623

Computing with Sequences

CeDeSeMoss. Feb 1532

—— —— ————— v —— - ——

Abstract

All Prolog implementations deal implicitly with sequences
of solutions to problzms by means of backtracking: 1if one
solution to a subproblem is rejected another is presentede. A
number of implementations also provide predicates which provide
sets or bags (sets with possibly repeated elements) of
solutions. But in these case the system finds all the solutions
before proceading. It is suggested here that an implementation
of bagss or sequences, which finds only one solution at a time
can be integrated easily with existing implementation technigues
for Prologe.

This technique has a number of advantages over similar
proposalse. If it 1is combined with subprograms which exhibit
tail recursions, then one can write logically correct programs to
process sets of solutions which do not use extra memory. These
can include programs which reduce solutions (e.g. count, sum or
average solutions) without using "impure®* techniques. Houwever
the technique involves little overhead in programs wmhich do not
use ity unlike certain other proposals for coroutining.

This will have particular advantage in database
applications where large amounts of information must Dbe
retrieved serially from secondary storagee. It also has

potential application for parallelism since the next solution of
the subproblem may be pre—evaluated on a parallel processor,
without changing the normal interpretation of Prolog clauses.

Introduction

The normal mode of evaluation in Prolog may be termed a
"semi-lazy” evaluation of all the solutions of a goal. 1In other
wordsy one solution is computed to a subproblems and the
computation is then suspended until another soclution 1is
required. This produces the very attractive Ustack” discipline
which characterises Prolog and contributes significantly to its
speed and memory efficiencye.

But in many cases one wishes to talk about "all™ solutions
to a problem. A facility is provided in several Prolog
implemantations (e.g. Warren {19823) by an ecvaluable predicate
which produces the solutions as a list:

Page 2

624

The predicate "setof(AyByC)" means that C is a list of the
variables A which solve the problem 3.

In many situations, particularly if one wishes to nest
calls to such a predicatsz, it 1is desirable to provide the
solutions as a set, in which any duplicate solutions have bheen
removede. But this clearly entaiis extra work, and presants
quastions if some of the solutions contain wuninstantiatad
variables (does one want 1tne most general or most specific
answers?). Hence some implementations also provide a M™bzgof"®"
predicate which 1is defined 1in the same ways, but can contain
duplicate answers. But this is also implemented by producing
all solutions to the problem at one time and therefor2 involves
allocating (implicitly) enough space to hold all the solutions.

8ecause of thisy many programmers will persist in using the
impure "hacks® that were common in Prolog before these
predicates wer2 introduced. These 1involve making +temporary
assertions in the database to hold information which is not lost
on backtracking. Apart from the loss of speed from using these
techniquesy, programs can become obscure, as the technique
effectively introduces global variables into a 1language which
avoids their use otherwise. In the context of parallelismy such
usage is doubly suspect.

Using Sequences

The introduction of sequences has two parts? an evaluable
predicate and a ®lazy™ way of processing (only) lists. We will
introduce a new predicate called M"segof¥, It has the same
definition as "setof®™ or "bagof"™ except that solutions produced
in the list may be repeatedy and +the order of solutions is

defined by the programe. i.2.

seqof(A,BsC) means that the list of all solutions for A in
goal B is a list C.

Lat us demonstrate the use of this by showing a procedure
which computes the average population of all countries in a
databases.

averagepop(A) <— seqgof(B, (population(C,D), country(C)), E),
average(E,0,0,4).

average(nily04050).
average{nil,A»,8,Ar8).
average(A.B3Cy0,E) <~ average(8, C+A, D+1, E.

Here M™averagepop™ computes the average population and
"3verage" is a general procedure for computing averages, working
in a "bottom-up®" fashion so that tail recursion is applicable.
Note that infix function <calls to arithmetic predicates are
assumed. A definition of all predicatas used may be found at
the end.

Page 3

The meaning of this program may be appreciated quite
separately from the method of implementation: T™seqof" gza2nerates
a list containing the populations of every country in the
database, and "average® acts racursively on this list to produce
the averageo.

However the implementation suggestad 1is as follows:
seqof(AyBsC) =2ovaluates 8 until a single solution is found, when
it binds C to A.x (where x is defined below), or if no solution
is found then C is bound to nil. Control then passes to the
subgoals following segof — in this case "average®™ {unla2ss € is
already bound fully to a list in which case the next solution of

645

B is found). Execution proceeds normally until an attempt is’

made to bind a non-variable to the lazy 1list object, the value
called "x™ above. If this is normal list-processing, then it
will be an attempt to bind it to some term "D.E", or "nil". At
this point, control is returned to "segof™ and another solution
is attempted. If it 4dis found, then the value D will be
instantiated and processing returns to the 1list consuming
procedure.

One valuable aspect of this control mechanism is that the
"saqof® procedure can be programmed so that whan control returns
to it, 1t can detect whether any valid references still exist to
the first solution (because of backtracking points etc), and if
noty can delete that solution from the stack. In this way, the
qlobal stack space used can be reclaimed and a list of all
solutions used without consuming an equivalent amount of stack
Spacee.

A Database Example

As a further example of the use of this approach, consider
another database query. Buneman et al [19823 consider queries
such as:

"find the names of employees who are under 30 years of age
and are paid more +than the average salary for all all
employees."

In a typical database query language this might be
expresseds:

retrieve NAME from EMPLOYEE where AG£<30 and
SALARY > average(retrieve SALARY from EMPLOYEE).

They demonstrate that this can be expressed 1in a purely
functional query language by an expression

{EMPLOYEE o [(CLCAGE,30Jo LT, CSAL,AVESAL] o GTI o AND) o *NAMES

where "o" represents function composition, AVESAL 1is a
function which computes the average s3alary, "i{" generates a
stream of all employees, """ restricts this strezam by the
following predicatey, and ¥x? converts a stream of values into a

Page 4

character stream.

A system such as <(Cnat-80 (Warran, Pereira 1979) might
represent this as a Prolog query in thes form:

ans(ANS) <= segof(A, employe=2(3) & age(’,C) i C<30
& salary(3,D) & 0> sname{Bya), ANS)
4 segof(Fy employea(5) & salary(GyF),y H)
& average(Hy05045).

While this (relational) form of the enguiry i3 not as
concise as the functional form it has an important advantage.

The variable ®E® yhicn represents +the averags salary is
independent of the expression in which it appears and it is
clearly not necessary to compute it for 2ach employee. In the

Chat-80 system +the query would be rearranged and constraints
inserted to ensure that it is only calculated once (Warren
1981« In a functional system, the optimiser has to recognize a
"constant subexpressioan".

The processing of the query clearly involves +two passes
over the <employee relation, which may be presumed to be large
and stored in a database. When computing the average salary
there 1s only a need to retain the partially computed average.
The second pass generates the names of employeesy which will
presumably be printed out and also not stored.

Buneman et al point out that there is a further possible
optimisation for this query: if there are no employees less
than 30 it is unnecessary to compute the average salary. The
implementation of sequences proposed here would not easily allow
for thise.

Implementation Details

This discussion has ignored +the vitsl implementation
details of how the stack 1is orgzsnized to handle several
different "control points" simultanecusly (and one must remember
that seqof may be called at several points in direct or indirect
recursion). There are in fact a number of possible
implementations and which is used may depend on several factors.

1. 0ne can implement full ®spaghetti stacks®™ 1in which
several computations <c¢an interleave. This is the approach of
Clark and McCabe [1979]1. This does not unfortunately mesh very
well with existing implementation techniques.

2. 0One can start a new stack for the seqof predicate
separate from the old stack. In fact it is possible to consider
this as a completely separate Yprocess", as ¥ill be explored
belowsy and 1in a virtual memory environment uwhere address space
is no problem (though real mamory is) this may well be the best
solution.

626

Page 5§

3. One can allocate (by scme hauristic) a certain space on
the stack for the seqof process in addition to that consumed by
the first solution and start tne follcwing processes above this.
On return to the interruptzd process, it parforms a "context
switch" which resets the top of availapls stack space to the
predefinad space. If this space is fillad, it is then necassary
to M"stack-shift" +the rest of th2 stack to mak 2 space.
rortunately this is an operation uwhich is alrzady done by
several implementations to allow for the several different
storage areas used by Prolog.

The advantage of methods 2 and 3 (and there may be better
methods) 1is that they do not incur a large time penalty on
normal execution. The convenient and efficient stack handling
of Prolog is preserved and the normal sequencing of goals 1is
only interrupted when treating a "lazy™ list.

It is however necessary to modify the unification routine
to recognize a new object — the lazy list. However this does
not affect the binding variables to the object, only the attempt
to match it with another 1list object (list functor or nil).
Hence the modification is limited %o the <case of binding a
functor to a functor -~ and even in compiled code this is
normally performed by a subroutine. It is to be hoped that with
the gradual introduction of microcoding for unification this
will not be a significant problem and be outweighed by the
saving in space achieved.

Sone other uses of this technique

This technique opens up new possibilities for Prolog
evaluation, of which three will be explored briefly.

1. Input-Cutput in Prolog programs is generally handled in
a manner which 1is both semantically impure and obscurs from a
programming point of view. Consider the following programming
fragment found in several systems:

get(X) - repeatsy getd(X)y X = 7 “, 1,
repeate.
repeat - repeat.

Here the predicate "get" unifies the next character in the
input (of some unspecified file) with the parameter X. If it is
not a spacey then the systzm backtracks to getld, which is not
implemented as a procedure with backtrack points. However
backtracking to "repeat™ always succeeds and the next character
of the input 1is reade. Thus "g=2t" reads the next non-blank
character from the input. Houwever, poth "get0" and f"get® are
oradicatess which have side-effacts. Backtracking over the input
file does not "rewind®™ the file as one might expect.

6+

Page 6

Let us supposz that input-output predicates were defined in
terms of tne seqof predicate. Thus, for instance, a call to the
predicate file(A,8) binds 3 to a character in file A. A call to
seqof(38,file(AyB)yC) binds C to the list of characters in file
Ae If this is the pradicate wused then <correct backtracking
behavior will be acheived automatically with more economical use
of storage. O0f course a morz sophisticated implementation might
vield even greater economye.

2. Consider the following use of seqof:
seqof(Ay procl(3,A), C)y seqof(Dy proc2(C,D0), B).

Here procl and procl are two processes which each "consuma®™
a list which is their first parameter and produce ansuwers which
are their second parametera If the first parameter is
considered a list of input messagesy then the behavior of these
two processes may considered to be one of message passing from
one to the other. Initially procl is invoked and produces a
message A. Thaen procZ2 is invoked and produces an answer D.
Wwhen it tries to consume the second messages control is passed
back to procli. Notice that +there does not need +to be any
one—to—-one correspondence between the number of messages
provided by procl and proc2. Also deadlock is easily detected.

3. It is possible to replace any subgoal in a Prolog
program by a pair of goals which are equivalent:

goal(AseasZ) to
seqof(AleaetZly goalCAseesZ)y €y soln(CsAz..2Z)

where Al..:Z reprasents a tuple of the variables appearing
in the goal and soln is defined conceptually by’

soln(A.B, Ad.
soln(A.8, C) - soln{(3, C).

Thus we may consider any subgoal in a Prolog program as a
separate subprocess which generates a sequence of solutions
which is then passa2d on to its ne2ighbors. It is possible to
implement these in the most convenient manner: one possibility
that is attractive is for a subgoal to produce exactly one more
solution +than has yet been demanded by the other goals. Then
when the next subgoal backtracks there will be a solution
immediately available. However the demand for new processes
will not grow exponentially as could be the case if indefinite
parallelism were allouwed.

Conclusion

The 1ntroduction of the segof predicate and the "partially
evaluated 1list"™ +technique has introduced into Prclog a very
limited form cf cecroutining. It has the advantage of preserving

623

Page 7

the behavior of urograms written for a left—-to-right depth first
evaluator snd avoiding the overhazad which has accompanied many
other proposals for coroutining. It hss the disadvantage of
being somewhat "delicate® 1in its space—-saving value: if the
user leaves otner referencas to the list at some point after the
segof «call, then it =may not oOoe possible to discard the
interm2diste solutions.

Definition of predicates usad

In the following definitions, the name of the predicate is given
first followed by the number of its parameters; then an English
definition of the predicate in wnich variables A,B,C eotc. are
used to represent the 1st, 2nd, 3rd etc. parameters of the
predicate respectively.

bagof/3 -— the bag of all solutions for A in goal B is a 1list
Ce.

seqof/3 -— the sequence of all solutions for A in goal B is a
list C.

setof/3 —— the set of all solutions for A in goal B is a 1list
Ce

averagepop/1 —— the average population of all countries is A.

average/4 —— the average value of sublist A of a list, having
a partial total of B from C items in the head of the
list, is D.

population/2 -- the population of A is B.

country/l1 -— A is a countrye.

soln/2 —- 8 is a member of the sequence A.

employeesl —— A is the identification of an employee

age/2 —y the age of employee A is B

salarys2 —- the salary of employece A is B8

name/2 —— the name of employee A is 8

References

e s s e e s s

Pe dunemany R.Ee Frankel, Re Nikhil £19321: An
Implementation Technigue for Database Juery Languages. ACM
Trans. on Database Systems. 7/2, pplse-136.

Kele ©Clark, F. Mclabe (1379553 The Contrsl facilities of

629

Page 8

IC-Prologe. In C. Michie (ed): Expert Systems in the
Microelectronic ag2e. E.UeP.

DeHeDe Warreny, Tele.Ne. Pereira (£19781: An efficient =asily
adaptable system for 1interpreting naturzsl language gueries.
DesAsI. Paper 155, Univ. of Edinburgh.

DeHeDBa HWarren 138133 Zfficient Processing of Intaractive
Relational Oatabase queries expresszd in 1logic. VYLOE Conf.
pPp272-281i.

DeHeDea darren [19321: Higher order extensions to Prolog: are
they needed? Machine Intelligence 10, ppéél—-454.

630

