Variable 

This type means that the variable can have an arbitrary value, 
namely can be unified to any type of data. 

4.2.2 Clause Representation 

The definition of a clause in KLO is the same as the one in 
Prolog. It consists of a head predicate and several goal predicates. 
The compiler translates a clause into a corresponding internal object 
form. As shown in Figure 6, each clause is represented as continuous 
memory slots, called code, in PSI. A code is a similar data type to a 
vector, and consists of a clause header, head arguments, goal 
predicate name and its arguments. 

compile 

disc size 

code 
Header Part 

( reserved ) 

int TYPE I Narg I Nl Ng alternative claus~ _ 
for p 

Arguments L•var X 

of Head \ L-var y 

~.if code 

L-var 

L-var 
\. 

X 

z 
r 

BLT Goal, add z y 

--
Figure 6. clause representation 

A clause header consists of four words. The first word indicates 
the size of the code. The second word has an address to the code 
representing the next alternative clause. The third word is a 
reserved word. It might be used by the garbage collector. The last 
word indicates attributes of the clause. TYPE shows the clause type. 
For example, it is a unit clause, or having alternative clauses etc. 

---- ----- --
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Narg shows the number of arguments included in the head predicate. 
Nl/Ng shows the number of local/global variables included in this 
clause. 

Following a clause header, the head predicate arguments are 
located. Each argument is represented in the data types described in 
4.2.l. 

The remaining codes show the internal form of goals. There are 
two types of goal representation according as the called goal 
predicate is a built-in predicate or not. 

(a) User-Defined Predicate Call 

A goal . predicate name is compiled into the pointer to the code 
representing the called clause. This pointer is stored in the data 
part and the tag of this pointer is set to a code type. The goal 
arguments are arranged continuously, following this pointer. 

(b) Built-in Predicate Call 

In the data part, a compact representation of machine 
instructions is stored and it consists of an 8 bit operation code and 
three 8 bit operands. The role of built-in predicates is to create 
objects, test the attributes of objects, and manipulate objects etc. 
A built-in predicates is compiled into one word object code basically, 
so that it can be executed efficiently on PSI. 

Each goal is compiled into the pointer of the corresponding 
clause and its arguments. There are three connection types of goals, 
which l>SI can directly interpret with its fmnware interpreter. 

(a) AND Connection 

AND connection shows that the goals are combined as an AND node 
in the AND-OR search tree. Each goal is continuously located as shown 
in Figure 7-(a). AND connection means that each goal is executed 
sequentially and if a goal is failed, then backtracking occurs. 

(b) OR Connection 

This type is used to represent an OR connection included within a 
clause. OR connection shows that each goal is combined as an OR node 
in the AND-OR search tree. This connection is realized by an OR 
instruction as shown in Figure 7-(b). At first execution, the first 
goal is tried. When they fail, then the second goal is tried. Each 
branch of the OR connection can be composed of several goals. 
Therefore each branch of an OR connection is the same as an ordinary 
alternative clause except that they are included in only one clause 
and require no unification process. 
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(c) CASE connection 

H:- case(Indx,B1 ,82),B3. 

Header Part 

,- Arguments -
i- of Head -

BLT easel tndx 
-

BR 
-

Goa 1 82 

Goal B2 

BR 

I/ 
Goal B1 

Goal 83 
BR ~ 

Goal B3 
Goal 82 

Figure 7. . goa 1 connections Goal 83 

(c) CASE Connection 

CASE connection can be regarded as the arrangement of indexed 
goals. Figure 7-(c) shows the internal format of CASE connection. 
One of the goals is selected by the result of CASE instruction and if 
it is successively executed then the goal following the case block is 
executed next. Even if backtracking occurs, unlike OR connection, the 
remaining indexed goals are not executed. 

4.3 Execution of PSI Internal Object Forms 

For interpretation of the KLO program, the following four stacks 
are needed: 

o local stack 
o global stack 
o trail stack 
o control stack 

The use of these stacks' is similar to those of DEC-10 Prolog, 
however, the control stack is separated from the local stack in order 
to efficiently execute the extra control primitives of KLO. 
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The local stack is an instance region for local variables. 
Preceding the unification process. PSI allocates the stack entries 
according to the number of local variables included in a clause. 
These stack entries are popped up when the evaluation of the clause 
including them is determinately terminated, or unification fails. 
They are also cleared when it is pruned by a "cut" operation. 

The global stack is an instance region for global variables. 
Similar to the local stack, PSI allocates stack entries according to 
the number of global variables. These entries are only popped and . 
cleared when unification fails. In addition, a molecule generated 
during unification and some control information are also allocated in 
this stack. 

The trail stack is used for undoing variables when backtracking 
occurs. In .this stack, binding information ( i.e. the cell address 
where a value is stored during unification and whose content must be 
changed to 'undefined' when unificatoin fails) is stored When the 
instance value of a variable is modified, its old contents are also 
stored in the trail stack in addition to its cell address. 

In the control stack, various book-keeping information required 
for the execution control is stored. All of them are pointers which 
represent the execution environment of corresponding clauses. They 
are used to return to the calling clause, or to the backtrack point 
when unification fails. 

There are some data types dynamically generated during program 
execution. Some of them are described below. 

(a) Reference 

It indicates a pointer generated during unification. 

(b) Molecule 

PSI adopts the structure sharing method to represent structured 
data described before. Since a molecule consists of two words in PSI, 
it can not be located into a variable cell. Therefore, a molecule 
itself is allocated in the global stack, and the reference to it is 
located in the variable cell. 

4.4 Address space 

PSI has a 32 bit logical address space. It is composed of 256 
logically independent areas. The size of each area is 16M words, and 
managed by pages of lK words. The reason why the concept of area is 
introduced is as follows: 

(a) Since PSI supports multi-processing, it is desirable for the 
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operating system to assign completely independent areas to each 
process. 

(b) Since PSI firmware interpreter uses four stacks described in 
section 4.3, it is desirable to be able to expand each stack area 
independently. If these stacks are allocated to the same space, a 
collision between stack areas will occur. At that time, one of them 
must be moved to another space. This situation causes serious 
overhead time. 

Since four stacks are required for interpretation of a KLO 
program, it means that each process needs at least four areas for its 
execution environment. On the other hand, code areas might be shared 
among many processes. If four areas are assumed to be used for code 
areas, namely heap areas, a maximum of 63 processes can be created on 
PSI from 256 areas. 

Each area is divided into 16K pages. A page consists of 1K 
words. An area is managed by PSI operating system in page units. PSI 
allocates one page when a process needs more memory. On the other 
hand PSI disallocates some pages when a process release memory. 

In result, the memory address field is divided into an 8 bit area 
number, 14 bit page number, and 10 bit offset as shown in Figure 8. 

I AREA # I PAGE# I OFFSET 

~\, 
V /'--.:.....,,--1 

8 14 10 

Figure 8. address format 

The address translation mechanism is shown in Figure 9. The 
translation from a logical address to a physical address is performed 
with an area table and a page table. Each area table entry shows the 
base address of a page table located in the page map table 
corresponding to an area. And each page table entry shows the 
physical page address corresponding to a logical address page. As a 
first step to generate a physical address from a logical address, the 
area table is accessed using the area number, and a page table base 
address is obtained. Then the page map table is accessed using the 
sum of that page table base and a the page number. Finally 
concatenating the output of the page map table and the page offset, a 
24 bit physical address is obtained. 
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Figure 9. address translation 

To achieve address translation, it is common to use a Translation 
Lookaside Buffer(TLB). Each TLB entry contains a logical page address 
and corresponding physical page address. TLB is a sort of cache 
memory, and if the address pair corresponding to a logical address is 
stored in it, there is no reference to the translation table existing 
in the main memory. PSI does not adopt this method. Instead, the 
area table and the page map table are located in special fast memory. 
In result, the address translation process is performed within a micro 
instruction cycle. The reasons why TLB is not adopted are shown 
below: 

(a) If the address pair is not in TLB, the translation table in main 
memory must be accessed to generate a physical memory address. 

(b) Since the garbage collector must search all memory space, it is 
supposed that the memory access locality during garbage collection is 
not so high. Therefore, TLB might not work well in that situation. 

19 
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(c) PSI does not adopt virtual memory. The total amount of page map 
table entries can not exceed the number of physical pages. Since the 
maximum size of main memory is 16M words, it is sufficient to have 16K 
entries in the page map table. 

The size of an area can extend from one page to 16K pages. 
Before program execution, the maximum number of pages used in a area 
cannot be predicted. Furthermore, a process needs at least four 
areas, however, the utilization of each area is different among 
processes. Accordingly, as the number of page table entries increases 
during execution, a page table may collide with another page table 
within the page map table. To avoid that case when possible, it is 
desirable to locate each page table corresponding to an area as 
dispersively as possible. Also, the page map memory size should be 
larger than the number of physical pages. To satisfy this condition, 
PSI has a page map memory of 32K entries. Since the standard physical 
memory size is 4M words, the size of a page map memory is eight times 
larger than that of physical pages. 

If a page table collision occurs in page map memory, a trap 
occurs and page table relocation must be done. There are many 
algorithms to be considered. It is a future research theme to examine 
which algorithm is better. 

4.5 Hardware Supports for Fast Unification 

Unification plays an important role in executing a KLO program. 
To efficiently execute the unification process, the hardware support 
mechanism is indispensable. The major part of the unification process ·• 
is memory access and data type checking. The facilities employed in 
PSI are as follows: 

o Cache memory 
o Tag bits 
o Frame buff er 

(a) Cache Memory 

The merit of using cache memory is to reduce the cost of all 
memory accesses besides stack access. PSI adopts the write 
back-strategy for cache control, not the write-through strategy. A 
cache memory manages logical addresses. Therefore, if the accessed 
data exists in cache memory, no address translation is needed. The 
address translation is required only if a cache miss-hit occurs. PSI 
memory controller performs address translation during the cache memory 
access in parallel. This mechanism creates no overhead time for 
translation when the cache memory miss-hit occurs. 

(b) Tag Bits 

tO 
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A tag is essential to effectively interpret a data type. To 
realize fast unification depends on how rapidly the data types can be 
examined. For this aim, tag bits are attached to all data, and they 
specify the type of the data. A special hardware mechanism, which 
decodes tag bit pattern efficiently, is provided in PSI. 

(c) Frame Buffer 

Frame buffer is the set of special registers provided for the top 
of the stack frame. In this buffer, the arguments of a clause and the 
cells of local variables are stored. Most of the unification is done 
using this buffer. This reduces the number of memory accesses, and 
faster unification will be realized. Furthermore, using this buffer, 
Tail Recursion Optimization {TRO)[8] can be realized efficiently. 

4.6 OS Support 

Since PSI is designed as a self-contained system, it requires own 
operating system. This operating system consists of an end-user 
interface {command interpreter), a programming system {editor, 
debugger), a file system, and so on. To provide its users with a 
sophisticated programming environment, that operating system must be 
an easy-to-use system, and provide good man-machine communications. 
Considering that these systems are specified by KLO,it is desirable 
that PSI must have operating system support functions. 

To attain this objective, PSI has various hardware and r1rmware 
supports. For example, such primitive operations as a memory 
allocation or a garbage collection included in the memory management 
system is directly performed by r1rmware. The process switching of 
the process management system is also performed by r1rmware. 
Furthermore, PSI holds the process information in fast CPU memory in 
order to reduce process switching overheads. This is an essential 
hardware support in PSI, because KL0 requires larger execution 
environment than ordinary programming languages, and without that 
hardware support the contents of many base registers must be saved 
into the main memory at process switching. 

In addition to higher level operating system support, there are 
several KL0 built-in predicates which perform low level system 
control, such as hardware resource handling, direct memory 
manipulation, and input/output control. These built-in predicates are 
effectively executed by r1rmware. · 

Besides this support described, garbage free regions is 
introduced to support the operating system kernels. In this region no 
garbage collection is done. This means that a program running in this 
region can be executed even while a garbage collection process is 
being executed. Those special processes unconcerned with the . garbage 
collection are called supra GC processes. The aim of introducing this 
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GC-less process is to maintain good man-machine interface even when 
the garbage collector is working. 

Summarizing those, the hierarchy from the end-user interface 
language to the hardware on PSI is shown in Figure 10. 

APPLICATION END-USER 
LANGUAGE 

r USER INTERFACE ' \ 

EDITOR DEBUGGER COMPILER 

INTERPRETER KLO~ 

r SUBSYSTEM ' \. 

WINDOW SYSTEM 

FILE SYSTEM NETWORK SYSTEM KLO 

r KERNELSYSTEM \. .I 

MEMORY PROCESS DEVICE (supra-Ge) 
MANAGEMENT MANAGEMENT MANAGEMENT MODE 

KLO 

GARGAGE COLLECTOR FIRMWARE 
PROCESS SWITCH 

HARDWARE 

Figure 10. operationg system hierarchy 

5. Conclusion 

In this paper, we described the design objectives and the machine 
architecture of a Personal Sequential Inference machine, PSI. Its 
detail hardware design has almost been completed and the 
microprogrammed KLO interpreter is now under the design. The rough 
estimation of PSI execution speed is comparable to the compiled codes 
of DEC-10 Prolog system on DEC-2060. 

PSI is a first step toward the target inference machine which 
will be attained in ten years. For designing next advanced SIM, we 
are planning several evaluations on PSI. Many software products will 
also be made on PSI. We believe that PSI will be a powerful and 
useful workbe~ch for our project. 

rl 
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