
Methodology of Logic Programming

by

Ehud Shapiro

Department of Applied Mathematics
The Weizmann Institute of Science

Rehovot 76100, ISRAEL

I I

I I

In this session I would like to discuss research methodol,;gy, rather
than programming methodology, of logic programming. As a basis for discus­
sion I propose the following statements, interspersed with text that attempts
to justify or explain them.

1 Goals of research in logic programming
Statement: Logic-programming share the goo.la of comp?.J..ter science

at large.

As I see it, there are no major differences between the goals of com­
puter science at large and the goals of logic-programming. Both want to solve
the problem:
(*) How to make computers do what we want them to?

This problem has two derivatives:
(21) How to make it easy for us to make computers do what we want them to?
() How to make computers do fast what we want them to?

Using a more respectable jargon, the two derivative questions become:
(1') How to program computers?
(2') How to make computers run the programs fast?

Many of us beleive that logic-programming may provide better solu­
tions to these problems than the more conventional approaches to computer
science.

Statement: The basic method of computer science ia bootstrapping.
Computer science offers one encompassing methodology for solving

these two questions, namely bootstrapping. Apart from brilliant new ideas
(which no methodology can promise to provide), the crucial factor dictating
the ease in which we can program computers and build faster computers is
the computerized support available to these tasks. More concretely, the ease of
programming is determined mostly by the quality of the programming environ­
ment available; and the possibility of building cheaper and faster computers is
determined mostly by the quality of the CAD/CAM systems available.

Logic programming has a lot to contribute to the general . thrust of
bootstrapping, and also to provide some briliant new ideas of its own.

2 Prolog
Statement: Prolog ia an ezpreasive and efficient programming lan­

guage, which we are still learning how to use.

- 2 -

Prolog is the first practical logic programming language. It is acquir­
ing a growing group of users, who develop for it a rich set of programming
idioms and techniques, and a refined programming style. Inspite of the initial
dissatisfaction of Prolog's inventor, Alain Colmerauer, and others wjth the lan­
guage, it turns out that its expressiveness is far greater than what was expected.
It is surprising that such a simple language can lend itself to so many sophis­
ticated and powerful programming techniques. Even after programming in
Prolog for the past three years, lam still learning new methods and techniques
of Prolog programming.

Pro log falls short of the aspirations of the founders of logic program­
ming in several respects: it has a rather inflexible control, and, to implement
substantial systems, must resort to features that have only procedural mean­
ing (cut, I/0, side-effects). Nevertheless, many of us beleive that Prolog, as
it is, is a good programming language for many applications. To increase its
effectiveness, Prolog requires improvements in its speed of execution and pro­
gramming environment.

Statement: Pro log akould be made to run /aster.

The desire for greater speed needs no justification. If we had as many
MegaLIPS as we have MIPS, then almost no programming task will have to be
carried in a lower programming language.

The speed of Prolog on a von Neumann machine can be increased in
several ways. One is to improve the basic cycle of Prolog, the unification, by
providing faster (cached, pipelined, multiported) memory access, by supporting
the basic unification instructions in hardware or microcode, and by parallelizing
the unification of subterms. Another is to incorporate in Prolog an abstract
data-types mechanism, that will support in a logical way interface to efficient
data-structures. Abstract data-types are needed in order to make more efficient
use of the resources of the underlying hardware. If substantial systems are to
be implemented in Prolog, then, given current technology, we cannot afford to
represent everything as a list of elements. Mutable arrays, strings, and other
efficient data-structures need to be supported. The only clean way to support
these in the logic-programming framework is via predicates over abstract data­
types.

Improving Prolog's speed by incorporating high-level parallelism (in
contrast to the low-level parallelism available in the unification algorithm), is
discussed in the next section.

- B -

i I

I I

Statement: Prolog needs a better programming environment. Prolog
programming environments are best implemented in Prolog.

Given the short time they exist, and the number of man-years devoted
to their development, some of the current Prolog programming environments
are quite impressive. The main problem that prevents further, or faster,
development, is that every new Prolog implementor reinvents the wheel. This
phenomenon is most evident in the development of the Edinburgh Prolog
family, in which every new implementator has implemented the programming
environment from scratch.

One of the most important properties of Prolog is that it is an excellent
language for developing its own environment. By defining a small core-Prolog,
which is expressive enough to implement a full environment, a new Prolog
implementor can simply implement this core, and port the environment from
a previous implementation. The availability of such a core will also support
distributed implementation efforts, in which different tools are implemented in
different locations. This is in contrast to the current situation, in which the
burdon of implementing a reasonable environment for Prolog falls solely on the
implementor of the core Prolog and its close associates.

My experience suggests that a subset of the system pr4~dicates of
Waterloo Prolog, or those of Edinburgh Prolog augmented with . the 'retry'
and 'ancestor-cut' predicates, are expressive enough to implement almost any
tooi desired. Many system predicates in Edinburgh Prolog are better viewed as
utilities that are, in principle, implementable in core-Prolog, but are provided
for the sake of convenience or efficiency.

Statement: Prolog should be kept a small.

There are two good reasons for keeping the core of Prolog small.
One is intellectual economy. I think we are still learning how to program
in Prolog. A baroque set of features (cf. IC-Prolog[4]) will prevent us from
identifying what is essential and what is superfluous, and will not encourage the
development of innovative programming techniques that squeeze every ounce
of expressiveness from a small set of constructs.

Another good reason to keep Prolog small is related to the discussion
of programming environments and bootstrapping. If there is a small Prolog
core, in which everything else is implemented, then:
1. Developing a new or better Prolog requires less effort.
2. A new Prolog implementation does not need a new environment.
3. Sophisticated Prolog programming tools, that know about all core-Prolog

system predicates, are easier to develop.

- 4 -

An example of an enhacement to Prolog that can be implemented
in core-Prolog is a module and type system. Most current Prolog implemen­
tations resemble an assembly language, rather than a high-level programming
language, in their flat name space of procedures, and in their lack of support of
any type system. It is clear that a facility for modular programming is neces­
sary for substantial systems to be developed in Prolog by many programmers.
MProlog [14] supports a notion of modules. However, its implementation is in a
low-level language, and cannot be ported to other Prologs. On the ether hand,
[5] showed that modules can be implemented easily in Prolog, by preprocessing,
without affecting the Prolog core. Since the preprocessor is written in Prolog,
it can be ported, in principle, to any compatible Prolog implementation.

Another example is the Prolog-10 debugger [1]. It is implemented
almost solely in Prolog, but pieces of it which are implemented in a lower
level language (pseudo-Prolog), prevent it from being easily. ported to a new,
compatible, Prolog implementation, such as CProlog. On the other hand, the
debugging algorithms in [12] are implemented solely in Prolog.

Inspite of what is said, investigating extensions to Prolog is still a
useful activity. I beleive that any extension to Prolog's core should satisfy at
least the following three criteria:
1. It can be demonstrated, with non-toy examples, that the extension is

useful.
2. The extension cannot be implemented in Prolog (e.g by preprocessing).
3. The extension can be implemented efficiently, and does not incure runtime

overhead when not used.
Examples of extensions that can be implemented in Prolog are second

order predicates (setof, bagof) [15] and modules [5]. Examples of extensions
whose implementation seem to induce run-time overhead even when not used
are selective backtracking [10] and several other forms of more sophisticated
control [4], [11].

In addition to supporting its own environment, I beleive that Prolog is,
in principle, an ideal language for implementing a VLSI CAD system. The main
requirements of such a system are the ability to integrate ·a large database with
algorithms that manipulate it. No other programming language supports both
database and algorithmic functions in the way Prolog does. The main obstacle
to realize such a pratical system today seems to be Prolog's inefficiency.

3 Concurrency
Statement: Prolog is not suitable for expressing concurrency.

- 5 -

lnspite of its expressivness in general, Prolog has a major blind-spot:
it is not suitable for expressing concurrency. This means that in order to
build a Prolog machine we must either extend Prolog substantially, or use
a lower programming language to implement multi-tasking. Needless to say,
multi-tasking is an essential feature even in sequential computers.

There have been many proposals to incincorpoe more so?histicated
control-constructs to Prolog, to support coroutinning and concurrency, e.g. in
IC-Prolog, Prolog-11, MU-Prolog, and Epilog, among others. It seems that none
of those is both expressive and efficient enough to implement a multi-tasking
operating system.

Statement: Concurrency and don i-know nondeterminism {deep
backtracking) do not miz well, but can be interfaced.

The Relational Language of Clark and Gregory [2] and Concurrent
Prolog [13] take a different approach. They give up Prolog's non-determinism
(implemented by deep backtracking) for the sake of expressing concurrency.
The memory management of these languages is very different from that of
Prolog, therefore integrating the two efficiently on a von Neumann machine
is a non-trivial problem. Also, my experience with programming in Concur­
rent Prolog suggests that applications that require concurrency do not require
non-determinism, and vice versa. A good interface between Prolog (or a logic
programming-based database machine) and concurrent logic-programming lan­
guages are set expressions, or Prolog's setof predicate, as suggested by Clark
and Gregory [3]. The availability and sufficiency of such an interface reduces
the need for an immediate integration of the two languages.

4 Parallelism

Statement: Parallel ezecution of Prolog is difficult.

Logic programs offer two kinds of parallelism: Or-parallelism and Ap.d­
parallelism. Or-paralelism means trying several candidate clauses in parallel.
And-parallelism means trying to solve several goals in a conjunction in parallel.

One approach to designing a logic programming language for parallel
computers is to patch Prolog. However, since Prolog was designed specifically

- 6 -

for efficient execution on a von Neumann machine, it is not clear that it is
a good starting point. Adding Or-parallelism to Prolog is not so difficult
concenptually. One problem is the cut. If cut is used to implement implicit
negation (a substitute for if-then-else) and defaults, then Prolog programs
may behave incorrectly when executed in Or-parallel mode. This is a difficult
problem, due to the pervasiveness of this use of cut. Another problem is
memory management. The overhead of maintaining seperate environments for
the Or-parallel subcomputations may eliminate the benefits gained from their
parallel execution.

Incoprorating And-parallelism into Prolog is far more diffi~ult.

Statement: And-parallelism and Or-parallelism have different ap­
plications, and are beat explored independently.

Since the problems of parallel computers are so difficult, and there is
so little positive experience with them in other branches of computer science,
I think it is much more sensible to start small.

The first step is to examine the uses of the two kinds of parallelism.
Or-parallelism is useful for speeding the solution of problems that require
search. One significant class of search problems are database queries. In
many applications, however, good algorithms can often provide a substitute for
simple brute-force search. And-parallelism is useful for implementing parallel
algorithms. The class of problems for which efficient parallel algorithms have
been designed is increasing rapidly. The existence of computers that can
actually run them will no doubt increase the pace in which they are produced.
These observations suggest that And- and Or-parallelism have different, disjoint
applications, which, at least initially, are best studied seperately.

The design of an Or-parallel database machine is an important and
challenging problem. The close relationship between logic programs and rela­
tional databases suggests that ideas and concepts from relational databases can
readily be put into use within the logic programming framework.

Concerning And-parallel machines, my view is that simple languages
such as the Relational Language and Concurent Prolog are a good starting
point. These languages are expressive enough in their current form for a
parallel implementation of them to be useful and interesting. Hence their
incporporation with the more powerful features of sequential Prolog may be
postponed until the problems of building a parallel machine for these simpler
languages are better understood.

- 7 -

9C

I I

I

5 Logic vs. control

Statement: Efficient algorithm, cannot alway, be obtained by twid­
dling with the control of logic program,.

Some of the research on logic programming was guided by the desire
to find some 'philosopher's stone': a notation that eliminate the need to think
algorithmically. Kowalski's celebrated equation [6]:

Algorithm = logic + control

have suggested to many [4],[7],[8],[10], that if only we could find the 'right'
control regime; we could factor the task of devising and implementing efficient
algorithms into two, independent subtasks: defining the logic of a solution to
a problem, and converting it into an efficient algorithm by imposing control
on it. I beleive that this interpretation of the equation is too strict. It is
impossible, in general, to specify sophisticated algorithms-just by modifying
the control component of a logic program. No massaging will make a logic
program that specifies the exponential generate--and-test permutation sort into
quicksort. The same statement is certainly true for less basic algorithms.

Statement: Sopkiaticated control ha, large runtime overhead, hence
it is beat implemented in an embedded language.

The sophisticated control regimes developed in response to Kowalski's
equation usually have an unacceptable runtime over head. Hence they cannot
be incorporated in a base language. An alternative way to achieve sophisti­
cated control is to implement embedded languages in Prolog. Implementing
interpreters for embedded languages in Pro log is by now a well understood
technique [9].

Statement: Compile-time optimizations are auperior to runtime op­
timizations.

One of the goals of sophisticated control is to make certain logic
programs run faster. This approach may be called "runtime optimization".

Whenever a runtime optimization of an inefficient logic program rep­
resents a traektable algorithm, it is usually possible to implemente the algo­
rithm directly in ordinary Prolog. The transformation of inefficient logic pro­
grams to efficient Prolog programs may be called "compile-time optimization".

It is my (unsupported) beleif that compile-time optimizations repre­
sent a more promising approach than runtime optimizations.

- 8 -

91

6 The Fifth Generation Project

Statement: Logic-programming machine, will require new solution,
to old problems.

One goal of the Fifth Generation project is to construct computers
with a new machine language, based on logic. To realize such machines we will
have to address many questions which are already solved for von Neumann
computers. There is a lot to learn from the old solutions, but one measure for
the viability of logic-programming is the quality of the new solutions it will
provide to these old problems.

7 References

[1] Lawrence Byrd, Prolog-10 Debugging Facilities, Technical Note, Depart­
ment of Artificial Intelligence, Edinburgh University, 1980.

[2] Keith Clark and Steven Gregory, A Relational Language for Parallel
Programming, In Proceeetlinga of the ACM Conference on Fucntional
Programming Languages and Computer Architeckture, pp. 171-178,
1982.

[3] Keith Clark and Steven Gregory, PARLOG: A Parallel Logic Pro-
gramming Language (Draft), Technical Report DOC 83/5, March 1983.

[4] Keith Clark and F. McCabe, The Control Facilities of IC-PROLOG,
In:Ezpert System, in the Micro Electronic Age, D. Mitchie (ed.), Edin­
burgh University Press, pp. 122-149, 1981.

{5] Paul Egghart, Logic enhancement. ~ Proceeding, of the ACM Con-
ference on Lisp and Functional Programming Languages, August, 1982.

[6] Robert A. Kowalski, Algorithm= Logic+ Control, CACM22(7):426-
346, July 1979.

[7] John McCarthy, Coloring Mapa and the Kowalski Doctrine, Technical
Report STAN-CS-82-903, Stanford University, April 1982.

[8] Lee Naish, An Introduction to MU-Prolog, Technical Report 82/2,
Department of Computer Science, University of Melbourne, 1982.

[9] Luis M. Pereira, Logic Control with Logic, In Proceedings of the
First International Logic Programming Conference, pp. 9-18, ADDP,
Marseille, September 1982.

- g -

9L

(10] Luis M. Pereira and Antoili.o Porto, Selective Backtracking, In Logic
Programming, K.Clark and S.-A. Tarnlund {Eds.), Academic Press,
1982.

[11] Antonio Porto, Epilog: a language for extended programming in logic,
In Proceeding, of the Fir at International Logic Programming Conference
pp. 31-37, ADDP, Marseille, September 1982.

[12] Ehud Y. Shapiro, Algorithmic Program Debugging, ACM Distinguished
Dissertation Series, MIT Press, 1983.

(13] Ehud Y. Shapiro, A Subset of Concurrent Prolog and its Interpreter,
Technical Report TR-003, ICOT - Institute for New Generation Com­
pputer Technologu, 1983.

[14] SZKI. MProlog Language reference Manual, SZKI, Budapest, Hungary,
November 1982.

[15] David H. D. Warren, Higher order extensions to Prolog - are they
needed? In Machine Intelligence 10, D. Michie, J. Hayes, and Y. H.
Pao {eds.), Ellis-Horwood, 1982.

- 10 -

