
Computing with Sequences 

c.o.s.Moss. Feb 1933 

Abstract 

All Prolog implementations deal implicitly with sequences 
of solutions to problems by means of backtracking: if one 
solution to a subproblem is rejected another is presented. A 
number of implementations also provide predicates which provide 
sets or bags {sets mith possibly repeated elements) of 
solutions. Sut in these case the system finds all the s.olutions 
before proceeding. It is suggested here that an implementation 
of bags, or sequences, which finds only one solution at a time 
can be integrated easily with exis~ing implementation techniques 
for Prolog. 

This technique has a number of advantages over similar 
proposals. If it is combined with subprograms which exhibit 
tail recursion, then one can write logically correct programs to 
process sets of solutions which do not use extra memory. These 
can include prog~am~ which reduce solutions (e.g. count, sum or 
averaga solutions) aithout using •impure• techniques. However 
thetechnique involves little overhead in programs mhich do not 
use it, unlike cenain other proposals for coroutining. 

This_ will have particular advantage in database 
applications ■here large amounts of infor,aation must be 
retrieved serially fro• secondary storage. It also has 
potential application for parallelism since the next solution of 
the subproblem may be pre-evaluated on a parallel processor, 
without changing the normal interpretation of Prolog clauses. 

Introduction 

The normal mode of evaluation in Prolog may be termed a 
•semi-lazy• evaluation of all the solutions of a goal. In other 
words, one solution is computed to a subproblem, and the 
c~mputation is then suspended until another solution is 
required. This produces the very attractive •stack" discipline 
which characterises Prolog and contributes significantly to its 
speed and memory efficiency. 

But in many cases one wishes to talk about "all" solutions 
to a problem. A facility is provided in several Prolog 
implemantations (e.g. Warren Cl98ZJ) by an evaluable predicate 
which produces the solutions as a list: 



Page Z 

6.2..~ 
The predicate "setof(A,B,C)tt means that C is a list of the 

variables A which solve the problem a. 

In many situations, particularly if one wishes to nest 
calls to such a pradicat~, it is desirable to provide the 
solutions as a set, in which any duplicate solutions have been 
removed. But this clearly en~ails extra work, and presents 
Questions if som3 of the solution3 contain uninstantiated 
variables (does one want the most general or most specific 
answers?). Hence some implementations also provide a "bagof" 
predicate which is defined in the same way, but can contain 
duplicate answers. But this is also implemented by producing 
all solutions to the problem at one time 3nd therefore involves 
allocating (implicitly) enough space to hold all the solutions. 

Because of this, many programmers will persist in using the 
impure "hacks• that were common in Prolog before these 
oredicates were introduced. These involve making temporary 
assertions in the database to hold information which is not lost 
on backtracking. Apart from the loss of speed from using these 
techniques, programs can become obscure, as the technique 
effectively introduces global variables into a language which 
avoids their use otherwise. In the context of parallelism, such 
usage is doubly suspect. 

Using Sequences 

The introduction of sequences has tmo parts: an evaluable 
predicate and a •lazy• way of processing Conly) lists. We sill 
introduce a new predicate called "seqot•. It has the same 
definition as nsetof• or "bagof" except that solutions produced 
in the list may be repeated, and the order of solutions is 
defined by the program. i.e. 

seqaf(A,B,C) means that the list of all solutions for A in 
Qoal Bis a list C. 

Let us demonstrate the use of this oy sho~ing a procedure 
which computes the average population of all countries in a 
database. 

averagepop(A) <- saqof(B, (population(C,D), country(C)), E), 
average(E,O,O,A). 

average(nil,O,O,O). 
average(nil,A,S,A,B). 
average(A.B,C,D,E) <- averageCB, C+A, D+l, E). 

Here "averagepop" computes the average population and 
"average" is a general procedure tor computing averages, working 
in a "bottom-up" fashion so that tail recursion is applicable. 
Note that infix function calls to arithmetic predicates are 
assumed. A aefinition of all predicates used may be found at 
the end. 



Page 3 

The meaning of this program may be 3ppreciated quite 
separately from the method of implementation: "seqof" ganerates 
a list containing the populations of every country in the 
database, and "average" acts recursively on this list to produce 
the average. 

However the implementation suggested is as foll~ws: 
seqof(A,B,C) evaluates B until a single solution is found, ~hen 
it binds C to A.x (where xis defined belo~), or if no solution 
is found then C is bound to nil. Control then passes to the 
subgoals following seqof - in this case "average" (unlass C is 
already bound fully to~ list in which case the next solution of 
Sis found). Execution proceeds normally until an attempt is 
made to bind a non-variable to the lazy list object, the value 
called "x" above. If this is normal list-processing, then it 
mill be an attempt to bind it to some term •o.en, or "nil". At 
this point, control is returned to "seqof" and another solution 
is attempted. If it is found, then the value D mill be 
instantiated and processing returns to the list consuming 
orocedure. 

One valuable aspect of this control mechanism is that the 
0 seqof• procedure can be programmed so that when control returns 
to it, it can detect whether any. valid references still exist to 
the first solution (because of backtracking points etc), and if 
no~, can delete that solution from the ~tack. In this may, the 
qlobal stack space used can be reclaimed and a list of all 
solutions used without consuming an equivalent amount of stack 
soace. 

A Database Example 

As a further example of the use of this approach, consider 
another database query. Buneman et al CI982J consider queries 
such as: 

"find the names of employees who are under 30 years of age 
and are paid more than the average salary for all all 
employees." 

In a typical database query language this might be 
expressed: 

retrieve NAME from EMPLOYEE ~here AGE<JO and 
SALARY> average(retrieve SALARY from EMPLOYEE). 

They demonstrate that this can be expressed in a purely 
functional query language by an expression 

!EMPLOYEE o IC£CAGE,30Jo LT, CSAL,AVESALJ o GTJ o ANO) o *NAME; 

where "o" represents 
function which computes 
stream of all employees, 
following predicate, and 

function composition, AVESAL is a 
the average salary,"!" generates a 

"IC" restricts this stream by the 
»*~ converts a straam of values into a 

6.25 



Page 4 

character stream. 

A system such as Chat-80 {Warren, Per•ira 1979) might 
represent this as a Prolog query in the form: 

ans(ANS) <= seqofC~, employea(d) & a~eCB,C) & C<30 
& salaryCa,O) £ D>E &n&me(B,A), ANS) 

& seqof(F, employeeCG) & sa13rtCG,F), H) 
& average(H,O,Q,E). 

While this (relational) form of the enquiry is not as 
concise as the functional form it has an important advantage. 
The variable •e• ~hich represents the average salary is 
independent of the expression in which it appears and it is 
clearly not necessary to compute it for aach employee. In the 
Chat-80 system the query would be rearranged and constraints 
inserted to ensure that it is only calculated once (Warren 
19al). In a functional system, the optimiser has to recognize a 
"constant subexpression". 

The processing of the query clearly involves two passes 
over the employee relation, mhich may be presumed to be large 
and stored in a database. When computing the average salary 
there is only a need to retain the partially computed average. 
The second pass generates the names of employees, which mill 
presumably be p~inted out and also not stored. 

Buneman et al point out that there is a further possible 
optiai.sation for this query: if there are no employees less 
than 30 it is unnecessary to compute the average salary. The 
im~lementation of sequences proposed here mould not easily allo• 
for this. 

Implementation Details 

This discussion has ignored the vital implementation 
details of how the stack is organized to handle several 
different "control points" simultaneously (and one must remember 
that seqof may be called at several points in direct or indirect 
recursion). There are in fact a number of possible 
implementations and which is used may depend on several factors. 

1. One can implement full "spaghetti stacks• in which 
several computations can interleave. This is the approach of 
Clark and McCabe (1979]. This does not unfortunately mesh very 
well mith existing implementation techniques. 

z. One can start a new stack for the seqof predicate 
separate from the old stack. In fact it is possible to consider 
this as a completely separata uprocess", as ~ill be explored 
below, and in a virtual memory environment where address space 
is no problem (though real mamory is) this may well be the best 
solution. 



Pa~e 5 

3. One can allocate (by some heuristic) a certain 3pace on 
the stack for the seqof process in addition to that consumed by 
the first solution and start the following processes above this. 
On return to the interruptad process, it performs a "context 
switch" ~hich resets the t>p of av3ilaDla stack space to the 
credefinad space. If this space is filled, it is then necassary 
to "stack-shift" the rest of th9 stack to make space. 
Fortunately this is an operation which is alraady done by 
several implementations to allow for the several different 
storage areas used by Prolog. 

be better 
penalty on 

handling 
goals is 

The advantage of methods 2 and 3 (and there may 
methods) is that they do not incur a large time 
normal execution. The convenient and efficient stack 
of Prolog is preserved and the normal sequencing of 
only interrupted when treating a "lazy" list. 

It is however necessary to modify the unification routine 
to recognize a nem object - the lazy list. However this does 
not affect the binding variables to the object, only the attempt 
to match it with another list object (list functor or nil). 
Hence the modification is limited to the case of binding a 
functor to a functor and even in compiled code this is 
normally performed by a subroutine. It is to be hoped that with 
the gradual introduction of microcoding for unification this 
mill not be a significant problem and be outweighed by the 
saving in space achieved. 

So■e other uses of this technique 

This technique opens up new possibilities for Prolog 
evaluation, of which three will be explored briefly. 

1. Input-Output in Prolog programs is generally handled in 
a manner which is both semantically impure and obscure from a 
programming point of view. Consider the following programming 
fragment found in several systems: 

getCX) :- repeat, getO(X), X = '', !. 

repeat. 

repeat:- repeat. 

Here the predicate "get0° unifies the next character in the 
input (of some unspecifi&d file) with the parameter X. If it is 
not a space, then the system backtracks to getO, which is not 
implemented as a procedure with backtrack points. However 
backtracking to "repeat" always succeeds and the next character 
of the input is read. Thus 0 gat" reads the next non-blank 
character from the input. However, ooth "getO" and 0 get• are 
oradicates which have side-effects. Backtracking over the input 
file does not "rewind" the file as one might expect. 

6.2.l-



Page 6 

Let us suppose that input-output ~redicates were defined in 
terms of tne seqof predicate. Thus, for instance, a call to the 
Predicate fileCA,8) binds 9 to a character in file A. A call to 
seqofCB,fileCA,B),C) binds C to the list of characters in file 
A. If this is the predicate used then correct backtracking 
behavior will be acheived automatically ~ith more economical use 
of storage. Of course a mora sophisticated implementation might 
vield even greater economy. 

2. Consider the following use of seqof: 

seqofCA, proclCB,A), C>, seqofCD, proc2CC,O), B). 

Here procl and proc2 are two processes which each •consume• 
a list which is their first parameter and produce answers which 
are their second parameter. If the first parameter is 
considered a list of input messages, then the behavior Qf these 
two processes may considered to be one of message passing from 
one to the other. Initially procl is invoked and produces a 
message A. Then procZ is invoked and produces an ansmer o. 
When it tries to consume the second message, control is passed 
back to procl. Notice that there does not need to be any 
one-to-one correspondence between the number of messages 
orovided by procl and proc2. Also deadlock is easily detected. 

3. It is possible to replace any subgoal in a Prolog 
orogram by a pair of goals which are equivalent: 

go.al CA,.• ,Z> to 

seqof(A: •• :z, goalCA, •• ,Z)~ C>, solnCC,A: •• :z> 

ahere A: ... :z represents a tuple of the variables appearing 
in the goal and soln is defined conceptually by· 

soln(A.B, A). 

soln(A.S, C) :- soln(S, CJ. 

Thus we may consider any subgoal in a Prolog pro~ram as a 
separate subprocess which generates a sequence of solutions 
which is then passad on to its neighbors. It is possible to 
implement these in the most convenient manner: one possibility 
that is attractive is for a subgoal to produce exactly one more 
solution than has yet been demanded by the other goals. Then 
when the next subgoal backtracks there will be a solution 
immediately available. However the demand for new processes 
will not grow exponentially as could be the case if indefinite 
parallelism were allowed. 

Conclusion 

The introduction of the seqof predicate and the "partially 
evaluated 11st" technique has introduced into Prolog a very 
li~ited form cf ccroutinin;. It has the advantage of preserving 

6.2:H 



Page 7 

the behavior of µrograms written for a left-to-right depth first 
evaluator 3nd avoiding the overhead ~hich has accompanied ~any 
other proposals for coroutining. It has the disadvantage of 
being so~ewhat "delicate" in its sp3ce-saving value: if the 
user leaves otrier references to tha list at SOffle point after the 
seqof call, than it ~ay not je possible to discard the 
1ntermad1ate solutions. 

Definition of predicates usad 

In the following definitions, the name of the predicate is given 
first followed by the number of its parameters; then an English 
definition of the predicate in mhich variables A,B,C etc. are 
used to represent the 1st, 2nd, 3rd etc. parameters of the 
predicate respectively. 

bagof/3 the bag of all solutions for A in goal 8 is a list 
c. 

seqof/3 the sequence of all solutions for A in goal Bis a 
list C. 

setof/3 the set of all solutions for A in goal Bis a list 
c. 

averagepop/1 -- the average population of all countries is A. 

average/4 - the average value of sublist A of a list, having 
a parti~l total of B from C items in the head of the 
list, is D. 

population/2 -- the population of A is B. 

country/1 A is a country. 

soln/2 -- Bis a member of the sequence A. 

employee/! -- A is the identification of an employee 

age/2 -y the age of employee A is B 

salary/2 -- the salary of employee A is 8 

name/2 -- the name of employee A is 8 

References 

P. ouneman, R.E. Frankel, R. Nikhil [1982J: An 
Implementation Technique for Database Juery languages. ACM 
Trans. on Database Systems. 7/2, ppl64-ld6. 

K.L. Clark, f. McCabe [1979): fhe Con~rol Facilities of 



Page 8 

IC-Prolog. In O. Michie Ced): :xpert Systams in the 
Microelectronic ag~. E.U.P. 

O.H.O. ~arren, c.c.N. Pereira [1978]: An efficient easily 
adaptable system for interpretin9 natural langua~e queries. 
D.A.I. ?aper 155, Univ. of Edinburgh. 

O.H.O. Warren Cl981J: 2fficient Processing of 
Relational Database queries express~d in logic. 
PP272-28l. 

Interactive 
YLDB Cont. 

O.H.O. ~arren [1932]: Highar order extensions to Prolog: are 
they needed? Machine Intelligence 10, pp441-454. 




