
Abstract 

CURRENT TRENDS IN LOGIC GRA~MARS 

Veronica Dahl 
Computing Sciences Department 

Simon Fraser University 
Burnaby, BC VSA 1S6 

This paper surveys several logic grammar form-alisms, relates 

them to some recent trends in linguistics and advocates the use 

of logic grammars for natural language processing. contrary to 

many recent approaches that resort to augmenting essentially 

context-free grammars, it also tries to make a case for not 

outruling conte.xt-sensi ti vity or transformations .. Finally, it 

presents a ,,new logic grammar formalism jointly deve.loped by 
,-,i-:•-

". •. ,·,s 

!ichael McCord and the author, the main features of which are: a 

metagrammatical treatment of coordination that relieves the 

grammar writer from having to describe coordinating rules 

ex:plici tly; a modular treatment of semantics based upon simple 

information given locally to each rule~ and an automated 

building-up of the sentence's representation structure. 
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1• Introduction 

Among the computational formalisms for describing and 

processing language, logic grammars have been drawing attention 

since their introduction in 1975 (Colmerauer 1975). 

Logic grammars resemble type-0 grammars, except that the 

grammar symbols may have arguments, and that procedures may be 

invoked from the rules (e.g. to serve a·s applicability 

constraints). Derivations involve unifying (Robinson 1965) 

symbol strings rather than just replacing them. Since the logic 

grammar formalism is a part of the Prolog · programming language 

, (Colmerauer 1975, Pereira L et al, 1978), logic grammars written 

to describe a :Language can be interpreted by Prolog as analysers 

for th,at language., • Thus relieved fro11 the operational concerns 

parsing,,,,. the user can. develop very clear and concise 
'~. fc ,_,:,:.: .. ••' ,., 

_-.:·•.,:.:': J. 

"analysers"just· by writing a set of logic'gra111.11ar rules that 

describe a language and giving it to J?rolog. Logic grammars have 

been favourably compared with a widely used formalism for 

processing language: augmented transition networks (ATNs) 

introduced in 1970 (Woods 1970). They have been argued to be 

' clearer, more concise and in practice mox:e powerful, while at 

least as efficient,. as ATM's (Pereira & Warren, 1980}. 

The first sizable application for logic grammars was a 

Spanish/French consul table database system (Dahl 1977, 1981, 1982) 

which was later adapted to Portuguese by H. Coelho and L. Pereira 
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(1), and to English, by F. Pereira and David Warren (2); and has 

since inspired the development of several other applications 

(e.g. Coelho 1979,McCord 1980, F. Pereira & Warren 1931). This 

system has bee'l shown to be comparable in efficiency with the 

LUNAR system (Hoods et al., 1972), (cf. Pereira & Warren, 

1980,p.276), thus joining the appeal of practical feasibility to 

the elegance and expressive power of the logic grammar approach. 

P'urther logic grammar applications include (Silv·a et al. 1979, 

Simmons and Chester 1979, Sabatier 1980, Pereira et al. 1982). 

However the experience gained in the aforementioned applications 

has motivated the development of alternative logic grammar 

formalisms, some restricting and others at1gmenting the power of 

the original for.ma.l.ism as described in (Colmerauer 1975). 

This paper attempts to fill a gap by examining the evolution 

of logic grammars, c·omparing the alternative proposals, and 

discussing them with respect to recent trends in both theoretical 

linguistics and natural language processing. It also motivates 

and briefly presents a new logic grammar formalism, called 

"modifier structure grammars" (MSGs), developed jointly by 

Jllichael r-tcCord and the author (Dahl and Mccord 1983) • Its main 

features are: a metagrammatical (user-invisible) treatment of 

coordination,. a modular treatment of semantics, and an automatic 

build-up of the parsed sentence's representation. 

( 1) Personal Comm uni cation, 1978. 
(2) Personal Communication, 1980. 
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Section 2 describes logic grammars in in tui ti ve, user-biased 

terms. Section 3 presents different types of logic grammars; 

Section 4 compares them with respect to expressive power, in 

particular through the example of how ·they allow to express 

movement of constituents. Section 5 discusses pros and cons of 

choosing relatively evolved grammar formalisms, and makes a case 

for choosing logic grammars independently of the degree of 

evolution needed. section 6 briefly presents our new logic 

grammar formalism (fllSGs), and Section 7 contains some concluding 

thoughts. 

2. !hu i§. A logic gramma~? 

._ Logic grammars can be thought of as ordinary grammars, in 

vhi.~h the _symbols. may. have argu11ents. These arguments are either 

constants 
C . • . • , 

variables· or functional expressions, and the fact that 
·.-,,·; 

they variables inplies that substitutions are 

sometimes needed in order to apply a grammar rule. For instance, 

consider the following grammar: 

1) Sentence (fact (P) ) --> proper-noun (N) , verb (N ,.F) • 

2) proper-noun ( mary) -> [ mary ]. 

3) proper-noun ( john} --> [john]. 

4) verb (N, laughs {N)) --> [laughs J. 

5} verb (N, smiles (N)) --> [ smiles). 

in which (as throughout this paper) constants are in lower-case 
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letters, variables start with a capital, consecutive terminal 

symbols are represented as square-bracketed lists, and non-

terminals are in lower-case letters. The comma stands for 

"concatenation", and the end of a rule is signalled by a period. 

Having defined these rules to Prolog, if we now, foe instance, 

want to analyse the sentence "Mary smiles", we merely write the 

question: 

? sentence(X,"mary laughs", [ ]) 

This amounts to a request that Prolog find a value for X that 

represents the surface form nMary smiles" with respect to this 

grammar. What happens in the Pro1og execution of the parsing 

:procedure can be summarized in the top-down. left-to-eight 

derivation tree depicted in Fig. 1,- where each ru.le application 

is labelled by the idantif ication of the rule invo.lved and by the 

set of substitutions of terms for variables that are needed in 

order to apply the rule. 

sentence {X) 

\ 
rule 1 

X <- fac~~~-) _____ _ 
----- l 

proper-noun (N) verb (N,F) 

\ rule 2 
N <- mary 

mary '

rule 4 
F <- smiles (mar1 

smiles 

Figure 1. Derivation tree for "Mary laughs". 
Only successful rule applications are shown here. Prolog 

backtracks upon unsuccessful ones. Through the substitutions 

employed, Prolog finds the representation 
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X = fact(smiles(mary)) 

for the sentence given. 

Arguments allow for information to be shared by various 

grammar symbols, and to be carried along a derivation. In our 

example, they serve to build up a desired representation for a 

surface sentence. In procedural terms, gram.mar symbols can be 

thought of as producers and consumers of structur·e: the "proper

noan" symbol produces the value "mary", which is then consumed by 

•verb" in order to produce the structure "smiles{mary)", from 

which the final structure "fact (smiles (mary))" is constructed 

by "sentence". 

Other uses i.n natural language processing include: syntactic 

ana semantic Checks (e.g. gender and numbec, semantic type or 

cl.ass), carryingextraposed constituents across phrases, etc. 

For instance, we may check semantic accord by declaring Hary 

and John to be of type "human", and requiring that the arguments 

of "laughs" and "smiles" also be human. ie use a functional 

symbol "-", in infix -notation {allowed by Prolog) in order to 

int.roduce this semantic information. The above grammar becomes: 

1) sentence {fact (F)) --> proper-noun (N) , verb (N ,F) 

2) proper-noun (human-mary) --> [mary]. 

3) proper-noun (human-john) --> [john]. 

4) verb (human-N, laughs {N)) --> (laughs]. 
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5) verb (human-N, smiles{~) --> [smiles]. 

(Notice that variable names are local to each rule - i.e., 

variables with the same name are unrelated if they belong to 

different rules.) 

ie have enforced semantic agreement through unification, i.e., 

in the Prolog matching of terms. Proper nouns introducing non

humans nov fail to be coupled with such verbs as "laughs" and 

"smiles". 

Another 

grammars 

brackets}. 

i.-eplaced 

way is through procedure calls, 

in the form of Prolog calls (that 

For instance, rule 4} could 

allowed in logic 

we note between 

have instead been 

4) verb (11, laughs (lf)) --> [laughs J, human (N) • 

and ve would have added a Prolog definition for the procedure 

called, e.g.: 

human (mary). 

human {john). 

Kore general procedures can, of course, be written in Prolog, 

e.g. "every child is human", noted: 

human (x) : - c.hild (x) 

and read: "if x is a child then xis human". 
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The first formulation of the parsing problem in terms of logic 

was obtained by A. Colmerauer and R. Kowalski, while trying to 

express Colmerauer•s Q-System (Colmerauer 1973) in logic. 

idea evolved into a very elegant and efficient 

This 

Prolog 

implementation of metamorphosis g~~mma~§ {Colmerauer 1975), that 

we shall call I!Gs. 

An 8G rule has the form: 

s .).--> f 

where S is a nonterminal (logic) grammar symbol, J.. is a string 

of terminals a.nd, aontermina1s,.. and ~ is like J... except that it 

say ·also incittde·Proiog procedure calls.* 

Examples of such rules are: 

a,. { b ] --> (b J, a 

verbroot (X), pluralmark --> [W], concat ([X],[s],W) 

where a Prolog predicate concat {x,y,zj is assumed, that holds if 

z is the concatenation of x and y. 

A special case of l'JGs was later included in DEC-10 Prolog 

* The actual implementation in fact requires J... to be a string 
of nonterminals, but we shall disregard the restriction since it 
has been shown (Colmerauer 1975) to involve no loss with respect 
to the full MG form. 
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(Pereira, Pereira & Warren 1978) and baptised definite £la~fil!. 

gram£§ (DCGs). DCG rules have the form: 

s -->f 

where s and ~ are as above. 

2 are of this type. 

All the rules presented in section 

The main motivation for introducing DCGs was ease of 

implementation coupled with no substantial loss in power {in the 

sense that OCGs can also basically describe type-0 languages -

although less straightforwardly) • 

~~,Eosition grammars (XGs) (Pereira, to appear) were 

designed in order to refer to unspecified strings of symbols in a 

rule, thus •aking it easier to describe left extraposition of 

constituents. 

XGs allow rules of the form 

s • • • s etc. s • • • s --> r 
1 2 k-1 k 

where the "· ... " specify gi'lps (i.e., arbitrary strings of g.rammar 

symbols), and r 

terminals. 

and the s 
}... 

are strings of terminals and non-

The general meaning of such a rule is that any sequence of 

symbols of the form 

s x s· x etc. s x s 
1 1 2 2 k-1 k-1 k 



PAGE 10 

with arbitrary x s, can be rewritten into r xx •.• x 
i 1 2 k-1 

(i.e., the s. •s are rewritten into r, and the intermediate gaps 
'-

(x( 1 s) are rewritten sequentially to the right of r. For 

instance, the XG rule: 

relative-marker ••• complement--> (that]. 

allovs to skip any intermediate substring app·earing after a 

relative marker* in the search for an expected complement, and 

then to subsume both ma-rlter and complement into the relative 

pronoun "that", vhich is placed to the left of the skipped 

substring. 

The next section shows this rule at work in a parsing context. 

!lltrictiQ!l g,1:ammars (RGs) (Hirschman & Puder, 1982) are not, 

strictly speaking, logic grammars, since the gram11ar symbols may 

not include any argu~ents. But they are implemented in Prolog 

and provide an instance of what seems to be a popular tendency in 

natural language processing nowadays: they involve sets of 

context-free definitions augmented with grammatical constraints 

or restrictions. In RGs, these appear in the form of procedures 

: interleaved among the context-free definitions. 
I 

For instance, the RG rule 

* i.e .. , 
clause. 

a symbol that announces the beginning of a relative 
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predicate::= verb, object, verb-object 

states that "predicate" can be rewritten into "verb object", 

provided that the "verb-object" restriction is satisfied (this 

restriction could for instance state that if the object is nil, 

the verb must be intransitive).. Restrictions need to be defined 

separately, using such available primitives to traverse the tree 

as "up", and "down"; and explicitly stating parameters foe its 

starting point in the tree and in the vord stream. 

What are the consequences of choosing one of these grammar 

formalisms to write a natural language processor? From a 

theoretical point of view, the power of HGs, DCGs and XGs is 

similar in that they can all serve to describe type-0 languages. 

From a practical point of view, however, their possibilities 

differ. In this section we shall illustrate this point by study 

ing how easily and concisely each of these formalisms allows to 

describe those rules involving constituent movement and ellision. 

RGs, although not dealing specifically with movement, are also 

considered. 

Let us consider for instance the noun phrase: 

the man that John saw 

which can be thought of as the surface expression of the more 
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canonica 1 form: 

the man (John saw the man], 

where the second occucrence of "the man" has been shifted to the 

left and subsumed into the relative pronoun "that". 

A simple grammar for ( very restricted) sentences in canonical 

form could be: 

(1) sentence--> noun-phrase, verb-phrase. 

{2) noun-phrase --> determiner,noun,relative. 

(3) noun-phrase --> pcoper-.name. 

(4) ver.b-phrase --> verb. 

(5) verb-phrase --> trans-verb, direct-object. 

(6) relative --> [ ]. 

(7) direct-object--> noun-phrase. 

(8) determiner --> [the]. 

(9) noun--> [man]. 

(10) proper-name--> [john]. 

(11) verb--> [laughed]. 

(12} trans- verb --> f saw]. 
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We shall successively modify this grammar (referred to as Gin 

all t~at follow~) in orner to describe the relativization process 

within various logic grammar formalisms. 

~ithin dGs, all we need is to add the following rul~s: 

(6'l relative--> relative-marker. sentence. 

(5') verb-phrase --> moved-d obj, transitive-verb •. 

(13) relative-marker, noun-phrase,moved-dobj --> rel-pronoun,noun-phra 

(14) relative-pronoun --> [that]. 

Figure 2 depicts the derivation tree for our sample noun 

phrase "the ma.n that John saw". we abbreviate some of the 

grammar symbols. Rule numbers appear as left-hand side.labels. 



noun-phrase 

(?.)l_ 
,---- r-

det noun 

(8) (9) 1 
the man 
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-1 
rel 

(6.) I 
J;i:ii"i;k_e_r ___ s_e_n tence 

(1) \ 

noun-phrase verb-phrase 
(5') \ 

,-----7 
moved-dobj ___ ,...__ ___ , tc-verb 

c,2,_l 
(13) 

rel-pro 
c 14) l 

that 

noun-phrase 

(13}' 

proper- na11e 

c 10) l 
John 

saw 

Figure 2. MG derivation tree for "The man that John saw". 
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Of course, for such a parse to be of any use, we need to 

construct a representation for the sentence while we pdcse it. 

But for the time being we shall ignore sy;nbol arguments in order 

to concentrate upon the particular problem of moving 

constituents. 

l.'!ovement rules and DCGs. ---- ----
rn terms of DCG rules, the simplest possible· modification to 

the original grammar G is to allow a direct object to be ellided, 

e.g. by adding the rule: 

(7 •) direct-object --> ( ]. 

But, because this rule lacks the contextual inforaation found in 

(13), a direct object is now susceptible of being ellided even 

outside a re1ati ve cla11se. In order to prevent it, a usual 

technique is to control rule application by adding extra 

arguments. In our example, we only need to add a single argument 

that we carry within the §.fil!U.!1£~, _y~rb-Eh~~g and direct-oQ.j~ct 

symbols, and that takes the value "nil" if the direct object in 

the verb phrase of the sentence is not ellided, and the value 

"ellided" if it is. The modified rules are the following: 

(0) sentence--> sent(nil). 

(1) sent(E) --> noun-phrase, verb-phrase{E). 

(4) verb-phrase (nil) --> verb. 

(S) verb-phrase(E) --> transitive-verb, direct-object{E}. 



(6') relative--> relative-pronoun, sent(E). 

(7) direct-object(nil) --> noun-phrase. 

(7') direct-object(ellided) --> [ J. 

(13) relative-pronoun--> (that]. 

PAGE ·16 

:Figure 3 shows the DCG derivation tree for 0 The man that John saw 

laughed". Substitutions of terms for variabl•s are shown as 

right-hand side labels. 



,-

sentence 
(0) \ 

sent (nil) 
( 1) \ 

noun-phr:1se 
( 2} \ 

r----7-·---1 
det noun rel 

(8) \ (9) \ (6') ' 
the man 

verb-phrase (nil) 

(4) I 
verb 

-i-----, 
( 11} \ 

laughed 

rel-pro 
{ 13) 

that 

sent (E) 

(1) \ r-..;.. ___ 7 

(3nh (;~TE) 
c1b~opl-name ,- ---7 

tr-vb d-obj{E) 

John 
(12)\ (7') l E <--

saw 

PAGE 17 

ellided 

Figure 3. DCG derivation tree for the sentence "The man that John 
saw laughed". 
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While, as we have seen, MGs express movement by actually 

moving constituents around, DCGs must carry all information 

relative to movements within extra arguments. XGs, on the other 

hand, can capture left extraposition in an economical fashion: by 

actually skipping intermediate substrings rather than shifting 

the constituents that follow. Thus, our initial grammar can be 

modified to handle relativization simply by adding the XG rules: 

(6') relative--> relative-marker, sentence 

(13) relative-marker ••• direct-object--> relative-pronoun. 

(14) relative-pronoun--> [that]. 

Figure 4 shows the XG derivation tree for "The man that John saw 

laughed". 



-, -
det 

< 8) I 
the 

noun 
(9) \ 

man 

sentence 

r~_,)_l __ . __ 
noun-phrase verb-phrase 

c 2> \ - c 11 ) I ·· 
1 laughed ---7 

relative 

{ 6 t) ' 

r-------1 
rel-mk sentence 

r~> J....._ ___ 7 

noun-phrase verb-phrase 
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,-l----7 P> I 
prop-name 

{13) 

rel-pro 
(14) I 

that 

( 10) 

john 

tr-vb -obj 

sa:w 

Figure 4. XG derivation tree for "The man that John saw laughed". 
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Restrictions can be used in RGs for the purpose of enforcing 

context sensitive constraints, but transformatioas seem to 

require an RG extension - possibly in the form of an additional 

component - , which is presently under study. {Hirsch11an & 

Puder, 1982) 

An interesting feature of RGs is that a parse tree is 

! automatically constructed during the parse (i.e._ the tree

building parameters are hidden from the user). This makes a 

grammar clearer, but at the same time less flexible: only the 

history of rule applications is recorded, whereas in ao.y other 

logic grammar the user may build up (through explicit parameters) 

any desired representation for the sentences parsed. The effects 

of context sensitivity, on the other hand, are ensured .by giving 

each restriction access to the entire previously constructed 

parse tree. This need is the main difference between 

restrictions and tha standard Prolog calls allowed in logic 

grammars (which are also,. after all, procedure calls interspersed 

within the roles). 

In short, where DCGs accommodate context-sensitive constraints 

within user-controlled parameters, RGs enforce them through 

restrictions placed upon a system-controlled parse tree. This 

concept would result in a higher level formalism if it gave the 

user a fairly complete independence from parse tree concerus. 

However, efficient exploitation of XGs requires some knowledge of 
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the parse tree, and the user needs to express restrictions in the 

lower level terms of tree traversal rather than in the typically 

declarative, operationally independent fashion of loyi~ grammars. 

Work in theoretical linguistics has lately been departing from 

transformational theory (Chomsky 1965), largely because 0£ the 

subtelty of rules involved and the suppleme.ntary devices needed 

(e.g. co-indexing, filters, etc.} and because of the complexity 

of dealing with semantics within the transformational panadigm. 

Work by Montague {Montague 1976) and Gazdar (Gazdar 1981) 

resulted in a simpler and more intuitive formalization of 

semantics based upon the rule-to-rule hypothesis (Bach 1976): to 

each syntactic rule corresponds a structually analogous, semantic 

rule for building up logical representations. 

Gazdar•s framework, in particular, can deal with a wide range 

of syntactic phenomena within a phrase-structure theory that has 

a node admissibility interpretation rather than a generative one. 

This new outlook, augmented by metag.rammatical devices (such as 

categories with gaps, metarules and rule-schemata) elegantly 

captures such important constructs as coordination and unbounded 

dependencies. Gazdar•s "augmented phrase structure" approach has 

influenced research in AI, where the transformational approach 

had also been losinq adepts, as it was also felt to deal 

insufficiently with semantics and, moreover, with sentence 

analysis - AI's main concern in natural language processing. 
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Among the systems inspired by this approach are (Joshi 1982, 

Robinson 1982, Schubert & Pelletier 1982). 

Logic grammars, from all our previous discussion~ would St:H:HD 

to provide an adequate computational framework within which to 

implement the augmented phrase structure approach. 

descriptive point of view,. as we have seen,. "logica.l" context

free rules ara more powerful than standard ones because of 

parameters in grammar symbols, and .unification. Procedure calls 

are moreover an inherent feature that is useful for representin.g 

1 constraints. 

But, although any logic grammar supports at least this, the 

user need not be restricted to context-free type rules. MGs or 

XGs will moreover provide for generalized type-o rules, and even 

.for the handling of gaps, 

e f£ icie ncy. 

while maintaining high standards of 

Extra power available, therefore, can only represent a gain, 

since it does not preclude resorting to more elementary 

approaches as a special case. In this respect we support Berwick 

and Weinberg's contention that there is a possible tradeoff 

between parsing efficiency and descriptive apparatus,. and that "a 

language that is quite •high up• in the Chomsky hierarchy - e.g. 

a strictly context-sensitive language - may in fact be parsed 

more rapidly than languages lower down in the hierarchy - e.g. 

faster than some context-free languages if the gain ia 

succinctness is enough to offset the possible increase in parsing 
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time" (Berwick & Weinberg, 1982). 

our approach is therefore that of continuing research on logic 

grammar ex tensions that may be useful in view of a r:10.t"c po;.erf lll 

and elegant, while still efficient, treatment of some natur~l 

language processing phenomena. In the next section we describe a 

new logic grammar £ormalism developed in particular for dealing 

metagrammatically with coordination, but that exhibits several 

other features that are interesting by themselves. 

e.sec..rch by Mic.~G.el Mc.Cord ( Mc Core\ l'lgo., 11'& 
6. Modifier structure grammars (MSGs) s ru,\/.ltect i"' i.-,te.-red:i"'!J id.ec..s ior pro<.e&i>iv-
- -------- • •-------- --- -- t"'rc..l lc:."'5'u,~e H,v-out)I., lo~ic ~,c....,""'i..~.s, 1., 

j,c..rtiCMlo..r, H,1! 11\ot-iO\/'\ o.(. ""'Odi+ler ~tr1Actwre i;...,.c,\ H,~ trec.t""'a"'~ of ~e"""'-"'tic ;.,.ferjo.,.,eh,t.-0,.. ~re~e"'l~ 
t~e-re &ee.W\ecA 'I. 1,:,-ro-i" i"'~ 4-rc.M~ wo'f"k to-r solvi"'.5 .-.o ... br-ivic..l lc..,.5-..c...5e -lovoce.s&i.,.~ ~robl.eMs., SIAC~ ~s 

~ol"..;\i.-.ci..ho~.Joint research with ~ichael McCord in view of a logic grammar, 

11etagrammatical treatment of coordination, resulted in the 

development of a system consisting of: a) a new formalism for 

logic grammars, which we call modifi~ structure g1=a!!!.l!a£2. {MSGs), 
uoe{wl +or Mc..ki"'.£> W\Oc:li .£.ie"" ~tnAd:IAY-e iw-. pLic.il ill\ ~he :;1rC..IMW1otC:..V" J 

h} an interpreter (or parser) for MSGs which also takes all the 

responsibility for the syn tactic aspects of coordination, and c) 

a semantic interpretation component which produces logical forms 
(o.s i"' Mc.Cov--c>i it) 

from the output of the parser and deals with scoping problems~ 
whicl,,. G\.lso i.-.cl .. d~ si:,ec.i+fc n.tles fov- -Se'Mc.."'tic i"'te.rpreb::.Lo ... of 

i,,1:11$/1 fJi-.:D coocd:tnation. The whole system is 

implemented in Prolog-10 (Pereira, Pereira & Warren 1978). Here 

we make a brief presentation of this system. 

description can be found in {Dahl S McCord, 1983). 

MSG rules ace of the form: 

A Sem --> B 

A complete 
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where A--> B is an XG rule and Semis a term called a 2u~nSi£ 

il.m!!, -which plays a role in the semantic interpretation of a 

phrase analysed by application of the rule. The semantic item is 

(as in {McCord 1981)) of the form 

Operator - LogicalForm 

where, roug h.ly, Logica lForm is the part of the logical form of 

the sentence contributed by the rule, and operatdr determines tha 

way in which this partial structure combines with others. Sem 

may be a "trivial" sem if nothing is con tcibuted. 

ihen a sentence is analysed, a structural representation, in 

tree form, called "modi.fier structure" is automatically formed by 

, the parser. Each of its nodes contains not only syntactic 

information but also the semantic information Sem supplied in the 

grammar,·· which determines the node •s contribution to the logical 

form of the se.ntence ( this contribution is for the node alone, 

and does not refer to the daughters of the node, as in Gazdar•s 

approach (Gazdar, 1981)}. 

The semantic interpretation component first reshapes this tree 

into another MS tree where the scoping of quantifiers is closer 

to the intended semantic relations than to the (surface) 

syntactic ones. It then takes the reshaped tree and translates 

it into logical form. The modifiers actually do their work of 

modification in this second stage, 

It should be noted that the 

th rough their semantic items. 

addition of simple semantic 
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indicators within grammar rules contributes to maintain, from the 

user's point of view, a simple correspondence between syntax and 

semantics. This is similar in intention to the ritle-by-rule 

hypothesis mentioned before {Bach 1976), but is differently 

realized: instead of a rule-to-rule correspondence, we have a 

correspondence between each non-trivial expansion of a non

terminal and a logical operator. That is, each time the parser 

expands a non-terminal symbol into a (non-empty) ·body, a logical 

operator labels the expansion and will be later used by the 

semantic component, interacting with other logical operators 

found in the parse tree obtained.. The complexity of dealing with 

quantifier scoping and its interaction with coordination is 

screened away from the user. 

iit.h respect to coordination, the HSG grammar should not 

aention conjunction at alI. The interpreter l\as a genera.l 

facility for treating certain words as "demons" (cf. Winograd 

197~, which trigger a backing up in the parser history that vill 

help reconstruct ellisions and recognize the meaning of the 

coordinated sentence. 

This proceeds in a manner similar to that of the SYSCONJ 

facility for augmented transition networks (Woods 1973, Bates 

1978), except that, unlike SYSCONJ, it can also handle embedded 

coordination and interactions with extraposition. The use of 

modifier ~tructures and the associated se~antic int~rpretation 

component, moreover, permits in general a good treatment of 
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scoping problems involving coordination. Finally, 
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the system 

seems reasonably efficient (cf. timings for our sampla grammar in 

{Dahl and i1cCord, 1983) ) • 

Logic gram~ars, as we have seen, need not sacrifice efficieacy 

to the goals of power and elegance. They seem to be evolving -

like other computational formalisms - into hig~er level tools 

which allow the user to spare mechanizable efforts in order to 

concentrate on as yet unmechanizable, creative tasks. 

We view MSGs as a step in that direction, 

advantages of automatising the treatment 

with the main 

of coordination, 

'providing a modular treatment or semantics, and allowing the user 

not to worry oYer structure building. 

The latter feature may be an attractive one for logic grammars 

in general to retain, since it makes a grammar easier to write 

and read, and more concise. 

Since, moreover, logical structure desired fdr a sentence's 

final representation ij also automatically built up, from a fev 

simple semantic indicators in the grammar rules, it becomes 

easier to adapt a grammar to alternative domains of application: 

modifying the logical representation obtained need only involve 

the semantic components of each rule. 

This modulaC' isolation of structure lends grammars a 
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syntactico-semantic flavour. 
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It may be viewed as a way out of 

the dilemma on vhether the semantic component should be separate 

or intermingled with the syntactic on~. Compromising on 

manipulating static semantic indicators during the syntactic 

parse while using them dynamically during the semantic one may 

well prove to he the way of combining the advantages of both 

approaches while minimizing the disadvantages. 



PAGE 28 

liEFERENC.ES 

Bach, E. (1976). An extension of classical transformational 
grammar.Mimeo, Univ. of Massachusetts, Amherst, MA. 

Bates, ~- (1978}. The theory and practice of augmented transition 
networks. In: L. Bole (ed.) Natural Language Communication with 
Computers. {Springer, Berlin, May 1978). 

Berwick, R. C. and Weinberg, A. s. (1982). Parsing 
Efficiency, computational Complexity, and the 
Evaluation of Grammatical Theories. Linguistic · 
Inquiry, vol. 13, No. 2, Spring 1982, pp. 165-1_91. 

Chomsky, N. (1965). Aspects of the Theory of syntax 
MIT Press, Cambridge, Massachusetts. 

Coelho, H. M. F. (1979). .A program conversing in 
Portuguese providing a library service. Ph.D. Thesis, 
Univ. of Edinburgh. 

Colme.rauer, A.. ( 1973). Les systemes-Q ou un formalisme 
pour analyser et synthetiser des phrases sur ordination. 
Publication interne No 43, Dept. d 1Informatigue, 
tJniversite de Montreal. 

Colmerauer, A. (1975). Les grammaires de metamorphose. 
Groupe d'Intelligence Artificielle, Univ. de 
ftarseille-Luminy. As "Metamorphosis Grammars" in: 
L. Bole (ed.), Natural Language Communication with 
computers (Springer, Berlin, May 1978). 

Dahl, V. (1977). Un systeme deductif d'interrogation 
de banques de aonnees en espagnol. These de Doctorat 
de Specialite, Univ. d'Aix-Marseille. 

Dahl, v. (1981). Translating Spanish into logic through 
logic. American Journal of Computational Linguistics, 
Vol. 7, No. 3, pp. 149-164. 

Dalt 1, V. (1982) • on database systems development 
through logic. ACM Transactions on Database Systems, 
Vol.7, No. 1, ,arch 1982, pp.102-123. 

Dahl, V. and McCord, M. (1983). Treating coordination 
in logic grammars. Internal report, Univ. of KentQcky. 

Gazdar, G. (1981). Unbounded dependencies and coordinate 
structure. Linguistic Inguiry, Vol.12, No.2, 
Spring, 1981. 



• 

PAGE 29 

Hirshman, L. and ?uder, K. ( 1982) • Restriction grammar 
in Prolog. Proc. First International Logic 
Programming Conference, Marseille, pp.85-90. 

Joshi, A. (1982). Phrase Structure Trees Bear More ?ruit 
than You iould Have Thouaht. American Journal of 
Computational Linguistics. Vol.8, No.1, Jan-aarct 1932. 

Kowalski, R. A. ( 1979) • Logic for problem solving. 
North-Holland Elsevier, New York, 1979. 

!cCord, M.. ( 1980). Using slots and modifiers in logic 
grammars for natural language. In: Artificial Intelligence. 

KcCord, M. { 1981) • Focalizers, the scoping probl"em, 
and semantic interpretation rules in logic grammars. 
University of Kentucky. 

Montague, (1974). English as a formal language. 
In: Thomason, R. H. (ed.), Formal Philosophy: selected 
papers of Richard Montague. Yale Univ. Press, 
New Haven, CT., pp.188-221. 

Pasero, R. (1982). A dialogue in natural language. 
Proc. First International Logic Progranu1ing 
Conference, Marseille, France, pp.231-239. 

Pereira, F. (to appeatj. 
To be published in: 
linguistics. 

Extraposition grammars. 
American Journal of computational 

Pereira, F. and Warren, D. (1980). Definite clause 
grammars for natural language analysis - a survey 
of the formalism and a comparison with augmented 
transition networks. Artifical Intelligence 13 
(1980), pp. 231-278. 

Pereira, F. and Warren, D. { 1981) • An efficient easily 
adaptable system for interpreting natural language 
queries. Dept. of AI, Univ. of Edinburgh. 

Pereira, L., Pereira, F. and Warren, D. {1978). 
User's guide to DECsystem-10 Prolog. Div. de 
Informatica, LNEC, Lisbon and Dept. of AI, Univ. 
of Edinburgh. 

Pereira, L. M. et al. (198'.'). ORB! - An expert system 
for environmental resource evaluation through 
natural lanquage. TTniversidade Nova de Lisboa. 

Robinson, J. A. (1965). A machine-oriented logic 
based on the resolution principle. J. ACM 12, pp.25-41. 



,,. 

?AGE 30 

Robinson, J. (1982). Diagram: A grammar for dialogues. 
Comm. AC~, January 1982, Vol.25, No.1. 

Sabatier, P. {1980). Dialogues en francais avec un 
ordinateur. Groupe d'Intelligence Artificielle, 
Univ. d'Aix-Marseille. 

Silva, G. M. T. et al. (1979). A knowledge-based automated 
message understanding methodology for an advanced 
indications system. Rome Air Development Center, 
Report RADC-TR-79-133. 

Simmons, R. F. and Chester, D. (1979). Relating 
sentences and semantic networks with clausal l_ogic. 
Dept. of Co"puter Science, Univ. of Texas. 

Schubert, L. and Pelletier, F. (1982). From English 
to Logic: Context-Pree Computation of 
"Conventional" Logical Translation. American 
Journal of Computational Linguistics, Vol.8, No.l, 
,Jan-l'larch 1982. 

Winograd, T. (1972). Understanding natural language. 
Cognitive Psychology, 3, pp.90-93. 

Woods, w. A. (1970). Transition network grammars for 
natural language analysis. c. ACM 13. 

Woods, W. A., Kaplan, R. t'l. and Nash-Webber, B. [1972). 
The lunar sciences natural language information system: 
final report, BBN Report 2378. 




