
Abstract

CURRENT TRENDS IN LOGIC GRA~MARS

Veronica Dahl
Computing Sciences Department

Simon Fraser University
Burnaby, BC VSA 1S6

This paper surveys several logic grammar form-alisms, relates

them to some recent trends in linguistics and advocates the use

of logic grammars for natural language processing. contrary to

many recent approaches that resort to augmenting essentially

context-free grammars, it also tries to make a case for not

outruling conte.xt-sensi ti vity or transformations .. Finally, it

presents a ,,new logic grammar formalism jointly deve.loped by
,-,i-:•-

". •. ,·,s

!ichael McCord and the author, the main features of which are: a

metagrammatical treatment of coordination that relieves the

grammar writer from having to describe coordinating rules

ex:plici tly; a modular treatment of semantics based upon simple

information given locally to each rule~ and an automated

building-up of the sentence's representation structure.

PAGE 2

1• Introduction

Among the computational formalisms for describing and

processing language, logic grammars have been drawing attention

since their introduction in 1975 (Colmerauer 1975).

Logic grammars resemble type-0 grammars, except that the

grammar symbols may have arguments, and that procedures may be

invoked from the rules (e.g. to serve a·s applicability

constraints). Derivations involve unifying (Robinson 1965)

symbol strings rather than just replacing them. Since the logic

grammar formalism is a part of the Prolog · programming language

, (Colmerauer 1975, Pereira L et al, 1978), logic grammars written

to describe a :Language can be interpreted by Prolog as analysers

for th,at language., • Thus relieved fro11 the operational concerns

parsing,,,,. the user can. develop very clear and concise
'~. fc ,_,:,:.: .. ••' ,.,

_-.:·•.,:.:': J.

"analysers"just· by writing a set of logic'gra111.11ar rules that

describe a language and giving it to J?rolog. Logic grammars have

been favourably compared with a widely used formalism for

processing language: augmented transition networks (ATNs)

introduced in 1970 (Woods 1970). They have been argued to be

' clearer, more concise and in practice mox:e powerful, while at

least as efficient,. as ATM's (Pereira & Warren, 1980}.

The first sizable application for logic grammars was a

Spanish/French consul table database system (Dahl 1977, 1981, 1982)

which was later adapted to Portuguese by H. Coelho and L. Pereira

580

PAGE 3

(1), and to English, by F. Pereira and David Warren (2); and has

since inspired the development of several other applications

(e.g. Coelho 1979,McCord 1980, F. Pereira & Warren 1931). This

system has bee'l shown to be comparable in efficiency with the

LUNAR system (Hoods et al., 1972), (cf. Pereira & Warren,

1980,p.276), thus joining the appeal of practical feasibility to

the elegance and expressive power of the logic grammar approach.

P'urther logic grammar applications include (Silv·a et al. 1979,

Simmons and Chester 1979, Sabatier 1980, Pereira et al. 1982).

However the experience gained in the aforementioned applications

has motivated the development of alternative logic grammar

formalisms, some restricting and others at1gmenting the power of

the original for.ma.l.ism as described in (Colmerauer 1975).

This paper attempts to fill a gap by examining the evolution

of logic grammars, c·omparing the alternative proposals, and

discussing them with respect to recent trends in both theoretical

linguistics and natural language processing. It also motivates

and briefly presents a new logic grammar formalism, called

"modifier structure grammars" (MSGs), developed jointly by

Jllichael r-tcCord and the author (Dahl and Mccord 1983) • Its main

features are: a metagrammatical (user-invisible) treatment of

coordination,. a modular treatment of semantics, and an automatic

build-up of the parsed sentence's representation.

(1) Personal Comm uni cation, 1978.
(2) Personal Communication, 1980.

S81

Section 2 describes logic grammars in in tui ti ve, user-biased

terms. Section 3 presents different types of logic grammars;

Section 4 compares them with respect to expressive power, in

particular through the example of how ·they allow to express

movement of constituents. Section 5 discusses pros and cons of

choosing relatively evolved grammar formalisms, and makes a case

for choosing logic grammars independently of the degree of

evolution needed. section 6 briefly presents our new logic

grammar formalism (fllSGs), and Section 7 contains some concluding

thoughts.

2. !hu i§. A logic gramma~?

._ Logic grammars can be thought of as ordinary grammars, in

vhi.~h the _symbols. may. have argu11ents. These arguments are either

constants
C . • . • ,

variables· or functional expressions, and the fact that
·.-,,·;

they variables inplies that substitutions are

sometimes needed in order to apply a grammar rule. For instance,

consider the following grammar:

1) Sentence (fact (P)) --> proper-noun (N) , verb (N ,.F) •

2) proper-noun (mary) -> [mary].

3) proper-noun (john} --> [john].

4) verb (N, laughs {N)) --> [laughs J.

5} verb (N, smiles (N)) --> [smiles).

in which (as throughout this paper) constants are in lower-case

582

PAGE 5

letters, variables start with a capital, consecutive terminal

symbols are represented as square-bracketed lists, and non-

terminals are in lower-case letters. The comma stands for

"concatenation", and the end of a rule is signalled by a period.

Having defined these rules to Prolog, if we now, foe instance,

want to analyse the sentence "Mary smiles", we merely write the

question:

? sentence(X,"mary laughs", [])

This amounts to a request that Prolog find a value for X that

represents the surface form nMary smiles" with respect to this

grammar. What happens in the Pro1og execution of the parsing

:procedure can be summarized in the top-down. left-to-eight

derivation tree depicted in Fig. 1,- where each ru.le application

is labelled by the idantif ication of the rule invo.lved and by the

set of substitutions of terms for variables that are needed in

order to apply the rule.

sentence {X)

\
rule 1

X <- fac~~~-) _____ _
----- l

proper-noun (N) verb (N,F)

\ rule 2
N <- mary

mary '

rule 4
F <- smiles (mar1

smiles

Figure 1. Derivation tree for "Mary laughs".
Only successful rule applications are shown here. Prolog

backtracks upon unsuccessful ones. Through the substitutions

employed, Prolog finds the representation

58~

PAGE 6

X = fact(smiles(mary))

for the sentence given.

Arguments allow for information to be shared by various

grammar symbols, and to be carried along a derivation. In our

example, they serve to build up a desired representation for a

surface sentence. In procedural terms, gram.mar symbols can be

thought of as producers and consumers of structur·e: the "proper

noan" symbol produces the value "mary", which is then consumed by

•verb" in order to produce the structure "smiles{mary)", from

which the final structure "fact (smiles (mary))" is constructed

by "sentence".

Other uses i.n natural language processing include: syntactic

ana semantic Checks (e.g. gender and numbec, semantic type or

cl.ass), carryingextraposed constituents across phrases, etc.

For instance, we may check semantic accord by declaring Hary

and John to be of type "human", and requiring that the arguments

of "laughs" and "smiles" also be human. ie use a functional

symbol "-", in infix -notation {allowed by Prolog) in order to

int.roduce this semantic information. The above grammar becomes:

1) sentence {fact (F)) --> proper-noun (N) , verb (N ,F)

2) proper-noun (human-mary) --> [mary].

3) proper-noun (human-john) --> [john].

4) verb (human-N, laughs {N)) --> (laughs].

PAGE 7

5) verb (human-N, smiles{~) --> [smiles].

(Notice that variable names are local to each rule - i.e.,

variables with the same name are unrelated if they belong to

different rules.)

ie have enforced semantic agreement through unification, i.e.,

in the Prolog matching of terms. Proper nouns introducing non

humans nov fail to be coupled with such verbs as "laughs" and

"smiles".

Another

grammars

brackets}.

i.-eplaced

way is through procedure calls,

in the form of Prolog calls (that

For instance, rule 4} could

allowed in logic

we note between

have instead been

4) verb (11, laughs (lf)) --> [laughs J, human (N) •

and ve would have added a Prolog definition for the procedure

called, e.g.:

human (mary).

human {john).

Kore general procedures can, of course, be written in Prolog,

e.g. "every child is human", noted:

human (x) : - c.hild (x)

and read: "if x is a child then xis human".

PAGE 8

The first formulation of the parsing problem in terms of logic

was obtained by A. Colmerauer and R. Kowalski, while trying to

express Colmerauer•s Q-System (Colmerauer 1973) in logic.

idea evolved into a very elegant and efficient

This

Prolog

implementation of metamorphosis g~~mma~§ {Colmerauer 1975), that

we shall call I!Gs.

An 8G rule has the form:

s .).--> f

where S is a nonterminal (logic) grammar symbol, J.. is a string

of terminals a.nd, aontermina1s,.. and ~ is like J... except that it

say ·also incittde·Proiog procedure calls.*

Examples of such rules are:

a,. { b] --> (b J, a

verbroot (X), pluralmark --> [W], concat ([X],[s],W)

where a Prolog predicate concat {x,y,zj is assumed, that holds if

z is the concatenation of x and y.

A special case of l'JGs was later included in DEC-10 Prolog

* The actual implementation in fact requires J... to be a string
of nonterminals, but we shall disregard the restriction since it
has been shown (Colmerauer 1975) to involve no loss with respect
to the full MG form.

I•
I

I

I

586

PAGE 9

(Pereira, Pereira & Warren 1978) and baptised definite £la~fil!.

gram£§ (DCGs). DCG rules have the form:

s -->f

where s and ~ are as above.

2 are of this type.

All the rules presented in section

The main motivation for introducing DCGs was ease of

implementation coupled with no substantial loss in power {in the

sense that OCGs can also basically describe type-0 languages -

although less straightforwardly) •

~~,Eosition grammars (XGs) (Pereira, to appear) were

designed in order to refer to unspecified strings of symbols in a

rule, thus •aking it easier to describe left extraposition of

constituents.

XGs allow rules of the form

s • • • s etc. s • • • s --> r
1 2 k-1 k

where the "· ... " specify gi'lps (i.e., arbitrary strings of g.rammar

symbols), and r

terminals.

and the s
}...

are strings of terminals and non-

The general meaning of such a rule is that any sequence of

symbols of the form

s x s· x etc. s x s
1 1 2 2 k-1 k-1 k

PAGE 10

with arbitrary x s, can be rewritten into r xx •.• x
i 1 2 k-1

(i.e., the s. •s are rewritten into r, and the intermediate gaps
'-

(x(1 s) are rewritten sequentially to the right of r. For

instance, the XG rule:

relative-marker ••• complement--> (that].

allovs to skip any intermediate substring app·earing after a

relative marker* in the search for an expected complement, and

then to subsume both ma-rlter and complement into the relative

pronoun "that", vhich is placed to the left of the skipped

substring.

The next section shows this rule at work in a parsing context.

!lltrictiQ!l g,1:ammars (RGs) (Hirschman & Puder, 1982) are not,

strictly speaking, logic grammars, since the gram11ar symbols may

not include any argu~ents. But they are implemented in Prolog

and provide an instance of what seems to be a popular tendency in

natural language processing nowadays: they involve sets of

context-free definitions augmented with grammatical constraints

or restrictions. In RGs, these appear in the form of procedures

: interleaved among the context-free definitions.
I

For instance, the RG rule

* i.e .. ,
clause.

a symbol that announces the beginning of a relative

PAGE 11

predicate::= verb, object, verb-object

states that "predicate" can be rewritten into "verb object",

provided that the "verb-object" restriction is satisfied (this

restriction could for instance state that if the object is nil,

the verb must be intransitive).. Restrictions need to be defined

separately, using such available primitives to traverse the tree

as "up", and "down"; and explicitly stating parameters foe its

starting point in the tree and in the vord stream.

What are the consequences of choosing one of these grammar

formalisms to write a natural language processor? From a

theoretical point of view, the power of HGs, DCGs and XGs is

similar in that they can all serve to describe type-0 languages.

From a practical point of view, however, their possibilities

differ. In this section we shall illustrate this point by study

ing how easily and concisely each of these formalisms allows to

describe those rules involving constituent movement and ellision.

RGs, although not dealing specifically with movement, are also

considered.

Let us consider for instance the noun phrase:

the man that John saw

which can be thought of as the surface expression of the more

PAGE 12

canonica 1 form:

the man (John saw the man],

where the second occucrence of "the man" has been shifted to the

left and subsumed into the relative pronoun "that".

A simple grammar for (very restricted) sentences in canonical

form could be:

(1) sentence--> noun-phrase, verb-phrase.

{2) noun-phrase --> determiner,noun,relative.

(3) noun-phrase --> pcoper-.name.

(4) ver.b-phrase --> verb.

(5) verb-phrase --> trans-verb, direct-object.

(6) relative --> [].

(7) direct-object--> noun-phrase.

(8) determiner --> [the].

(9) noun--> [man].

(10) proper-name--> [john].

(11) verb--> [laughed].

(12} trans- verb --> f saw].

sc;o

PAGE 13

We shall successively modify this grammar (referred to as Gin

all t~at follow~) in orner to describe the relativization process

within various logic grammar formalisms.

~ithin dGs, all we need is to add the following rul~s:

(6'l relative--> relative-marker. sentence.

(5') verb-phrase --> moved-d obj, transitive-verb •.

(13) relative-marker, noun-phrase,moved-dobj --> rel-pronoun,noun-phra

(14) relative-pronoun --> [that].

Figure 2 depicts the derivation tree for our sample noun

phrase "the ma.n that John saw". we abbreviate some of the

grammar symbols. Rule numbers appear as left-hand side.labels.

noun-phrase

(?.)l_
,---- r-

det noun

(8) (9) 1
the man

5i1

PAGE 14

-1
rel

(6.) I
J;i:ii"i;k_e_r ___ s_e_n tence

(1) \

noun-phrase verb-phrase
(5') \

,-----7
moved-dobj ___ ,...__ ___ , tc-verb

c,2,_l
(13)

rel-pro
c 14) l

that

noun-phrase

(13}'

proper- na11e

c 10) l
John

saw

Figure 2. MG derivation tree for "The man that John saw".

542,

PAGE 15

Of course, for such a parse to be of any use, we need to

construct a representation for the sentence while we pdcse it.

But for the time being we shall ignore sy;nbol arguments in order

to concentrate upon the particular problem of moving

constituents.

l.'!ovement rules and DCGs. ---- ----
rn terms of DCG rules, the simplest possible· modification to

the original grammar G is to allow a direct object to be ellided,

e.g. by adding the rule:

(7 •) direct-object --> (].

But, because this rule lacks the contextual inforaation found in

(13), a direct object is now susceptible of being ellided even

outside a re1ati ve cla11se. In order to prevent it, a usual

technique is to control rule application by adding extra

arguments. In our example, we only need to add a single argument

that we carry within the §.fil!U.!1£~, _y~rb-Eh~~g and direct-oQ.j~ct

symbols, and that takes the value "nil" if the direct object in

the verb phrase of the sentence is not ellided, and the value

"ellided" if it is. The modified rules are the following:

(0) sentence--> sent(nil).

(1) sent(E) --> noun-phrase, verb-phrase{E).

(4) verb-phrase (nil) --> verb.

(S) verb-phrase(E) --> transitive-verb, direct-object{E}.

(6') relative--> relative-pronoun, sent(E).

(7) direct-object(nil) --> noun-phrase.

(7') direct-object(ellided) --> [J.

(13) relative-pronoun--> (that].

PAGE ·16

:Figure 3 shows the DCG derivation tree for 0 The man that John saw

laughed". Substitutions of terms for variabl•s are shown as

right-hand side labels.

,-

sentence
(0) \

sent (nil)
(1) \

noun-phr:1se
(2} \

r----7-·---1
det noun rel

(8) \ (9) \ (6') '
the man

verb-phrase (nil)

(4) I
verb

-i-----,
(11} \

laughed

rel-pro
{ 13)

that

sent (E)

(1) \ r-..;.. ___ 7

(3nh (;~TE)
c1b~opl-name ,- ---7

tr-vb d-obj{E)

John
(12)\ (7') l E <--

saw

PAGE 17

ellided

Figure 3. DCG derivation tree for the sentence "The man that John
saw laughed".

545

PAGE 18

While, as we have seen, MGs express movement by actually

moving constituents around, DCGs must carry all information

relative to movements within extra arguments. XGs, on the other

hand, can capture left extraposition in an economical fashion: by

actually skipping intermediate substrings rather than shifting

the constituents that follow. Thus, our initial grammar can be

modified to handle relativization simply by adding the XG rules:

(6') relative--> relative-marker, sentence

(13) relative-marker ••• direct-object--> relative-pronoun.

(14) relative-pronoun--> [that].

Figure 4 shows the XG derivation tree for "The man that John saw

laughed".

-, -
det

< 8) I
the

noun
(9) \

man

sentence

r~_,)_l __ . __
noun-phrase verb-phrase

c 2> \ - c 11) I ··
1 laughed ---7

relative

{ 6 t) '

r-------1
rel-mk sentence

r~> J....._ ___ 7

noun-phrase verb-phrase

PAGE 19

,-l----7 P> I
prop-name

{13)

rel-pro
(14) I

that

(10)

john

tr-vb -obj

sa:w

Figure 4. XG derivation tree for "The man that John saw laughed".

5i1-

PAGE 20

Restrictions can be used in RGs for the purpose of enforcing

context sensitive constraints, but transformatioas seem to

require an RG extension - possibly in the form of an additional

component - , which is presently under study. {Hirsch11an &

Puder, 1982)

An interesting feature of RGs is that a parse tree is

! automatically constructed during the parse (i.e._ the tree

building parameters are hidden from the user). This makes a

grammar clearer, but at the same time less flexible: only the

history of rule applications is recorded, whereas in ao.y other

logic grammar the user may build up (through explicit parameters)

any desired representation for the sentences parsed. The effects

of context sensitivity, on the other hand, are ensured .by giving

each restriction access to the entire previously constructed

parse tree. This need is the main difference between

restrictions and tha standard Prolog calls allowed in logic

grammars (which are also,. after all, procedure calls interspersed

within the roles).

In short, where DCGs accommodate context-sensitive constraints

within user-controlled parameters, RGs enforce them through

restrictions placed upon a system-controlled parse tree. This

concept would result in a higher level formalism if it gave the

user a fairly complete independence from parse tree concerus.

However, efficient exploitation of XGs requires some knowledge of

5ii

!?AGE 21

the parse tree, and the user needs to express restrictions in the

lower level terms of tree traversal rather than in the typically

declarative, operationally independent fashion of loyi~ grammars.

Work in theoretical linguistics has lately been departing from

transformational theory (Chomsky 1965), largely because 0£ the

subtelty of rules involved and the suppleme.ntary devices needed

(e.g. co-indexing, filters, etc.} and because of the complexity

of dealing with semantics within the transformational panadigm.

Work by Montague {Montague 1976) and Gazdar (Gazdar 1981)

resulted in a simpler and more intuitive formalization of

semantics based upon the rule-to-rule hypothesis (Bach 1976): to

each syntactic rule corresponds a structually analogous, semantic

rule for building up logical representations.

Gazdar•s framework, in particular, can deal with a wide range

of syntactic phenomena within a phrase-structure theory that has

a node admissibility interpretation rather than a generative one.

This new outlook, augmented by metag.rammatical devices (such as

categories with gaps, metarules and rule-schemata) elegantly

captures such important constructs as coordination and unbounded

dependencies. Gazdar•s "augmented phrase structure" approach has

influenced research in AI, where the transformational approach

had also been losinq adepts, as it was also felt to deal

insufficiently with semantics and, moreover, with sentence

analysis - AI's main concern in natural language processing.

59;

PAGE 22

Among the systems inspired by this approach are (Joshi 1982,

Robinson 1982, Schubert & Pelletier 1982).

Logic grammars, from all our previous discussion~ would St:H:HD

to provide an adequate computational framework within which to

implement the augmented phrase structure approach.

descriptive point of view,. as we have seen,. "logica.l" context

free rules ara more powerful than standard ones because of

parameters in grammar symbols, and .unification. Procedure calls

are moreover an inherent feature that is useful for representin.g

1 constraints.

But, although any logic grammar supports at least this, the

user need not be restricted to context-free type rules. MGs or

XGs will moreover provide for generalized type-o rules, and even

.for the handling of gaps,

e f£ icie ncy.

while maintaining high standards of

Extra power available, therefore, can only represent a gain,

since it does not preclude resorting to more elementary

approaches as a special case. In this respect we support Berwick

and Weinberg's contention that there is a possible tradeoff

between parsing efficiency and descriptive apparatus,. and that "a

language that is quite •high up• in the Chomsky hierarchy - e.g.

a strictly context-sensitive language - may in fact be parsed

more rapidly than languages lower down in the hierarchy - e.g.

faster than some context-free languages if the gain ia

succinctness is enough to offset the possible increase in parsing

600

PAGE 23

time" (Berwick & Weinberg, 1982).

our approach is therefore that of continuing research on logic

grammar ex tensions that may be useful in view of a r:10.t"c po;.erf lll

and elegant, while still efficient, treatment of some natur~l

language processing phenomena. In the next section we describe a

new logic grammar £ormalism developed in particular for dealing

metagrammatically with coordination, but that exhibits several

other features that are interesting by themselves.

e.sec..rch by Mic.~G.el Mc.Cord (Mc Core\ l'lgo., 11'&
6. Modifier structure grammars (MSGs) s ru,\/.ltect i"' i.-,te.-red:i"'!J id.ec..s ior pro<.e&i>iv-
- -------- • •-------- --- -- t"'rc..l lc:."'5'u,~e H,v-out)I., lo~ic ~,c....,""'i..~.s, 1.,

j,c..rtiCMlo..r, H,1! 11\ot-iO\/'\ o.(. ""'Odi+ler ~tr1Actwre i;...,.c,\ H,~ trec.t""'a"'~ of ~e"""'-"'tic ;.,.ferjo.,.,eh,t.-0,.. ~re~e"'l~
t~e-re &ee.W\ecA 'I. 1,:,-ro-i" i"'~ 4-rc.M~ wo'f"k to-r solvi"'.5 .-.o ... br-ivic..l lc..,.5-..c...5e -lovoce.s&i.,.~ ~robl.eMs., SIAC~ ~s

~ol"..;\i.-.ci..ho~.Joint research with ~ichael McCord in view of a logic grammar,

11etagrammatical treatment of coordination, resulted in the

development of a system consisting of: a) a new formalism for

logic grammars, which we call modifi~ structure g1=a!!!.l!a£2. {MSGs),
uoe{wl +or Mc..ki"'.£> W\Oc:li .£.ie"" ~tnAd:IAY-e iw-. pLic.il ill\ ~he :;1rC..IMW1otC:..V" J

h} an interpreter (or parser) for MSGs which also takes all the

responsibility for the syn tactic aspects of coordination, and c)

a semantic interpretation component which produces logical forms
(o.s i"' Mc.Cov--c>i it)

from the output of the parser and deals with scoping problems~
whicl,,. G\.lso i.-.cl .. d~ si:,ec.i+fc n.tles fov- -Se'Mc.."'tic i"'te.rpreb::.Lo ... of

i,,1:11$/1 fJi-.:D coocd:tnation. The whole system is

implemented in Prolog-10 (Pereira, Pereira & Warren 1978). Here

we make a brief presentation of this system.

description can be found in {Dahl S McCord, 1983).

MSG rules ace of the form:

A Sem --> B

A complete

601

PAGE 2q,

where A--> B is an XG rule and Semis a term called a 2u~nSi£

il.m!!, -which plays a role in the semantic interpretation of a

phrase analysed by application of the rule. The semantic item is

(as in {McCord 1981)) of the form

Operator - LogicalForm

where, roug h.ly, Logica lForm is the part of the logical form of

the sentence contributed by the rule, and operatdr determines tha

way in which this partial structure combines with others. Sem

may be a "trivial" sem if nothing is con tcibuted.

ihen a sentence is analysed, a structural representation, in

tree form, called "modi.fier structure" is automatically formed by

, the parser. Each of its nodes contains not only syntactic

information but also the semantic information Sem supplied in the

grammar,·· which determines the node •s contribution to the logical

form of the se.ntence (this contribution is for the node alone,

and does not refer to the daughters of the node, as in Gazdar•s

approach (Gazdar, 1981)}.

The semantic interpretation component first reshapes this tree

into another MS tree where the scoping of quantifiers is closer

to the intended semantic relations than to the (surface)

syntactic ones. It then takes the reshaped tree and translates

it into logical form. The modifiers actually do their work of

modification in this second stage,

It should be noted that the

th rough their semantic items.

addition of simple semantic

PAGE 25

indicators within grammar rules contributes to maintain, from the

user's point of view, a simple correspondence between syntax and

semantics. This is similar in intention to the ritle-by-rule

hypothesis mentioned before {Bach 1976), but is differently

realized: instead of a rule-to-rule correspondence, we have a

correspondence between each non-trivial expansion of a non

terminal and a logical operator. That is, each time the parser

expands a non-terminal symbol into a (non-empty) ·body, a logical

operator labels the expansion and will be later used by the

semantic component, interacting with other logical operators

found in the parse tree obtained.. The complexity of dealing with

quantifier scoping and its interaction with coordination is

screened away from the user.

iit.h respect to coordination, the HSG grammar should not

aention conjunction at alI. The interpreter l\as a genera.l

facility for treating certain words as "demons" (cf. Winograd

197~, which trigger a backing up in the parser history that vill

help reconstruct ellisions and recognize the meaning of the

coordinated sentence.

This proceeds in a manner similar to that of the SYSCONJ

facility for augmented transition networks (Woods 1973, Bates

1978), except that, unlike SYSCONJ, it can also handle embedded

coordination and interactions with extraposition. The use of

modifier ~tructures and the associated se~antic int~rpretation

component, moreover, permits in general a good treatment of

I·
!

scoping problems involving coordination. Finally,

PAGE 26

the system

seems reasonably efficient (cf. timings for our sampla grammar in

{Dahl and i1cCord, 1983)) •

Logic gram~ars, as we have seen, need not sacrifice efficieacy

to the goals of power and elegance. They seem to be evolving -

like other computational formalisms - into hig~er level tools

which allow the user to spare mechanizable efforts in order to

concentrate on as yet unmechanizable, creative tasks.

We view MSGs as a step in that direction,

advantages of automatising the treatment

with the main

of coordination,

'providing a modular treatment or semantics, and allowing the user

not to worry oYer structure building.

The latter feature may be an attractive one for logic grammars

in general to retain, since it makes a grammar easier to write

and read, and more concise.

Since, moreover, logical structure desired fdr a sentence's

final representation ij also automatically built up, from a fev

simple semantic indicators in the grammar rules, it becomes

easier to adapt a grammar to alternative domains of application:

modifying the logical representation obtained need only involve

the semantic components of each rule.

This modulaC' isolation of structure lends grammars a

.•

I
I.

syntactico-semantic flavour.

PAGE 27

It may be viewed as a way out of

the dilemma on vhether the semantic component should be separate

or intermingled with the syntactic on~. Compromising on

manipulating static semantic indicators during the syntactic

parse while using them dynamically during the semantic one may

well prove to he the way of combining the advantages of both

approaches while minimizing the disadvantages.

PAGE 28

liEFERENC.ES

Bach, E. (1976). An extension of classical transformational
grammar.Mimeo, Univ. of Massachusetts, Amherst, MA.

Bates, ~- (1978}. The theory and practice of augmented transition
networks. In: L. Bole (ed.) Natural Language Communication with
Computers. {Springer, Berlin, May 1978).

Berwick, R. C. and Weinberg, A. s. (1982). Parsing
Efficiency, computational Complexity, and the
Evaluation of Grammatical Theories. Linguistic ·
Inquiry, vol. 13, No. 2, Spring 1982, pp. 165-1_91.

Chomsky, N. (1965). Aspects of the Theory of syntax
MIT Press, Cambridge, Massachusetts.

Coelho, H. M. F. (1979). .A program conversing in
Portuguese providing a library service. Ph.D. Thesis,
Univ. of Edinburgh.

Colme.rauer, A.. (1973). Les systemes-Q ou un formalisme
pour analyser et synthetiser des phrases sur ordination.
Publication interne No 43, Dept. d 1Informatigue,
tJniversite de Montreal.

Colmerauer, A. (1975). Les grammaires de metamorphose.
Groupe d'Intelligence Artificielle, Univ. de
ftarseille-Luminy. As "Metamorphosis Grammars" in:
L. Bole (ed.), Natural Language Communication with
computers (Springer, Berlin, May 1978).

Dahl, V. (1977). Un systeme deductif d'interrogation
de banques de aonnees en espagnol. These de Doctorat
de Specialite, Univ. d'Aix-Marseille.

Dahl, v. (1981). Translating Spanish into logic through
logic. American Journal of Computational Linguistics,
Vol. 7, No. 3, pp. 149-164.

Dalt 1, V. (1982) • on database systems development
through logic. ACM Transactions on Database Systems,
Vol.7, No. 1, ,arch 1982, pp.102-123.

Dahl, V. and McCord, M. (1983). Treating coordination
in logic grammars. Internal report, Univ. of KentQcky.

Gazdar, G. (1981). Unbounded dependencies and coordinate
structure. Linguistic Inguiry, Vol.12, No.2,
Spring, 1981.

•

PAGE 29

Hirshman, L. and ?uder, K. (1982) • Restriction grammar
in Prolog. Proc. First International Logic
Programming Conference, Marseille, pp.85-90.

Joshi, A. (1982). Phrase Structure Trees Bear More ?ruit
than You iould Have Thouaht. American Journal of
Computational Linguistics. Vol.8, No.1, Jan-aarct 1932.

Kowalski, R. A. (1979) • Logic for problem solving.
North-Holland Elsevier, New York, 1979.

!cCord, M.. (1980). Using slots and modifiers in logic
grammars for natural language. In: Artificial Intelligence.

KcCord, M. { 1981) • Focalizers, the scoping probl"em,
and semantic interpretation rules in logic grammars.
University of Kentucky.

Montague, (1974). English as a formal language.
In: Thomason, R. H. (ed.), Formal Philosophy: selected
papers of Richard Montague. Yale Univ. Press,
New Haven, CT., pp.188-221.

Pasero, R. (1982). A dialogue in natural language.
Proc. First International Logic Progranu1ing
Conference, Marseille, France, pp.231-239.

Pereira, F. (to appeatj.
To be published in:
linguistics.

Extraposition grammars.
American Journal of computational

Pereira, F. and Warren, D. (1980). Definite clause
grammars for natural language analysis - a survey
of the formalism and a comparison with augmented
transition networks. Artifical Intelligence 13
(1980), pp. 231-278.

Pereira, F. and Warren, D. { 1981) • An efficient easily
adaptable system for interpreting natural language
queries. Dept. of AI, Univ. of Edinburgh.

Pereira, L., Pereira, F. and Warren, D. {1978).
User's guide to DECsystem-10 Prolog. Div. de
Informatica, LNEC, Lisbon and Dept. of AI, Univ.
of Edinburgh.

Pereira, L. M. et al. (198'.'). ORB! - An expert system
for environmental resource evaluation through
natural lanquage. TTniversidade Nova de Lisboa.

Robinson, J. A. (1965). A machine-oriented logic
based on the resolution principle. J. ACM 12, pp.25-41.

,,.

?AGE 30

Robinson, J. (1982). Diagram: A grammar for dialogues.
Comm. AC~, January 1982, Vol.25, No.1.

Sabatier, P. {1980). Dialogues en francais avec un
ordinateur. Groupe d'Intelligence Artificielle,
Univ. d'Aix-Marseille.

Silva, G. M. T. et al. (1979). A knowledge-based automated
message understanding methodology for an advanced
indications system. Rome Air Development Center,
Report RADC-TR-79-133.

Simmons, R. F. and Chester, D. (1979). Relating
sentences and semantic networks with clausal l_ogic.
Dept. of Co"puter Science, Univ. of Texas.

Schubert, L. and Pelletier, F. (1982). From English
to Logic: Context-Pree Computation of
"Conventional" Logical Translation. American
Journal of Computational Linguistics, Vol.8, No.l,
,Jan-l'larch 1982.

Winograd, T. (1972). Understanding natural language.
Cognitive Psychology, 3, pp.90-93.

Woods, w. A. (1970). Transition network grammars for
natural language analysis. c. ACM 13.

Woods, W. A., Kaplan, R. t'l. and Nash-Webber, B. [1972).
The lunar sciences natural language information system:
final report, BBN Report 2378.

