
AN OR-PARALLEL TOKEN MACHINE

Seif Haridi and Andrzej Ciepielewski
Department of Telecommunication and Computer Systems

Royal Institute of Technology
Stockholm, Sweden

ABSTRACT

~achine model consisting of a limited number of processors, a token pool and
\torage is defined. A token represents the state of a process, which in turn
lcutes a branch in the search tree of a logic program. Tokens in the token
~l correspond to processes which are ready for execution but not allocated a
' ,cessor. Processors execute processes as presecribed by the tokens and
)ate new tokens. A processor executes a compiled form of the programs. We
rine the translation of programs into sequences of abstract machine instruc
fns and define the interpretation cycle of a processor.

1 Introduction
!

in clause programs can be executed in different modes without changing their
1:ning up to termination. The most common mode is Prolog · s left-to-right
:ection of subgoals and depth-first traversal of the search tree using back
cking. Instead of a sequential exploration of alterantive solutions, the
rch tree can be traversed in parallel. This mode has been lately called
jparallelism. It can be implemented on a single processor [RoSi], but comes
'st to its right when a large number of processors is used.

; goal of our research is a multiprocessor architecture for efficient execu-
1

in of Or-parallelism. We share this goal with a growing number of research-
1

:: (CoKil, CEKM], [Po], [UmTal and [FNMJ. We have already defined an inter-
lter for Or-parallelism and investigated the feasibility of using structure
iring in a distributed implementation [CiHa83A,CiHa838]. In this inter
'lter, we have studied, in detail, the problem of managing simultaneously
,eral binding environments. The interpreter evaluates programs in their
ltract source form and creates a computation process for each alternative
deterministic branch.
this paper we define an abstract machine model consisting of a limited
ber of processors, a pool of tokens and a storage. The unlimited number of
pesses in our interpreter is now mapped onto the finite number of proces
js. A processor executes a compiled form of programs. Subgoals are
~cted in a specific order as defined by the sequence of instructions. We
lcribe the translation of logic programs into sequences of the abstract
~ine instructions and define the semantics of the instructions. The
~ruction set we define here is similar to that of the sequential machine
!cribed in [Ha Sal. Finally, we discuss methods for controlling the amount
~arallelism and compare our machine with other proposals.
i
I Abstract machine model
!

bgic program consists of an initial call and a set of relations. A rela
~ consists of a number of clauses, where each clause is either an assertion
I

•n implication. An implication has a head and a body. The body is a literal
~ conjunction of literals.

2

Ex 1: The following is a program for list-permutation; it consists of two
relations: p(ermutel and d(elete):

1. p((].[]).

2 . p (x s , [y I y s l l +-- d (x s , y , z s I g. p (z s , y s l .

1. d([xlxs],x,xs).
2. d([xlxsl,y,[xlys]) +--d(xs,y,ys).

and a possible initial call:

p((1,2].ysl

Let us denote the i'th clause of a relation r by r.i, then p.1 and d.1 are
assertions, and p.2 and d.2 are implications.

Execution of a program can be described by a search tree. A node in such a
tree represents the state of a subcomputation: a sequence of goals and a bind
ing environment:

<Goal1>,<Goal2>, ... ,<Goaln> , E.
l.

A binding environment consists of contexts containing the values of the
ables in the invoked clauses, one context for each clause invocation.
dren of a node represent the states reached after executing a goal
given state.

vari
Chil

in the

Ex 2: The following figure illustrates the initial four levels of the search
tree corresponding to the program in Ex 1. Notice that each goal consists of a
literal and a context name 1. which identifies the context containing the
values of the variables oc2uring in the literal. In the figure, the environ
ments E. are not shown, instead literal substitution of values for variables
. l. . is used when possible.

3

0: <p([1,2],ys).10> , E0

1: <d([1,2),y,zs),11>,<p(zs,ys),11> , E1

2: <p((2],ys),11> , E2 3: <d((2],y,ys),12>,<p(zs,ys),11> , E3

4: <d([2],y,zs),12>,<p(zs,ys),12> , E4

5: <p([1],ys),11> , EB 6: <d((l,y,ys),13>,<p(zs,ys),11> , E9

In the interpreter described in [CiHa82A,CiHa83B], a process is created for
the root of the search tree. It starts a child process for each clause of the
relation chosen by the current goal and then terminates. A newly created pro-
cess executes unification and if it fails,
creates children processes and then terminates.

it terminates, otherwise it
A branch of computation ter-

~inates successfully when there are no more goals to solve. A solution can be
extracted from the binding environment.

Ex 3: Four snapshots of possible generations of processes for the search tree
in Ex 2, where the state of each process is shown. Processes are about to
perform a unification step. Current goals are indicated by upward arrows.
Environments are also shown in detail where the value of a variable is either
unbound or a pair: (Source Term.Context Name).

Snapshot 1: the process corresponding to node 0:

0: <p([1,2],ys),10> E0

E0 = 10 -I ys unbound\

Snapshot 2: the process corresponding to node 1:

4

1: <d(xs,y,zs),11>,<p(zs,ys),11> E1

E1 = 10 -fys/ [y!ysl,11 l
11 - XS [1,2],-

y unbgund
ys ynbound
ZS unbound

Snapshot 3: the processes corresponding to nodes 2 and 3:

2 : J< p (z s , y s) , 1 1 >
1'

E2 = 10 -JysJCylys],11J

11 - XS [1,2),-
y 1 ' -
ys ynbound
ZS [2), -

E2) 3: l<ct(xs,y,ys),12>,<p(zs,ys),11> } EJ\
1

E3 = 10 -\ysj [ylysl,11 !
11 - XS {1,2),-

12 -

y ynbound
ys unbound
zs Cxjys],12

X 1 ' -
Xi [2], -
y y,11
y! unbound

Snapshot 4: the processes corresponding to nodes 4 and 5, we assume that the
process corresponding to node 6 and its children have already terminated.

4: Bd(xs,y,zs),12>,<p(zs,ys),12> } E4 ,
E4 = 10 -jysj {ylys] ,111

11 -XS [1,2),-
y 1 I -

ys [y,ys),12
ZS [2], -

12 - XS [2], -
y unboung
ys unbound
ZS ynbound

5: \<p(zs,ys) ,11>
~

11 - XS [1,2),
y 2,-

Ea\

ys unbound
zs {xlysl,12

12 - X 1, -
XS (2),

y y,11
ys []

Efficient methods for maintaining a separate address space for each binding
environment are described in [CiHa83A,CiHa83B]. For the rest of this paper it

5

is enough to realise that a variable can be accessed or updated through the
unique name: <Environment name.Context name.Variable name>.

A computation described by our earlier interpreter may be visualised as an
unlimited number of processes and a storage for binding environments and pro
grams.

processes

storage

In the machine model we present here, the unlimited number of processes is
mapped onto a finite number of processors. On this conceptual level we can
picture the machine as consisting of a token pool, a set of processors and a
storage. Storage is divided into a static memory for programs and dynamic
memory for the binding environments and other management information. Tokens
in the pool represent processes which are ready for execution but are not
allocated a processor. Processors execute processes as prescribed by the
tokens and create new tokens. Processors communicate with the storage to
access program and data.

static memory

program

dynamic memory

environments g,

mana ement info

token pool

processors

storage

The above abstraction is similar to the one presented by Darlington and Reeve
in the description of ALICE (DaRe]. It is very useful for handling problems of
parallel computations. Furthermore, it can be a starting point for many dif
ferent architectures.

As mentioned above, the state of a process consists of a list of goals and a
binding environment. Such a state will be represented in our machine by a
token residing in the token-pool or in one of the processors, and by a possi
bly empty list of continuation frames residing in the dynamic memory.
A token consists of the following fields:

6

1. Literal reference (L),
2. Context name (C),
3. Environment name (E),
4. Continuation-Frame reference (CF) and
5. other information to be described later.

A continuation frame has the following fields:

1. Literal reference (L),
2. Context name (C) and
3. Continuation-Frame reference (CF).

In the next section, when the machine instructions are specified, the L-field
in tokens and continuation frames will be a reference to an instruction.

Literals of a clause are selected form left to right. This implies that the
head of the goal-list is always the current goal and the tail are the remain
ing goals. The Land C fields of a token represent the current goal, whereas
its continuation frames represent the remaining goals.
These ideas are illustrated by the following snapshot~ which correspond to
those of Ex 3.

TOKEN CONTINUATION FRAME

fL Jc.. lcFJI
Snapshot 1: there is one initial token having the current
<p([1,2],ys),10>, and no continuation frame, i.e. field CF is nil.

't I 10 I ED I
p((1,2].ys)

goal

Snapshot2: one token with the current goal <d(xs,y,zs),11>, the remaining goal
<p(zs,ys),11> is represented by a continuation frame.

l(!iil El I ~ "?-·)_11)_;JI
p(xs,Cylys]) .. -d(xs,y,zs) g. p(zs,ys).

Snapshot 3: two tokens, the one corresponding to node 3 has a continuation
frame.

54~
7

p(xs,Cylys]) +-d(xs,y,zs) & p(zs,ys). d([xlxs] ,y, [xlys]) +-d(xs,y,ys).

Snapshot 4: evident.

12 E4 12 .nil

~
p(xs,Cylys]) +-d(xs,y,zs) & p(zs,ys).

Continuation frames are read-only data objects. This allows several tokens to
share continuation frames.

1 3. Translation of programs into machine code

In this section, we describe the translation of Horn clauses into machine
code. We give also a short summary of the instructions and their effect. The
exact specification of the interpretaion cycle of a processor is given in
Section 5. Notice that the machine code representation of terms is not giverr.

We use the following metavariables, which may be indexed, to range over basic
syntactic entities:

Terms:
Relation names:

t,q, r, s.
RI s.

By ft and tR we mean a reference to the representation of the term t and to
the relation {clause) R respectively.

An assertion having m variables:

is translated into:

fR - ENTER-UNIFY m (tt1 tt2 ... ftn)
RETURN

An implication with only one literal in its body and having m variables:

a

R (t , ... , t) +--
1 n

s 1 (q 1 • • • • I qm 1) •

is translated into:

tR - ENTER-UNIFY m (tt1 ... ttn)
ONLY-CALL ts1 (tq1 ... tqm1)

An implication with two or more literals in its body and having m variables:

is translated into:

tR - ENTER-UNIFY m (tt1 ... ttn)
FIRST-CALL tS1 (tq1 ... tqm1)
CALL ts2 (tr1 ... trm2)

LAST-CALL tSl (tst ... tsml)

A Relation R consisting of several clauses, Ct C2 ... Cn, is translated into:

fAR-cH01cE 1tc1 tc2 ... tcN>\

tc1 - Code for
clause C1

t C2 - Code for
clause C2

ten - Code for
clause en

A processor f~tches a token and executes the instruction it refers to. After
the instruction is performed the processor may create none, one or more tokens
according to the interpreted instruction. As mentioned earlier every token
has a list of continuation frames. The description that follows, of the
instructions, will be relative to the token being interpreted, so "Remove
first continuation frame" actually means to remove the first continuation
frames from the list associated with the interpreted token.

(1) ENTER-UNIFY m (tt1 tt2 ... ttn) :
Create a variable-context form variables in current environment. Execute
a unification step; the callers parameters are referred to in the inter
oreted token.

9

(3) RETURN
Return control to the caller. The next instruction to be executed is
stored in the first continuation frame.

(4) ONLY-CALL ts (tt1 ... ttnl:
Transfer control and parameters to S; this instruction is used where there
is exactly one literal in the body of a clause and therefore no continua
tion frames are created.

(5) FIRST-CALL ts (tt1 ... ttn)
Create a continuation frame; save next instruction in it and link it first
in the continuation frame list; transfer control and parameters to S.

(6) CALL ts (tt1 ... ttn) :
Remove the fir~t continuation frame; link first a continuation frame
referring to next instruction: transfer control to s.

(7) LAST-CALL ts (tt1 ... ttn) :
Remove the first continuation frame; transfer control to s.

(8) PAR-CHOICE (t C1 tc2 ... ten) :
Create n tokens each having its own environment; i.e. n parallel activi
ties are initiated. The created tokens share the continuation frame list
of the interpreted token.

4. Notational Conventions

The next section specifies the interpretation cycle of a processor. We
present here the essential characteristics of the specification language used
there. The language used may be considered as an imperative fraction of Meta
IV [BjJo].

4.1. Types of Objects

The elementary type NAT is the class of all natural numbers 0, 1, ... and the
type BOOL is the class of truth values~ and false. Elementary types like
unbound is meant to be the singleton set with the element unbound.

Lists

The type of lists of objects each having the type A is denoted by
A*

The list of the objects e1, e2, ... ,en in this order is formed using
<e1,e2, ... ,en>

An empty list is denoted by nil. The following operations apply to a list 1
where 1 = <e1,e2, ... ,en>:

l[i] == ei (yields the i'th element of a list),
!.!ill l == n (the length of the list 1)

10

Reference types

Let A be a type then
tA

is the type of references (addresses) of objects of type A. If i has the type
tA, then the operation it returns the object a of type A referred by i other
wise it returns nil.

Cartesian products

The type of heterogenous n-tuples for which the first object is of type A1,
the second object is of type A2, etc. is denoted by

A 1 A2 ... An

An object of this type is treated as a list of length n.

Abstract Types

Abstract types of compound objects may be specified by means of the following
rules:

(1) A = B1 I B2 I ... I Bn
This rule defines the abstract type named A (a type identifier) to be the
union of the (disjoint) types defined by B1, 82, ... , Bn, where Bi are type
identifiers or type expressions as defined above.

(2) A : : 8 1 8 2 . . . Sn

This rule defines the type A to be the type of A-tagged n-tuples of the type
(81 82 ... Bn). An A-tagged n-tuple object is formed with the expression

mk-A(e1 ,e2, ... ,en)
where 'mk-' is the so called make constructor. The above expression generates
the tuple <e1,e2, ... ,en> equipped with the tag 'A'.

(3) A= 81 82 ... Bn
The same as rule (2) however tuples are not tagged.

4.2. Statements

A crucial statement used in the specification below is

(def x: e;
s

)

where xis an identifier, e is an expression possibly having some side effect
(e.g. a procedure returning a value), and Sis a statement. The expression e
is evaluated first, then all occurrences of x in Sare replaced by the value
returned bye, finally Sis evaluated in this context. More generally in the
construct

11

(def mk-A(x1,x2, ... xnl = e:
s

)

e is evaluated to yield an A-tagged n-tuple, the immediate components of which
are then denoted by x1, x2, ... , xn in the evaluation of the statement S.

The other forms of statements are familiar from other imperative languages
(Pascal etc.). For example sequential statement composition has the form:

(S1;S2; ... ;Sn),
cases have the form:

cases eo: C e1 - s1, e2- s2, ... , en-sn)
and the indexed iteration:

.:f.ru: i = m 1Q n sJ.Q. S(i)
A definition of a procedure F returning a value in our specification language
is assigned a type of the form:

F: 81 82 ... 8n => 8 (n > 0)
! telling that F has n arguments that are of the types 81, B2, ... , 8n and

returns a value of the type 8.
If F does not return a value, i.e. is applied for its side effect only, F will
get a type of the form

F: 81 82 en=>

S. Specification of the processor cycle

The instructions introduced in the previous sections are executed by each pro
cessor. Here, we define the basic execution cycle of the processor and the
exact meaning of the instructions.

5.1. Instruction set

A program consists of the initial call and a sequence of instructions.

Program= INIT-CALL Code
Code= Instruction*

There are following instructions:

Instruction= INIT-CALL I FIRST-CALL I CALL I LAST-CALL I ONLY-CALL I
PAR-CHOICE I ENTER-UNIFY I RETURN

With the following syntax:

12

!NIT-CALL :: tinstruction Nat (tParameterl*
FIRST-CALL :: tinstruction (tParameterl*
CALL :: tinstruction (tParameterl*
LAST-CALL :: tinstruction (tParameterl*
ONLY-CALL :: tinstruction (tParameterl*
PAR-CHOICE : : (tinstruction)*
ENTER-UNIFY :: Nat (tParameterl*
RETURN :: nil

Both Parameters and instructions are stored in the static memory.

5.2. Tokens and continuation frames

The state of a process is represented by a token and a list of read-only con
tinuation frames stored in the dynamic memory. Here follows the definition of
a token (Token) and a continuation frame (Cont-Frame) which were schematically
introduced in Section 2.
Token :: tinstruction Context-Name tEnvironment tcont-Frame (tParameter)*
Cont-Frame :: tinstruction Context-Name tCont-Fram

tEnvironment refers to the process's environment directory,
is used to lookup the designated context in this directory.
the list of parameters in a call instruction.

5.3. Execution cyc1e

and Context-Name
(tParameterl* is

In each cycle a processor fetches a token from the token pool, fetches the
referred intruction from the static storage, and finally decodes and executes
the instruction. A result of an instruction is none, one or more tokens. No
more tokens means that this branch of the search tree has terminated, either
with success or with failure. One token means that the current branch is con
tinued. More tokens means that a nondeterministic point has been encountered
and a fork into new branches has occurred.

The interpretation cycle of a processor is shown below. A number of auxiliary
functions, or procedures, are used there. These functions are divided mainly
into two groups: (1) functions operating on the token pool, and (2) functions
operating on the dynamic storage for managing environments and variable
contexts.

Token management

FetchToken : => Token
Delivers a token form the token pool to the calling processor.

SendToken Token=>
Sends a token to the token pool.

13

Binding environment management

The following operations are described in detail in [CiHa83A,CiHa838]:
DuplicateEnv : tEnvironment => tEnvironment

Creates a logical copy of the input environment and returns a reference to
the newly created environment.

ReleaseEnv : tEnvironment =>
Reclaims the storage of the input environment and all its contexts that
are no longer accessible.

SendSolution : tEnvironment =>
SendSolution(e) extracts the bindings of the variables in the first con
text in e and then performs a ReleaseEnv operation.

NewContext : tEnvironment Nat=> Context-Name
NewContext(e,n) creates a new context of n variables in e and returns its
name.

Unify: (fparameter)* Context-Name (tparameter)* Context-Name tEnvironment =>
BOOL
Unify executes of the unification algorithm, it accesses and assigns
values of variables.

One more auxiliary function is
Nextlnstr : tinstruction => tinstruction

Nextlnstr(i) returns a reference to the instruction following it.

Here follows the processor cycle.

14

Instruction-Processor processor() ~
(cycle

(def mk-Tokenli,c,e,cf,ps): FetchToken();
cases it :

mk-FIRST-CALL(i1 ,ps1) -
1.9..!tl cf1 : New(mk-Cont-Frame(Nextlnstr(i),c,cf));
SendToken(mk-Token(i1,c,e,cf1,ps1))

) I

mk-CALL(i1,ps1) -
(-9.!tl mk-Cont-Frame(, , cf1) : cft;
def cf2 : New(mk-Cont-Frame(Nextinstr(i),c,cf1));
SendToken(mk-Token(i1,c,e,cf2,ps1))

) I

mk-LAST-CALL(i1,ps1) -
(def mk-ContFrame(, ,cf1) : cft;
SendToken(mk-Token(i1,c,e,cf1,ps1))

) .
mk-ONLY-CALL(i1,ps1) -

SendToken(mk-Token(i1,c,e,cf,ps1)),
mk-PAR-CHOICE(is) -

550

(.:fru:. i = 1 1.Q. .ill! is .Q.Q

SendToken(mk-Token(is[i],c,DuplicateEnv(e),cf,ps));
ReleaseEnv(e)

) '
mk-ENTER-UNIFY(n,ps1) -

(-9.!tl c1: NewContext(e,n);
.if. Unify(ps,c,ps1,c1,e) ~

SendToken(mk-Token(Nextinstr(i),c1,e,cf,nil))
else !Failure

ReleaseEnv(e)
) .

mk-RETURN (I -
(.if cf=nil then

SendSolution(e)

~

!Success

(def mk-Cont-Frame(i1,c1,cf1) : cft;
SendToken(mk-Token(i1,c1,e,cf,nil)))

)

15 551

6. Discussion

During an Or-parallel execution the number of processes, as prescribed by
their tokens, usually exceeds the number of available processors. The problem
of storing the state information during the traversal of a search tree is not
special for our parallel machine. In a sequential machine, information about
not yet executed alternatives must be saved. Breadth-first traversal of the
search tree usually leads to a combinatorial explosion of the space require
ment. Therefore, practical logic programming systems control the traversal of
the search tree usually by using a depth-first traversal strategy combined
with a mechanism for pruning some branches of the search tree. Such a mechan
ism takes the form of a rudimenary Cut (Slash) operator as in Prolog, or
intelligent backtracking or both.
Similarly, any feasible parallel machine should incorporate mechanisms for
(1) controlling the traversal of the search tree, and
(2) pruning some branches of the search tree.

The first issue can be reduced to that of adopting a proper policy for
scheduling the tokens on the available processors. For instance, if the token
pool has the form of a LIFO queue, and each processor keeps always one of the
tokens it produces and sends the other tokens to the queue, our parallel
machine would then work as a 'broad' depth-first machine, investigating in
parallel a number of branches that is equal to the number of processors. That
is to say, having n processors we get approximately n Prolog machines working
in papallel. The centralised access of such a token pool would presumably
create a bottle-neck in the system and have to be approximated by partitioning
the token pool on the processors. This issue will be treated in a forthcoming
paper.

The second issue requires either an extension to the source language, or a
seperate control language. Very often one would like to get exactly one solu
tion for a subgoal. This happens, for example, when the relation defined is
in fact a function for certain patterns of arguments, or when it is a test
predicate with all arguments instantiated, or for several other reasons. Once
a solution for a goal is found, the other branches in the search tree having
the same goal can be pruned. Translating this into our machine means that a
mechanism for aborting certain tokens should be available. Such a mechanism
does not require any process hierachy nor message passing between processes.
The extended machine incorporating a mechanism solving this, and other prob
lems, is described in another paper [CiHa83C].

Our abstract machine can, be classified as an unconventional control-driven
machine [Tr]. The execution sequence is decided by the flow of control in
tokens. It is interesting to compare it with a data-driven abstract machine
proposed by Umeyama and Tamura[UmTa]. In their proposal a program is
represented by a dataflow graph. Tokens carry instantiated goals, subtitution
sets or both. Tokens are dynamically tagged to distinguish different invoca
tions of the same clause. Tokens with the same tag must be matched during the
execution. We consider the dataflow principle is an unnecessary complication

::, 5 2
16

in an Or-parallel machine, because of the overheads in both creating unique
tags and matching tokens with the same tag. Dataflow is not needed because
the control flow of the programs can be determined at compile time regardless
of the arrival of data. The dataflow principle might be interesting when some
form of and-parallelism is considered.

References

[BjJo] D sj,rner, C 8 Jones (eds), The VOM: The Meta Language, Lecture Notes
in Computer Science 61, Springer-Verlag 1980

[CiHa83A] A Ciepielewski, S Haridi, Storage Models for Or-parallel execution
of Logic Programs, TRITA-CS-8301, Royal Institute of Technology,
Stockholm 83

[CiHa838] A Ciepielewski, S Haridi, A Formal Model for Or~parallel execution
of Logic Programs, to appear in IFIP 83, North Holland P. C., Mason
(ed)

[CiHa83C] A Ciepielewski, S Haridi, Control of Activities in an Or-parallel
Token Machine, in this proceedings.

[CoKi] JS Conery, 0 F Kibler, Parallel Interpretation of Logic Programs, ACM
Symposium on Functional Programming Languages and Computer Architec
ture, October 1981

[DaRel J Darlington, M Reeve, ALICE: A Multiprocessor Reduction Machine for
the Parallel Evaluation of Applicative Languages. Proceeding of ACM
Conference on Functional Programming Languages and Computer Architec
ture, 1981.

[EKM] N Eisinger, 8 Kasit, J Minker, Logic Programming a Parallel Approach,
First Logic Programming Conf., Marseille 1982

[FNM] K Furukawa, K Nitta, Y Matsumoto, Prolog Interpreter Based on Concurrent
Programming, in proceedings of the First International Logic Program
ming Conference, Marseille 82

[HaSa] S Haridi, D Sahlin, An Abstract Machine for LPLO TRITA-CS-8302, Royal
Institute of Technology, Stockholm 83

[Pol G H Pollard, Parallel Execution of Horn Clause Programs, PhD Thesis,
Imperial College of Science and Technology, University of London, 1981

[Tr] PC Treleaven, DR Brownbridge, R P Hopkins, Data-Driven and Demand
Driven Computer Architecture, ACM Computing Surveys, vol 14, No 1,
March 1982

[RoSi] J A Robinson, e E Siebert, LOGLISP: Motivation, Design and Implementa
tion, in Logic Programming edited by KL Clark and S-A TArnlund,
Academic Press 82

[UmTa] S Umeyama, K Tamura, Parallel Execution of Logic Programs, in proceed
ings of the 10 Symp. on Computer Architecture, Stockholm 83

