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0. Introduction 

In this paper we show how a large subset of first order logic can be rea
sonably efficienty interpreted. Logic programming has usually been res
tricted to a conditional type of statements called Horn clauses. General 
logical statements that are natural to write cannot directly be expressed 
by Horn clauses. This is due to the fact that Horn clauses express only the 
"if-halves• of "iff-definitions·. This has meant that this that are easily 
expressed in first order logic has been done in meta-logic. For example, 
negation has been treated as nonprovability and special 'setof' contructs 
have been devised to find all the solutions to a relation. 
To solve these problems we construct an abstract machine called 'gepr 
(=goal, environment, program and resumption register). The ideas of the 
· gepr · machine resemble the ·seed· machine for function.al programming 
languages [La63][He80], which describes what state transitions that are 
allowed. Although we have used a version of Horn clauses to describe the 
state transitions, they could equally well have been described in an 
imperative language. 
The basis for the interpreter are the rules of a natural deduction system 
as shown in [Ha81]. 

1 • s·ample programs 

A program consists of a set of relation definitions, where a relation is a 
predicate-logic statement of one of the forms: 

1. relation_name(term1 ,term2 , ... ,termn) <-> arbitrary logic statement 

2. relation_name(term1 ,term2 , ..• ,termn) -> arbitrary logic statement 

3. relation_name(term1,term2 , ... ,termn) <- arbitrary logic statement 

4. ... relation_name(term1,term2 , ... ,termn) 

We also apply a rule of implicit quantification for the variables not being 
quantified: 

Variables occuring in the "head" of the relation are universally quan
tified over the whole statement, while the other variables are existen
tially quantified over the right hand side of the relation definition. 

For example 
list(w) <-> w=Cl or w=Cxlyl & list(y) 

actually means in logic 
Vw( list(w) <-> 3x3y (w=Cl or w=Cxlyl & list(y)) 

To be able to interpret the statement above, we break it down further into 
the conjunction of two statements: 

and 
Yw( list(w) -> 3x3y (w=Cl or w=Cxlyl & list(y)) 

Vw( list(w) <- 3x3y (w=Cl or w=Cxlyl & list(y)) 

The fourth type of statement given above, the negation, is also transformed 
into an implication. For example, 

.., member Ix, Cl ) . 
is transformed to 

member(x,[)) -> False. 
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Some more examples: 

The full definition set of 'member': 
., member(x,[Jl. 
member(x,[yjz]l <-> x=y or member(x,z). 

56L 

The predicate 'class' tests if all members of 'sl' take course c, or 
for a certain course finds all its members etc. 

class(c,sl) <-> Vs (takes_course(s,c) <-> member(s,sl)l. 

takes_course(x,yJ <-> x=D & y=Ct or 
x=J & y=C1 or 
x=J & y=C3. 

maths_course(z) <-> z=C1 or z=CJ. 

A ·maths major· is a person who takes all maths courses: 
maths_major(x) <-> Vy (maths_course(y) -> takes(x,y)). 

This enables us to find out that maths_major(Jl is true, or even makes it 
possible to find all "maths majors" with a variant of the 'class' predicate 
above. 

2. Types 

To simplify the description of the interpreter below, we here introduce a 
type concept in first order logic. What we actually do is that we have a 
convenient way to define relations that are true iff their arguments are in 
a certain domain. We will not here try to make an exact definition of the 
transformation between our simplified notation and logic, but just show a 
few examples. 

Having the type definition 

TYPEDEF formula= And(formula,formula) 

we get the corresponding logic statement 

Or(formula,formula) Eq(term,term) 

formula(x) <-> 3y3z(x=And(y,z) & formula(y) & formula(z) or 
3y3z(x=Or(y,z) & formula(y) & formula(z) or 
3y3z(x=Eq(y,z) & termly) & term(z)). 

To be able to define a list of a certain type 

TYPEDEF list(t) = [] Ctllist(t)l 

we find it convenient to use schemas in first order logic: 

list(t)(x) <-> x=Cl or 3y3z( x=Cylzl & t(y) & list(tl(z) ). 

(A schema can take a relation as an argument!, 
Obvious abbreviations are also used in the type definitions. 

3. Formulas 

The full type definition of a formula looks like this 
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TYPEDEF formula= And(formula,formula) ! Or(formula,formula) 
Imp(formula,formula) ! False ! 
Eq(term,term) ! Rel(name,list(term)) ! 
All(list{name),formula) ! Exist{list(name),formula). 

TYPEDEF term= Var(name) ! Dstruct(name,list(term)l 

and the relation 'name' is appropriately defined. 

For example, the formula ·vy (maths_course(y) -> takes(x,y))" has a 
corresponding abstract tree: 

All(['y'], 
Imp(Rel('maths_course' ,[Var('y' )]), 

Rel(· takes', [Var( ·x·), Var( 'y') J))) 

The formula ·vs {takes(s,c) <-> member(s,sl))" is first split into the con
junction of two formulas 

"Vs ((takes(s,c) -> member(s,sl)) & (member(s,sl) -> takes(s,c)l )" 
which has the corresponding abstract tree 

All ( [' s'], 

And(Imp(Rel('takes' ,[Var('s'),Var('c')]), 
Rel('member' ,(Var('s' ),Var('sl' )])), 

Imp(Rel('member' ,[Var('s'),Var('sl' )]), 
Rel ( · takes · , [Var ( · s · ) , Var ( · c · ) l ) ) ) ) 

4. A program 

The type definitions are extended by 

TYPEDEF program= list(relation) 

TYPEDEF relation= Reldef(name,backdef,forwarddef). 

TYPEDEF backdef = list( assertion ! !implication ). 

TYPEDEF forwarddef = list(rimplication). 

TYPEDEF assertion= Assert(list(name),list(term)). 

TYPEDEF !implication= Limp(list(name),list(term),formula) 

TYPEDEF rimplication = Rimp(list(name),list(term),formula) 

Each relation definition definition set is split into two parts, one for 
the forward implications (->) and one for the backward implications (<-). 
This corresponds to the types 'forwarddef' and 'backdef' above, each con
sisting of a list of assertions er implications. 
The relation 'member' 

-. member(x,[J). 
member(x,(ylzl) <-> x=y or member(x,z). 

is transformed to 
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C Reldef ( 'member' , C Limp ( ( · x · , 'y' , · z' I , 
{Var( 'x') ,Dstruct{'. ·. [Var( 'y') ,Var( 'z' )] )] , 
Or(Eq(Var( 'x') ,Vari 'y')), 

Rel( 'member', {Var( 'x') ,Var( 'z' )] ) ) )] , 
{ R imp ( ( ' x ' l , 

[Var( 'x') ,Dstruct( · [] ·, [] )] , 
False), 

Limp ( [ ' x' , 'y' , 'z' J , 
[Var( 'x') ,Dstruct{ •.', [Var( 'y'), Var( 'z' )] )] , 
Or(Eq(Var( ·x·) ,Var( 'y')), 

Rel ( 'member· , [ Var ( · x · ) , Var ( · z · l] ) ) ) J ) ) 

5. The environment 

The values of the variables during a computation are found in the environ
ment. 

TYPEDEF environment= list(<Context(loc,context),loc>) 

TYPEDEF context= list(Binding(name,value)) 

TYPEDEF value= <term,loc> ! STAR ! UNBOUND 

where loc is an integer. 

A formula is always considered in a certain context, and this context is 
conveniently referred by a location (an integer). 

If we have the formula 

3x,y,z ( 3z,x ( q(x,y,z) -> r(x,y) ) & s(x,z) & p(x,y,z)) 

we will in a procedural interpretation get the following: 
After having "performed" the outermost existential quantifier the variables 
x,y and z are known. We then have 

[] 10 
x UNBOUND 
y UNBOUND 
z UNBOUND 

and the current context is 10. 
If we then immediatly perform 

10 11 
z UNBOUND 
X UNBOUND 

(1 10 
X UNBOUND 
y UNBOUND 
z UNBOUND 

[<Context([], 
(Binding('x' ,UNBOUND), 
Binding( 'y' ,UNBOUND), 
Binding ( 'z' , UNBOUND)]), 10> l 

the inner quantifier we get 

[<Context(lO, 
( Binding ( 'x' , UNBOUND), 
Binding ( 'y' , UNBOUND l)) , 11 >, 

<Context((], 
[Binding{'x' ,UNBOUND), 
Binding('y' ,UNBOUND)' 
Binding ( 'z' , UNBOUND)]) , 10>] 

The value of variable 'x' in context 11 we quite naturally find in context 
11, but the variable 'y' can't be found in context 11. We then follow the 
static chain which is given by the first argument of a context. The static 
chain of context 11 is 10, while context 10 does not have any static chain. 
We have a special notation for the value of a variable in a certain 
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context: the variable 'x' in context 11 is written <Var('x' ),11>. 

&. The 'gepr' machine 

5G6 

The basis for the 'gepr' machine is a state transition system. We have a 
set of state transition rules 

state. --> state. 1 l l+ 

The behaviour of the machine is described*by the transitive closure of the 
transition relation, which we write as ·-->' and is defined by 

* terminal-state--> terminal-state 

* state--> terminal-state if state-*> state 1 and 
state1 --> terminal-state 

Each 'state' consists of four 'registers': 

G Goal-stack 
E Environment 
P Program 
R Resumption register to handle backtracking 

We have already shown the types of E and P, and R will be elaborated when 
we come to 'or' in formulas. 
The goal-stack is perhaps the most complex type of the 'gepr'-machine. It 
contains information in very goal directed manner of what that has to be 
done. Since the machine has two major modes of execution, backwatd proof 
and forward proof mode, the goal-stack contains two types of items. (The 
special •goal· Fail may also occur on the goal-stack). 

TYPEDEF goalstack = list(goal) 
TYPEDEF goal= B(<formula,loc>, conclusion_environment) ! 

F(list(<formula,loc>), <formula,loc>, conclusion_environment) 
Fail 

TYPEDEF conclusion_environment = ... almost the same as environment ... 

The backward proof mode of execution corresponds roughly to the normal 
"Prolog" mode of execution, while the forward mode is needed to handle 
implications in formulas. 
We start with explaining the backward proof mode, but first we show how to 
initialize the 'gepr' machine. 

If we want to evaluate a formula 'f' in a program 'p', the 'gepr'-machine 
starts with 

G E 
([B(<f,[]>,(])], (], 

p R 
p, Cl> 

i.e. the goal-stack G contains just the item B(<f,(J~;[]). This mea~s that 
we are going to perform a backward proof off in an empty context. The con
text is empty because we assume that all variables are explicitly quanti
fied in the formula, and contexts will be created for those variables. 
The second argument of B (the conclusion_environment) is also empty ini
tially. 
The environment is empty since we don't have any bindings of any variables 
when we start. 
The resumption register i~ empty since we have no backtracking points. 
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A successful final state of the 'gepr' machine is 

([], e, p, r) 

where the bindings of the variables are found in the environment e. If we, 
for some reason, want another solution, the machine may be restarted again 
with the information in the resumption register. This is shown below in the 
'Fail'-transition. 
It may also happen that the whole computation fails. This is the case if 
the final state is 

( [Faillgs], e, p, Cl) 

We are now ready to show the state transition rules, i.e. rules that con
vert one state of the 'gepr' machine to the next. Each rule corresponds to 
a rule in a natural deduction system. 

7. Backward proof 

7. 1. And 

If we in a natural deduction system are going to prove "f1 & f2", we first 
prove ft separately and then prove f2. Due to the '&' introduction rule we 
have 

ft f2 

ft & f2 

which is read backwards in a backward proof. In the 'gepr' machine this 
corresponds to the state transition 

( [ B ( <And ( f 1 , f2) , l>, ce) I gs] , 
((B(<f1,l>,ce),B(<f2,l>,ce)lgs], e, 

e, p, r) 
P, r) 

--> 

Since no new variables are introduced, the context •1· is unchanged. The 
rest of the goal-stack is 'gs', and is left untouched by the transition. 

7. 2. Or 

If we want to prove "f1 or f2" we may either prove f1 or f2: 

f1 f1 
or 

f1 or f2 f 1 or f2 

And the corresponding transition 

([B(<Or(f1,f2),1>,cellgs],e,p,r) --> 
( [B(<f1 ,1>,ce) jgs] ,e,p, [GEP( [B(<f2,1>,ce) lgs] ,e,p) Ir]) 

The computation continues with a backward proof of f1, while we have saved 
the contents of the registers G, E and Pon the resumption stack for the 
alternative computation. If we, for any reason, fail with proving f1, we 
may retry and prove f2. A failure of a computation is indicated by a spe
cial •goal" called 'Fail' on the goal-stack. Although we have not yet shown 
how a 'Fail' gets to the goal-stack, we here show how the 'gepr machine 
reacts. 
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([Failjgs],e, p,[GEP(gs1,e1,pt)lrtl) --> 
(gs1; e1,p1,r1). 

It may however occur that the resumption stack is empty. We then don"t have 
any valid alternatives and the whole computation has failed. 

([Faillgs],e,p,[]) no solution! 

The type of the resumption stack is called 'dump": 
TYPEDEF dump= list(GEP(list(goal),environment,program)) 

7. 3. False 

The simplest way to fail in a backward proof is to find an explicit 'False' 
in the goal-stack. The "gepr' machine simply converts this to Fail. 

([B(<False,_>,_)lgs],e,p,r) --> 
([Fail], e,p,r). 

7.4. Exists 

If a group of variables are existentially quantified, we allocate a storage 
for those variables and initialize them to unbound. This will effect the 
environment. In natural deduction this becomes 

f(v) 

3v(f(v)) 

and the proof may continue backwards from 'f(v)". 

([B(<Exist(vs,f),l>,ce)lgs],e,p,r) --> 
([B(<f,11>,ce)lgs], et,p,r) if newenv(vs,l,e,UNBOUND)=[l1,e1]. 

where et is the new environment and 11 is the location of the new context. 
The type of the function newenv is 

TYPEOF newenv(list(name),loc,environment,value)=[loc,environment] 
For example, the first environment shown on page 5 could have been created 
by newenv(['x', 'y", 'z'],[1,(1,UNBOUNO). 

7.5. For all 

A group of variables may alternatively be universally quantified. In the 
natural deduction system we mark the variables (with a star) so they cannot 
become bound. 

f(*v) 

Yv ( f ( V)) 

The "gepr' machine makes almost the same things as for an existential 
quantification, but all the variables are bound to the special value 
'STAR". 

([B(<All(vs,f),l>,ce)lgs],e,p,r) --> 
([B(<f,11>,ce)lgs], et,p,r) if newenv(vs,l,e,STAR)=Cl1,e1]. 

When such a variable is found during a unification, it cannot be bound, and 
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will remain having the value 'STAR'. This is quite natural since a univer
sally quantified variable cannot be restricted to a special value. 

7.6. Equality 

The special atomic relation '=' also gets a special treatment. In a back
ward proof however, the treatment seems to be quite normal. We just invoke 
unification: 

We have two cases 

or 

([B(<Eq(t1 ,t2) ,l>,ce) lgs] ,e,p,rl --> 
gepr(gs,e1,p,r) 

if unify([<t1,l>],[<t2,l>],ce,el = e1 and 
et /= Fail 

([B(<Eq(t1,t2),l>,cellgs],e,p,r) --> 
gepr([Fail],e,p,r) 

if unify([<t1,l>],[<t2,l>l,ce,e) = e1 and 
e1 = Fail 

The function 'unify' returns the new environment in case of success, other
wise it returns the constant 'Fail'. The type of 'unify' is 

TYPEOF unify(list(<term,loc>l,list(<term,loc>l, 
conclusion_environment, environment) = (environment ! Fail) 

The unification differs from a standard unification in several ways. 
When we want to get the value of a variable, we always first look in the ce 
('conclusion_envirionment') for reasons which will be explained later. If 
the variable is unbound there we then use the normal environment. 
As already mentioned, the STAR variables are not allowed to be bound to be 
bound to anything, and no variable is allowed to become bound to a STAR 
variable. There is however one exception when we can convert a proof made 
with a binding to a STAR variable to a proof without such a binding. In 
natural deduction we may have 

tr 

B(x,*y) 

3x B(x,*yl 

where B(x,*y) is an arbitrary complex formula containing x and y. If we 
have to assume x=*y in order to perform the proof Il, we can convert the 
whole proof Il to a new proof that does not need that assumption. Since 

lT2 

B(*y,*y) 

3>< 8(x,*y) 

is a valid step in natural deduction, and the proof IT2 does not contain any 
assumptions on *Y, the formula "3x B(x,*y)" is valid. What is crucial is 
that the existentially quantified variable must 'declared' after the 
universally quantified variable (the 'STAR' variable). 
This mechanism allows us to conclude that 

Vx3y (x=y) is true 
while 

3xVy (x=y) is false 
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Which one of the variables that is 'declared' first is easily tested by 
comparing the location numbers of the variables. In this case it is impor
tant to follow the static chain to get the true location of the variable. 

Although not strictly necessary we have also chosen to implement unifica
tion so that it can handle cyclic structures (Ha81]. 

7.7. Atomic relation 

In a backward proof when an atomic relation is encounted, we need the pro
gram to find the definition of that relation. There may be none, one or 
several such relation definitions. We take them in the defined order of 
the backward definition set and perform a unification, which may change the 
environment. In natural deduction we write 

Yx1, .. xn( relation_name(q1, .. ,qn) <- f ) f q1=r1 .. qn=rn 
---------------------------------------------------------------------

relation_name(r1, .. ,rn) 

Above the line we have three parts: a part of the relation definition set, 
the formula f (which is the right hand side of the relation definition), 
and a group of equalities generated during unification. If are able to 
prove fin backward mode we may then conclude the formula thatiis written 
under the line. 
In the 'gepr' machine we first find all the definitions of the relation. 
This is done by the function 'getbackdef'. For each of the relation defini
tions found we stack a unification request on the resumption stack. This is 
done by the function 'newdumpb'. Finally we invoke failure so that the top 
item (if any) of the resumption stack will be used. 

((B(<Rel(rn,ts),l>,ce)lgsl,e,p,r) --> 
([Fail],e,p,r1) if getbackdef(p,rn) = stmts and 

newdumpb(ts,stmts,l,ce,gs,e,p,r)=r1 

Although it looks a bit complicated, the function 'newdump~· is very sim
ple: 

TYPEOF newdumpb(list(term),backdef,loc,conclusion_environment,list(goal), 
environment,program,dump)=dump 

newdumpb(_,Cl,_,_,_,_,_,r)=r. 
newdumpb(ts,Cstmlstms],l,ce,gs,e,p,r) = 

[GEP([B(<Unify(ts,stm),l>,ce)lgs],e,p)lnewdumpb(ts,stms,l,ce,gs,e,p,r)l. 

The type of the variable 'stmts' above is 'backdef' (see page 4), which 
means that we actually have two types of clauses: assertions and relations. 
We don't show the assertions here since they are identical to a relation 
with an always true right hand side. 
When the 'gepr' machine finds a unification request on top of the goal
stack it first allocates space for the new variables and then performs the 
unification. 
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We then have two cases: 
([B(<Unify(ts1,Limp(vs,ts2,f)l,11>,ce)lgs],e,p,r) --> 

or 

((B(<f,12>,cellgs]. e2,p,r)) 
if newenv(vs,[],e,UNBOUND) = [12,e1] and 

unify(ctermlist(ts1,l1),ctermlistlts2,12),ce,e1) = e2 and 
e2/=Fail 

([B(<Unify(ts1,Limp(vs,ts2,f)) ,11>,cellgs],e,p,r) --> 
([Fail], e2,p,r) ) 

if newenv(vs,[],e,UNBOUND) = [12,e1] and 
unify(ctermlist(ts1,11),ctermlist(ts2,12l ,ce,e1l = e2 and 
e2=Fail 

The type of 'ctermlist' is 
TYPEOF ctermlist(list(term),locl=list(value) 

ctermlist([l,_l = {]. 
ctermlist([alas],l) = [<a,l>lctermlist(as,l)]. 

7.8. Implies 

s=ro 

Finally, here is the rule that changes the execution mode from backward 
proof to forward proof. In natural deduction we have 

f 1[ 1] 

1T 

f2 
--------[1] 
f1->f2 

The expression under the line is true if we by starting by assuming ft can 
prove f2. This proof is marked with 1T in the figure above. During that 
compution certain conclusions may have been drawn, which obviously depend 
on the assumption f1, and they must therefore be discharged after the sub
proof. This is schematically indicated by "(1]" in the figure. We solve 
this problem by having a local 'conclusion environment' for all subcomputa
tions. By this, local conclusions don't effect the global status of the 
computation (the environment). 
In the 'gepr' machine we have 

([B(<Imp(f1 ,f2) ,l>,ce) lgsl ,e,p,r) --> 
( CF ( [ < f 1 , l> l , < f2, l> , ce) I gs l , e, p, r) 

The formula f1 is called the "premise goal". In general we may have a list 
of "premise goals", but at start there is just one. 
We are now ready for 

8. Forward proof 

The action in forward proof mode generally depends on the form of the prem
ise goal. 

8. 1. And 

The first rule is a simple rewrite 
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([F([<And(f1,f2),l0>lfrl,<cf,l>,ce)lgsl,e,p,r) --> 
(CF ( C < f 1 , 10>, < f2, 10> I fr l , <cf, l>, ce) I gs l , e, p, r) 

which extends the list of premise goals. 

8. 2. Or 

If the first premise goal is an 'or'-form we have 

f1 or f2 

f1[1] 

1r 1 

f2[1] 

lr2 

1r f1 or f2 cf cf 

5=t1 

which we convert to -----------------------------(1][2] 
cf cf 

That is, to prove that f1 or f2 implies cf we have to prove that ft implies 
cf and f2 implies cf. The conclusions drawn at these subcomputations must 
as usual be removed after the computation. 
This means that 

([F([<Or(f1,f2),l0>lfrl,<cf,l>,ce)lgsl,e,p,r) --> 
((F((<f1,l0>lfrl,<cf,l>,ce),F((<f2,l0>lfr],<cf,l>,ce)lgs],e,p,r) 

8.3. Exist 

If variables are existentially quantified in the premise goal we get 

f(*v)(1] 

tr 

3v(f(v)) cf 
---------------------[1] 

cf 

We try to perform a proof of 'cf' starting from the premise goal f(*v). 
All the existentially quantified variables have the value STAR, and have to 
follow the rules of a STAR variable. In 'gepr' we get 

((F((<Exist(vs,f),l0>lfr],<cf,l>,ce)lgs],e,p,r) --> 
([F([<f,11>lfr],<cf,l>,ce)lgs],e1,p,r) if newenv(vs,10,e,STAR) = [11,e1] 

8.4. For all 

Similarly for universal quantification we have 

Vv(f(v)) 

f(v) 

1r 

cf 

and for 'gepr' 
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([F([<All(vs,f),lO>lfr],<cf,l>,cellgs],e,p,r) --> 
([F([<f,11>lfr),<cf,l>,cel lgs],e1,p,r) if newenv(vs,10,e,UNBOUND) = [11,e1] 

8.5. False 

If the premise i~ false we can end the subcomputation with success without 
further computations. 

False 

cf 

And for 'gepr· the computation continues with 'gs': 

((F((<False,lO>lfrl,<_,_>,_llgs],e,p,r) --> 
(gs, e,p,r) 

8.6. Implies 

Even in forward proof mode an implication can be found in the premise goal. 

f1->f2 
rr1 

f1 f1-> f2 
rr which is converted to ----------------------------

f2 
cf 

rr2 

cf 

We first try to perform the backward proof ff1, and then the forward proof 
rr2. 

([F([<Imp(f1,f2),lO>lfr],<cf,l>,cellgs],e,p,r) --> 
((B(<f1,10>,ce),F((<f2,lO>lfr],<cf,l>,ce)lgs],e,p,r) 

8.7. Equality 

If an equality is found in the premise goal-list, we may use this equality 
anywhere in the subproof. The situation is very different from ordinary 
unification, almost the opposite. We first look for the value of a variable 
in the normal environment (e), and only if the value is UNBOUND or STAR we 
look in the conclusion environment (ce). If it necessary to bind a variable 
in order to succeed in the conclusion unification, the new value is only 
stored in the conclusion environment. 
If the conclusion unificatior fails, it must be remembered that a false 
premise implies everything, so we have actually succeeded! 
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Two cases: 
([F([<Eq(t1,t2),lO>lfrl,<cf,l>,ce)lgsl,e,p,r) --> 
((F(fr,<cf,l>,ce1)lgs],e,p,r) 

or 

where 

if cf/= <False,_> 
and concunify((<t1,lO>l,C<t2,lO>],ce,e) = ce1 
and cet/=Fail 

([F([<Eq(t1,t2),lO>lfr],<cf,l>,ce)lgs],e,p,r) --> 
(gs, e,p,r) 

if concunify([<t1,10>l,[<t2,10>],ce,e) = ce1 
and cet=Fail 

TYPEOF concunify (list ( <term, loc>), list ( <term, loc>), con_clusion_environment, 
environment) = (conclusion_environment ! Fail) 

In the code above we check so that the conclusion formula isn't an expli
citly 'False' formula. If concunify succeeds we would otherwise be sure 
that the computation whould fail. To avoid this we test for that special 
case, and we treat it separately. In this case the only solution for suc
cess is to use some sort of 'negative' unification which generates assump
tions like 'x*17'. The advantage of this is a wider domain of executable 
programs, while the disadvantage is increased nondeterminism. In this paper 
we will not elaborate this mechanism further. 

8.8. Atomic relation 

When we find an atomic relation in the premise goal-list, we try to find 
its definition set in the program. If there are several definitions we take 
the fi~st and save the rest on the resumption stack. The case in natural 
deduction when we have found one definition: 

Vx ( relation_name ( q 1, .. , qn) <- fl relation_name(r1, .. ,rn) q1=r1, .. ,qn=rn 
----------------------------------------------------------------------------

f 

1f 

cf 

Above the line we have three parts: a part of the relation definition set, 
the premise goal, and a group of equalities generated during unification. 
We then have to perform the proof ff. 
As in backward proof mode we first find the definition set and stack the 
alternative definitions on the resumption stack. We then invoke failure so 
the top item on the resumption stack will be used. 

([F([<Rel(rn,ts),lO>lfr],<cf,l>,ce)Jgs],e,p,r) --> 
gepr([Faill,e,p,r1) 

if getforwarddef(p,rn) = stmts and 
newdumpf(ts,stmts,10,fr,cf,.l,ce,gs,e,p,rl=r1 

where 
TYPEOF newdumpf(list(term),forwarddef,loc,list(<formula,loc>),<formula,loc>, 

loc,conclusion_environment,list(goal),environment, 
program,dump)=dump. 

newdumpf(_,[],_,_,_,_,_,_,_,_,rl=r. 
newdumpf(ts,(stmlstms],10,fr,cf,l,ce,gs,e,p,r) = 
[GEP([F((<Unify(ts,stm),lO>lfr],<cf,l>,ce)lgs],e,p)I 

newdumpf(ts,stms,10,fr,cf,l,ce,gs,e,p,r)]. 



- 15 -

In 'gepr' machine we may encounter 'unifications' in forward proof mode. 
The unification may either fail or succeed. 

We have two cases: 

or 

([F([<Unify(ts1,Rimp(vs,ts2,f)l,l0>lfr],<cf,11>,ce)lgs],e,p,r) --> 
((F(fr,<cf,11>,cellgs],_,_,r) 

if newenv(vs,[],e) = [12,et] 
and unify(ctermlisttts1,10),ctermlist(ts2,12),ce,e1) = e2 
and e2=Fail 

([F([<Unify(ts1,Rimp(vs,ts2,fl),l0>lfr],<cf,11>,cellgs],e,p,r) --> 
((F(C<f,l2>lfr],<cf,11>,ce)lgs],e2,p,r) 

if newenv(vs,[],e) = (12,e1] 
and unify(ctermlist(ts1,10),ctermlist(ts2,l2),c.e,e1) = e2 
and e2/=Fail 

9. Discussion 

It is important to stress that we have not devised a complete theorem 
prover. This means that there is a domain of formulas that we are unable to 
prove. We claim however that these formulas usually are not computationally 
useful. To include them in the set of formulas we can prove would increase 
the nondeterminism and degrade the system performance. 
One improvement towards a more complete system was the 'negative' unifica
tion which was discussed on page 14. Since we have not yet been able to use 
the system for large problems, we not yet sure whether this complication 
would be worthwile. We do however already know that there is a wide domain 
of programs where the system has proven to be quite useful. 
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