543

CUORRENT TRENDS IN LOGIC GRAMMARS

Veronica Dahl
Computing Sciences Department
Simon Fraser University
Burnaby, BC V5A 1S6

Abstract

This paper surveys several 1logic grammar formalisms, relates
them to some recent trends in linquistics and advocates the use
of logic grammars for natural language processing. Contrary to
many recent approaches that resort to augmenting essentially.
context-free grammars, it also tries to make a case for not
outruling context—sensitiﬁity or transformations. Finally, it

presents agne? }ogic' grammar formalism jointly devgloged by

aichaelkuccérd and the author, the main features of which are: a

metagramméti¢a1 .tféatment of coordination that relieves the
grammar vwriter from having to describe <coordinating rules
explicitly; a modular treatment of semantics based upon simple
information given 1locally to each rule, and an automated

building-up of the sentence's representation structure.

5 #9

PAGE 2

]

1. ntroduc tion

Among the computational formalisms for describing and
processing langunage, logic grammars have been drawing attention

since their introduction in 1975 (Colmerauer 1975).

Logic grammars resemble type-0 grammars, except that the
grammar symbols may have arguments, and that procedures may be
invoked vfrom the rules (e.g. to serve as applicability
constraints). Derivations involve unifying (Robinsonrn 1965)
symbol strings rather than just replacing them. Since the logic
grammar formalism is a part of the Prolog programming language
{Colmerauer 1975, Pereira L et al, 1978), 1logic grammars written
to'describe’a,lénguage can be interpreted by Prolog as analysers
;.foi;t§at iangﬂé§g;,3 $hns_telieved from the operatiomal concerns
iﬂof parsinéfﬁ”xghéj_uge;;can ﬁe&elop very c¢lear and concise
'“an#lySe£s5 5ﬁs£Tvby §titin§ a éét of iogic grammar rules that
describe a langudgé and giving it to Prolog. Logic grammars have
 been favourably compared with a widely used formalism for
processing language: augmented tramsition networks (ATNs)
introduced in 1970 (Woods 1970). They have been argued to be
clearer, more concise and in practice more powerful, while at

- least as efficient, as ATNs (Pereira & Warren, 1980).

The first sizable application for 1logic grammars was a
~Spanish/French consultable database system (Dahl 1977,1981,1982)

% which was later adapted to Portuguese by H. Coelho and L. Pereira

580

PAGE 3
(1), and to English, by F. Pereira and David Warren (2); and has
since inspired the development of several other applicatioas
(e.g. Coelho 1979,HcCord 1980, F. Pereira & Warren 1931). This
system has been shown to be comparable 1in efficiency with the
LUNAR system (Woods et al., 1972), (cf. Pereira & Warren,
1980,p.276), thus joining the appeal of practical feasibility to
the elegance and expressive power of the logic grammar approach.
Further logic grammar applications include (Silva et al. 1979,
Simmons and Chester 1979, Sabatier 1980, Pereira et al. 1982).
However the experience gained in the aforementioned applications
has motivated tﬁe development of alternative 1logic grammar
formalisms, some restricting and others augmenting the power of

the original formalism as described in (Colmerauer 1975).

’This pa?e#vétteﬁpts ‘to fill a gap by examining the évolution
of lcgic7graﬁmais;"‘ comparing’the~ alternative proposals, and
discussing thém with respect‘to recent trends in both theoretical
linguistics and natural language processing. It also motivates
and briefly presents a new logic grammar formalisnm, called
"modifier structure grammars" (MSGs), developed Jjointly by
Michael McCord and the author (Dahl and #McCord 1983). Its main
features‘are: a metagrammatical (user-invisible) treatment of
coordination, a modnlar treatment of semantics, and an automatic

build-up of the parsed sentence's representation.

- ———— ——— ——— — —— ———

(1) Personal Communication, 1978.
(2) Personal Communication, 1980.

S 31

PAGE 4

Section 2 describes logic grammars in intuitive, user-biased
terms. Section 3 presents different types of logic grammars;
Section 4 compares them with respect to expressive power, in
particular through the example of how they allow to express
movement of constituents. Section 5 discusses pros and cons of
choosing relatively evolved grammar formalisms, and makes a case

for choosing 1logic grammars independently of the degree of

. evolution needed. Section 6 briefly presents our new logic

grammar formalism (MSGs), and Section 7 contains some concluding

thoughts.

2. ¥What is a logic grammar?

zLoqicfgrammars can be thought of as ordinary grammars, in

;'vhiCh'théisymbbls may*5avé arguments. These arguments are either

l,constants; variayles*orjfunctional‘expressions, and the fact that

vthej may 1501udé ’variablés implies that substitutions are

sometimes needed in order to apply a grammar rule. For instance,

' consider the following grammar:

1) Sentence (fact(F)) --> proper-noun{N), verb(N,F).

2y proper-noun (mary) —> [mary].

3) proper-noun (john) --> [john].

4y verb (N, laughs{N)) --> [laughs].

5) verb (N, smiles{N)) --> [smiles].

in which (as throughout this paper) constants are in lower-case

S82

PAGE 5
létters, variables start with a capital, consecutive terminal
symbols are represented as square-bracketed 1lists, and non-
terminals are in lower-case letters. The comma stands for
"concateration"”, and the end of a rule is signalled by a period.
Having defined these rules to Prolog, if we now, for instance,
want to analyse the sentence "Mary smiles", we merely write the

question:
? sentence{X,"mary laughs®, [)

This amounts to a request that Prolog find a value for X that
represents the surface form "Mary smiles" with respect to this
grammar. What happens in the Prolog execution of the parsing
procedure can be snnmarized.in the top-down, left-to-right
&e:ivati6n t;ee depi¢£ea.in Pig, 1, where each rule application
is lahe11ed by_the identification of the rule involved and by the
settéfkvsu$sti£§gioné éf termé for variables that are needed in
order to apply the rule.
sentence (X)

rule 1
X <- fact (F)

\ 7
proper—-noun (N) verb (N, F)
rule 2 rule 4§
\ N <~ mary F <- smiles {mary
RATY smiles

Figure 1. Derivation tree for "Mary laughs".
Only successful rule applications are shown here. Prolog

backtracks upon unsuccessful ones. Through the substitutions

employed, Prolog finds the representation

583

PAGE 6

X = fact(smiles(mary))
for the sentence given.

Arguments allow for information to be shared by various
grammar symbols, and to be carried along a derivation. In our
example, they serve to build up a desired representation for a
surface sentence. In procedural teras, grammar symbols can be
thought of as producers and consumers of structure: the "proper-
noun" symbol produces the value "mary", which is then consumed by
"verb" in order to produce the structure "smiles(mary)", from
which the final structure "fact (smiles (mary))" is constructed

by "sentence".

- Other uses in natural langunage processing include: syntactic
and semantic checks (e.g. gender and number, semantic type or

- class), carrjiﬁg'extraposed-constituents across phrases, etc.

For instance, wé may check semantic accord by declaring Mary
and John to be of type "human", and requiring that the arguments
of "laughs" and "smiles" also be human. We use a functional

- symbol -, in infix notation (allowed by Prolog) in order to

~introduce this semantic information. The above grammar becoames:
1) sentence ({fact(F)) --> proper-noun(N), verb (N,F)

2) proper-noun {human-mary) --> [mary]l.

3) proper-noun (human-john) --> [john].

4) verb (human-N, laughs(N)) --> [laughs].

S84

PAGE 7

5y verb (human-N, smiles(N)) --> [smiles].

{Notice that variable names are local to each rule - i.e.,
variables with the same name are unrelated if they belong +to

different rtules.)

We have enforced semantic agreement through unification, i.e.,
in the Prolog matching of terms. Proper nouns introducing non-
humans now fail to be coupled with such verbs as f"laughs" and

"gspiles®.

Another way is through procedure calls, allowed in 1logic

grammars in the form of Prolog calls (that we note between
brackets). = For instance, rule 4§) could have instead been

replaged by: -
4) verb (N, laughs(N)) —f>_[1aughs], human (N) .
and wve would have added a Prolog definition for the procedure

called, e.g.:

human{mary).

human (john) .

More general procedures can, of course, be written in Prolog,

e.g. "every child is human", noted:
human (x) :- child (x)

and read: "if x is a child then x is human".

585

PAGE 8

3. Different types of logic grammars.

The first formulation of the parsing problem in terms of logic
was obtained by A. <Colmerauer and R. Kowalski, while trying to
express Colmerauer's Q-System (Colmerauer 1973) in logic. This
idea evolved into a very elegant and efficient Prolog
implementation of metamorphosis grammars (Colmerauer 1975), that

we shall call uGs.
An MG rule has the form:
S Jl--> (s

1 where S is a nonterminal (logic) grammar symbol, 4 is a string
| of terminals and nonterminals, and G is like 4~except that it

% may also 1nclnde Proloq procedure calls.*
",~Exgmplgs ofdeck rﬁ1es are:
a, [b] --> [b], a
verbroot (X), pluralmark --> [W], concat ([X],[s],¥W)

~where a Prolog predicate concat (x,y,2z) is assumed, that holds if

'z is the concatenation of x and y.

A special case of MGs was later included in DEC-10 Prolog

* The actual implementation in fact requires L to be a string
of nonterminals, but we shall disregard the restriction since it
has been shown (Colmerauer 1975) to involve no loss with respect
to the full MG form.

586

PAGE 9

(Pereira, Pereira & Warren 1978) and baptised Jdefinite clause

qrammars (DCGs). DCG rules have the form:

S -->F

where S and @ are as above. All the rules presented in Section

2 are of this type.

The main motivation for introducing DCGs was ease of
implementation coupled with no substantial 1loss in power (in the
sense that ©DCGs can also basically describe type-0 languages -

although less straightforwardly).

Extraposition grammars (XGs) {Pereira, to appear) Were
designed in order to refer to unspecified strings of symbols in a
rule, thus making it easier to describe left extraposition of

constituents.
XGs allow rules of the form

S 22 S etc. s «ese S ==> T
1 2 k-1 k

where the "..." specify gaps (i.e., arbitrary strings of graammar
symbols), and r and the SL are strings of terminals and non-

terminals.

The general meaning of such a rule is that any sequence of

symbols of the form

S8+

PAGE 10
with arbitrary x s, can be rewritten into r ¥ X ...X
i 12 k-1
(i.e., the s, 's are rewritten into r, and the intermediate gaps
“

(x.

¢ 's) are rewritten sequentially to the right of r. For

instance, the XG rule:
relative-marker ... complement --> [that].

allows to skip any intermediate substring appearing after a
relative marker * in the search for an expected complement, and
then to subsume both marker and complement into the relative
pronoun "that", which 1is placed to the left of the skipped

substring.
The next section shows this rule at work in a parsing context.

Restriction grammars (RGs) (Hirschman & Puder, 1982) are not,
istrictly speaking, logic grammars, since the grammar symbols may
inot include any arguments. But they are implemented in Prolog
iand provide an instance of what seems to be a popular tendency in
'natural language processing nowadays: they involve sets of
écontext-free definitions augmented with grammatical constraints
or restrictions. In RGs, these appear in the form of procedures

interleaved among the context-free definitiomns.

For instance, the RG rule

——————— ——— —————— ———

% j.e., a symbol that announces the beginning of a relative
' clause. :

S83

PAGE 11

predicate ::= verb, object, verb-object
states that "predicate'" «can be rewritten into "vert object",
provided that the "verb-obhject" restriction is satisfied (this

restriction could for instance state that if the object is nil,
the verb must be intransitive). Restrictions need to be defined
separately, using such available primitives to traverse the tree
as "up", and "down"; and explicitly stating parameters for its

starting point in the tree and in the word strean.

4. Expressive power of each grammar formalisn.

What are the consequences of choosing one of these grammar
formalisms to write a natural language processor? From a
theoretical point of view, the power of MGs, DCGs and XGs is
similar in that they can all serve to describe type-0 languages.
From a practical point of view, however, their possibilities
differ. In this section we shall illustrate this point by study
ing how easily and concisely each of these formalisms allows to
describe those rules involving constituent movement and ellision.
RGs, although not dealing specifically with movement, are also

considered.

4.1 Movement rules and MGs.

Let us consider for instance the noun phrase:

the man that John saw

which can be thought of as the surface expression of the more

S¥l

PAGE 12

canonical form:
the man [John saw the man],

where the second occurrence of "the manY has been shifted to the

left and subsumed into the relative pronoun "that".

A simple grammar for (very restricted) sentences in canonical

form could be:
{1) sentence --> noun-phrase, verb-phrase.

{(2) noun-phrase --> determiner,noun,relative.

{3) noun-phrase --> proper-nanme.

{4) verb-phrase --> verb.

(5) verb-phrase --> trans—-verb,direct-object.
(6) relative --> [].
{7) direct-object --> noun-phrase.

{8) determiner --> [thel.

{(9) noun --> [man].
{10) proper-name --> [johnl].
(11) verb —-> [laughed].

:(12) trans-verb --> [saw].

590

PAGE 13
We shall successively modify this grammsar (referred to as G in
all that follows) in order to describe the relativization process

within various logic gramwmar formaliswms.

d4ithin #4Gs, all we need is to add the following rules:

(6" relative --> relative-marker, sentence.

{(5') verb-phrase --> moved-dobj, transitive-verb.

{13) relative-marker, noun-phrase,moved-dobj -—-> rel-pronoun,noun-para

{(14) relative-pronoun --> [that].

Figure 2 depicts the derivation tree for our sample noun
phrase "the man that John saw®. We abbreviate some of the

grammar symbols. Rule numbers appear as left-hand side labels.

591

PAGE 14
noun-phrase
o |
] I |
det noun rel
(6")
(8) (9) »
the man rel-marker sentence
(n
(-
noun-phrase ' verb-phrase
(5"
T |
moved-dobj tr-verb
J (12)
(13) ' saw
I !
rel-pro noun-phrase
(14) (13)\
that proper-name
{(10)
John

. Fiqure 2.

MG derivation tree for "The man that John saw'.

592

PAGE 15

Of course, for such a parse to bte of any use, we need to
construct a representation for the sentence while we parse it.
But for the time being we shall ignore syazbol arguments in order
to concentrate apon the particular problenm of moving

constituents.

4.2. Movement rules and DCGs.

In terms of DCG rules, the simplest possible modification to

the original grammar G is to allow a direct object to be ellided,

e.g. by adding the rule:
{(7*') direct-object --> [1.

But, because this rule lacks the contextual information found in
(1), a direct object is now susceptible of being ellided even
outside a relative claauase. In order to preveant it, a usual
technique 1is to control rule application by adding extra
arguments. In our example, we only need to add a single argument

that we carry within the sentence, verb-phrase and direct-object

symbols, and that takes the value "pil" if the direct object in
the verb phrase of the sentence 1is not ellided, and the value

"ellided" if it is. The modified rules are the following:
(0) sentence —--> sent({nil).
(1) sent (E) --> noun-phrase, verb-phrase(E).

{(4) verb-phrase (nil) --> verbh.

(5) verb-phrase (E) --> transitive-verb, direct-object(Ej.

593

PAGE 16

(6') relative --> relative-pronoun, sent(E).

{7) direct-object (nil) --> noun-phrase.

(7') direct-object{ellided) --> [1.
(13) relative-pronoun --> [that].

FPigure 3 shows the DCG derivation tree for "The man that John saw

laughed”. Substitutions of terms for variables are shown as

right-hand side labels.

594

PAGE 17
sentence
(0) \
sent {nil)
n \
r ' |
noun-phrase verb-phrase (nil)
(2) \ %
) | | |
det noun rel verb
(8 | (9 | 6" | (1 |
the man) , \ laughed
rel-pro sént(E)
(13) (1)\
that
T |
n-ﬁh v-ph (E)
3 | (5) \
prop-name
(10) \ W
‘ tr-vb d-obj(E)
(12) {7") E <-- ellided
John \
saw

Figure 3.

DCG derivation tree for the sentence "The man that John
saw laughed®.

595

PAGE 13

4.3. Movement rules and XGs.

While, as we have seen, #Gs express movement by actually
moving constituents around, DCGs must carry all information
relative to movements within extra arguments. XGs, on the other
hand, can capture left extraposition in an economical fashion: by
actually skipping intermediate substrings rather than shifting
the constituents that follow. Thus, our initia; grammar can be

modified to handle relativization simply by adding the XG rules:
(6') relative --> relative-marker, sentence

{13) relative-marker ... direct-object --> relative-pronoan.

(14) relative-pronoun --> [that].

Pigure 4 shows the XG derivation tree for "The man that John saw

j laughed®.

4

S9e

PAGE 19
sentence
(1)1
{ i R
noun-phrase verb-phrase
(2) (1
laughed
|) M
det noun relative
(8) (9)\ (6')\
the man [i
rel-mk sentence
(m L
M]
noun-phrase verb-phrase
{3)})
prop-name \ h
tr-vb -obj
(13)
(10)
rel-pro
(19 |\
that
john sav
Figure 4. XG derivation tree for "The man that John saw laughed”.

5%

PAGE 20

4.4. BGs

— ——

Restrictions can be used in RGs for the purpose of enforcing
context sensitive constraints, but transformations seem to
require an RG extension - possibly in the form of an additional
component - , which is presently wunder study. (Hirschman §

Puder, 1982)

An interesting feature of BRGs is that a ~parse tree is
automatically constructed during the parse (i.e., the tree-
bnilding parameters are hidden from the user). This makes a
grammar clearer, but at the same time less flexible: only ihe
history of rule applications is recorded, whereas in aay other
- logic grammar the user may build up (through explicit parameters)
- any desired representation for the sentences parsed. The effects
of context sensitivity, on the other hand, are ensured by giving
each restriction access to the entire previously constructed
- parse tree. This need is the main difference between
| restrictions and the standard Prolog calls allowed 1in logic
i grammars (which are also, after all, procedure calls interspersed

 within the rules).

In short, vhere DCGs accommnodate context-sensitive coastraints
- within wuser-controlled parameters, RGs enforce them through
restrictions placed upon a system-controlled parse tree. This
concept would result in a higher level formalism if it gave the
user a fairly complete 1independence from parse tree conceras.

However, efficient exploitation of XGs requires some knowledge of

S59¢

PAGE 21
the parse tree, and the user needs to express restrictions in the
lower level terms of tree traversal rather than in the typically

declarative, operationally independent fashion of loygyic grammars.

5. How evolved a grammar formalism do we need?

——

Work in theoretical linguistics has lately been'departing from
transformational theory (Chomsky 1965), 1largely because of the
subtelty of rules involved and the supplementary devices needed
{e.g. co-indexing, filters, etc.) and because of the complexity
of dealing with semantics within the transformational panadigm.
Work by Montague (Montague 1976) and Gazdar (Gazdar 1981)
resulted in a simpler and more intuitive formalization of
semantics based upon the rule-to-rule hypothesis {(Bach 1976): to
each syntactic rule corresponds a structually analogous, semantic

rule for building up logical representations.

Gazdar's framework, in particular, can deal with a wide range
of syntactic phenomena within a phrase-structure theory that has
a node admissibility interpretation rather than a generative one.
This new outlook, augmented by metagrammatical devices (such as
categories with gaps, metarules and rule-schemata) elegantly
captures such important constructs as coordination and unbounded
dependencies. Gazdar's "augmented phrase structure" approach has
influenced research in AXI, where the transformational approach
had also been 1losing adepts, as it was also felt to deal
insufficiently with semantics and, moreover, with senteace

analysis - AI's main concern 1in natural language processing.

599

PAGE 22
Among the systems 1inspired by this approach are (Joshi 1982,

Robinson 1982, Schubert & Pelletier 1982).

Logic grammars, from all our previous discussion, would seea
to provide an adequate computational framework within which to
implement the auqmented phrase structure approach. Prom tue
descriptive point of view, as we have seen, "logical" context-
free rules are more powerful than standard ones because of
parameters in grammar symbols, and unification. Procedure calls
are moreover an inherent feature that is useful for representing

constraints.

But, although any logic grammar supports at least this, the

- user need not be restricted to context-free type rules. MGs or

XGs will moreover provide for generalized type-0 rules, and even

 for the handling of gaps, while maintaining high standards of

efficiency.

Extra power available, therefore, can only represeant a qgain,

' since it does not preclude resorting to more eiementary

1approaches as a special case. 1In this respect we support Berwick

%and Weinberg's contention that there is a possible tradeoff

between parsing efficiency and descriptive apparatus, and that "a

language that is quite *high up' in the Chomsky hierarchy - e.g.

a strictly context-sensitive language - may 1in fact be parsed
more rapidly than languages lower down 1in the hierarchy - e.g.
faster than some <context-free lanquages - if the gain in

- succinctness is enough to offset the possibtle increase in parsiag

600

PAGE 23

time" (Berwick & Weinberg, 1982).

Our approach is therefore that of continuing research on logic
grammar extensions that may be useful 1in view of a goure powerful

and elegant, while =still efficient, treatment of some natural

language processing phenomena. In the next section we describe a
‘ new logic grammar formalism developed in particular for dealing
‘ metagrammatically with coordination, but that exhibits several

‘ other features that are interesting by themselves.

QSQCNC‘\ by MicLaeL McCo\rd (McCorc\ I‘I?O,’ﬁ%

R
. o has resulleci in interesting ideas for processin
6. Modifier structure grammars (MSGs)E&Wd lemguage tk:i“;.‘kﬁ io;‘c ﬁm‘;ﬂt‘“ﬂ. i‘

barbiculm-, the wnobion of vv-ool-"(’-ier structure awd the treatwmewt of sewantic in erpretabion presewnte
there seewmed & browmising framework for solving nomtrivicl language -brocessing problems, such as
rrﬁndﬂmJOint research with Michael McCord in view of a logic grammar,

metagrammatical treatment of coordination, resulted in the
| development of a system consisting of: a) a new formalism for
logic grammars, which we call modifier structure grammars (MSes),

useful for making modibier structuve implicit in the grammar
b) an interpreter {(or parser) for MSGs which also takes all the

responsibility for the syntactic aspects of coordination, and c¢)

a semantic interpretation component which produces logical forms

! (as in McCordh $1)
from the output of the parser and deals with scoping problemsY
which also includes shecific rules for sewmantic interpretation of

The whole system 1is

implemented in Prolog-10 (Pereira, Pereira & Warren 1978). Here
we make a brief presentation of this systen. A couaplete

description can be found in (Dahl & McCord, 1983).
MSG rules are of the form:

A : Sem --> B

601

PAGE 24

where A --> B is an XG rule and Sem is a term called a semantic
item , which plays a role 1in the semantic interpretation of a

phrase analysed by application of the rule. The semantic item is

(as in (McCord 1981)) of the fornm
Operator - LogicalForm

where, roughly, LogicalForm is the part of the logical fora of
the sentence contributed by the rule, and Operator deteruwines the
way in which this partial structure combines with others. Senm

may be a "trivial" Sem if nothing is contributed.

When a sentence is analysed, a structural representation, 1in
tree form, called "modifier structure" is automatically formed by
the parser. Each of 1its nodes contains not ouly syntactic
information but also the semantic information Sem supplied in the
grammar, which determines the node's contribution to the logical

form of the sentence {this contribution is for the node alone,

? and does not refer to the daughters of the node, as in Gazdar's

: approach (Gazdar, 1981)).

The semantic interpretation component first reshapes this tree

f into another MS tree where the scoping of quantifiers is closer
?to the intended semantic relations than to the (surface)
- syntactic ones. It then takes the reshaped tree and translates

it into logical forn. The modifiers actually do their work of

modification in this second stage, through their semantic iteas.

' It should be noted that the addition of simple semantic

602

PAGE 25
indicators within grammar rules contributes to amaintain, from the
user's point of view, a simple correspondence between syantax and
semantics. This 1is similar in intention to the rule-by-rule
hypothesis mentioned before (Bach 197%), but is differently
realized: instead of a rule-to-rule correspondence, #e have a
correspondence between each non-trivial expansion of a non-

termiral and a logical operator. That is, each time the parser

" expands a non-terminal symbol into a (non-empty) body, a logical

operator 1labels the expansion and will be later used by the
semantic coaponent, 1interacting with other logical operators
found in the parse tree obtained. The complexity of dealing with
quantifier scoping and its interaction with coordination is

screened away from the user.

With respect to vcoordination, the #SG grammar should not
mention conjunction at all. The interpreter has a general
facility for treating certain words as "demons" (cf. Winograd
1972), which trigger a backing up in the parser history that will
help reconstruct ellisions and recognize the meaning of the

coordinated sentence.

This proceeds in a manner similar to that of the SYSCONJ
facility for augmented transition networks (Woods 1973, Bates
1978), except that, unlike SYSCONJ, it can also handle embedded
coordination and interactions with ext:aposition. The use of
modifier structures and the associated semantic interpretation

component, moreover, permits in general a good treatment of

603

PAGE 26
scoping problems involving coordination. Finally, the systen
seems reasonably efficieant (cf. timings for our sample graamar in

{(pPahl and McCord, 1983)).

7. Concluding remarks.

Logic grammars, as we have seen, need not sacrifice efficiency
to the goals of power and elegance. They seem to be evolving -
like other computational formalisms - into higher level tools
which allow the user to spare mechanizable efforts in order to

concentrate on as yet unmechanizable, creative tasks.

We view MSGs as a step in that direction, with the @main

advantages of automatising the treatment of coordination,

| providing a modular treatment of semantics, and allowing the user

. not to worry over structure building.

The latter feature may be an attractive one for logic grammars

in general to retain, since it makes a grammar easier to write

and read, and more concise.

Since, moreover, logical structure desired for a sentence's

~final representation i# also automatically built up, £from a few
simple semantic indicators in the grammar rules, it becomes

easier to adapt a grammar to alternative domains of application:

modifying the 1logical representation obtained need only involve

the semantic components of each rule.

This modular isolation of structure lends Jrammars a

604

PAGE 27
syntactico-semantic flavour. It may be viewed as a way out of
the dilemma on whether the semantic component should be separate
or 1intermingled with the syntactic one. Compronmising on
manipulating static semantic indicators during the syntactic
parse while using them dynamically during the semantic one may
well prove £o he the way of combining the advantages of both

approaches while minimizing the disadvantages.

ACKNOWLEDGEMENT

This work was comkteted under NSERC O‘ne\ra{imﬁ C\f&n‘t 12436 and

PRG Grawt 6-4240.

6035

PAGE 28

KEFERENCES

Bach, B. (1976). An extension of classical transforamational
grammar.Mimeo, Univ. of Massachusetts, Amherst, MA.

Bates, 4. (1978). Tha theory and practice of augmented transition
‘ networks. 1In: L. Bolc (ed.) Natural Language Communication with
Computers. (Springer, Berlin, May 1978).

Berwick, R. C. and Weinberg, A. S. (1982). Parsing
Efficiency, Computational Complexity, and the
Evaluation of Grammatical Theories. Linguistic
Inquiry, vol. 13, No. 2, Spring 1982, pp.165-191.

Chomsky, N. (1965). Aspects of the Theory of Syntax
MIT Press, Cambridge, Massachusetts.

Coelho, H. M. F. (1979). A program conversing in
Portuguese providing a library service. Ph.D. Thesis,
Univ. of Edinburgh.

Colmerauer, A. {(1973). Les systemes-0Q ou un formalisme
pour analyser et synthetiser des phrases sur ordinatioa.
Publication interne No 43, Dept. d'Informatique,
Universite de Montreal.

Colmerauer, A. (1975). Les grammaires de metamorphose.
Groupe d'Intelligence Artificielle, Univ. de
Marseille-Luminy. As "Metamorphosis Grammars" in:
L. Bolc (ed.), Natural Language Communication with
Computers (Springer, Berlin, May 1978).

- Dahl, V. (1977). Un systeme deductif d'interrogation
‘ de banques de Jonnees en espagnol. These de Doctorat
de Specialite, Oniv. d'Aix-Marseille.

%Dahl, V. {1981). Translating Spanish into logic through
logic. American Journal of Computational Linguistics,
vol. 7, No. 3, pp. 149-164.

- Dahl, V. (1982). On database systems development
through logic. ACM Transactions on Database Systeas,
Vol.7, No. 1, March 1982, pp.102-123.

;Dahl, V. and McCord, M. (1983). Treating coordination
‘ in logic grammars. Internal report, Univ. of Kentucky.

‘Gazdar, G. (1981). Unbounded dependencies and coordinate
structure. Linguistic Inguiry, Vol.12, ¥%No.2,
Spring, 1981.

606

PAGE 29

Hirshman, L. and 2Puder, K. (1982). Restriction grammar
in Prolog. Proc. First International Logic
Programming Conference, Marseille, pp.85-90.

Joshi, A. (1682). Phrase Structure Trees Bear ¥ore Fruit
than You ¥Would Have Thouoht. American Journal of
Computational Linguistics. Vol.8, No.1, Jan-March 1932.

Kowalski, R. A. (1979). lLogic for problem solving.
North-Holland Elsevier, New York, 1979.

McCord, M. (1980). Using slots and modifiers in logic
grammars for natural language. In: Artificial Intelligence.

McCord, M. (1981). PFocalizers, the scoping problen,
and semantic interpretation rules in logic grammars.
University of Kentucky.

Montague, (1974). English as a formal language.
In: Thomason, R. H. (ed.), Formal Philosophy: selected
papers of Richard Montague. Yale Univ. Press,
New Haven, CT., pp.183-221.

Pasero, R. (1982). A dialogue in natural language.
Proc. First International Logic Programming
Conference, Marseille, France, pp.231-239.

Pereira, F. (to appear). Extraposition grammars.
To be published in: American Journal of computational
linquistics.

Pereira, F. and Warren, D. (1980). Definite clause
grammars for natural language analysis - a survey
of the formalism and a comparison with augmented
transition networks. Artifical Intelligence 13
(1980), pp.231-278.

Pereira, F. and Warren, D. (1981). An efficient easily
adaptable system for interpreting natural language
queries. Dept. of AI, Univ. of Edinburgh.

Pereira, L., Pereira, F. and Warren, D. (1978).
User's guide to DECsystem-10 Prolog. Div. de
Informatica, LNEC, Lisbou and Dept. of AI, Univ.
of Edinburgh.

Pereira, L. M. et al. (1982). ORBI - An expert systen
for environmental resource evaluation through
natural lanquage. '"'niversidade Nova de Lisboa.

Robinson, J. A. (1965). A machine-oriented logic
based on the resolution principle. J. ACM 12, pp.25-d4l.

6Ot

PAGE 30

Robinson, J. (1982). ©Diagram: A grammar for dialogues.
Comm. ACM, January 1982, Vol.25, No.l.

Sabatier, P. (1980). Dialoques en francais avec un
ordinateur. Groupe d'Intelligence Artificielle,
Univ. d'Aix-Marseille.

Silva, G. M. T. et al. (1979). A knowledge-based automated
message understanding methodology for am advanced
indications system. Rome Air Development Center,

Report RADC-TR-79-133.

Simmons, R. F. and Chester, D. (1979). Relating
sentences and semantic networks with clausal logic.
Dept. of Computer Science, Univ. of Texas.

Schubert, L. and Pelletier, F. (1982). From English
to Logic: Context-Free Computation of
"Conventional" Logical Translation. American
Journal of Computational Linguistics, Vol.8, No.l,
Jan-March 1982.

| Winograd, T. (1972). UOnderstanding natural language.
Cognitive Psychology, 3, pp.90-93.

Woods, W. A. {(1970). Transition network grammars for
natural language analysis. C. ACM 13.

Woods, ®. A., Kaplan, R. M. and Nash-Webber, B. {1972).
The lunar sciences natural language information system:
final report, BBN Report 2378.

