
Abstract

The pragmatics of Prolog: some comments

by

E.W. Elcock

The University of Western Ontario

London, Canada

N6A 5B9

Logic programming and Prolog in particular have done
much to illuminate the relationship between logic and
computing.. The relationship between logical· consequence and
effective construction is. however, very subtle, and it seems
appropriate (even if not entirely novel) to continue to be
concerned about too simplistic an approach to the
difficulties which face any assertative programming language.
This note attempts to focus some of these difficulties for
Prolog in the context of a simple but rewarding pedagogic
example.

(Keywords: Logic programming; Prolog; programming
methodology, pragmatics)

I the pragmatics of Prolog: some comments Page 2

~ntroduction: "between the expectation and the reality lies
the shadow"

The paper comments on the view that Prolog, as an
ixemplar of logic programming, is a candidate for a
ipecification language and as such provides specifications
:1th a declarative (standard model theoretic) reading, but
rith the bonus that such specifications can be re-interpreted
irocedurally and without change as providing implementations
if the specifications.

I As a specification, a Prolog p~ogram [A,G] is to be
fhought of a sequent A=> G. It is well-known, however, that
lrolog is an incomplete system: that is, there exist Prolog
irograms [A,G] where A is a sequence of Horn clauses
nd G a conjunction of predications such that the
orresponding clausal sequent A=> G is a true -sequent and
et the Prolog program [A,G] does not terminate
uccessfully. A simple example illustrating this
ncompleteness is the Prolog program [A,G] where A is the
equence of clauses .

1. mem(U,[VIL]) :- mem(U,L)

2. mem(U,[UIL])

G is the goal statement

mem(a,[alM])

, In executing the goal statement Prolog repeatedly uses
lause 1 in the procedure for list -membership generating the
~finite sequence of goal statements
I
I

mem(a,[alM])
mem(a,M)
mem(a,M1) where Mis bound to [V1IM1]
mem(a,M2) where M1 is bound to [V2IM2]

, Prolog does not prove the true sequent A =>
~m(a,[alM]). In fact, with 'mem' specified with the ordered
air of clauses above in some more general sequence of
lauses A , Prolog will not establish the truth of any
~quent involving a call of 'mem' on a list with variable
I• 1 ,1 .

45

The pragmatics of Prolog: some comments Page 3

In this
of A would
Indeed, the
reordering is
ordering. In
of clauses

example a simple reordering of the clauses
result in acceptable computational behaviour.
set of Prolog proofs generated with the
a superset of those generated with the original
this particular example, with A the sequence

1. mem(U,[UIL]~

2. mem(U,[VIL]) :- mem(U,L)

the membership
synthetically
Thus, if G

relation is very
(constructively) as

is a goal such as

m em (a • [b I M])

well
well

behaved and acts
as analytically.

then the Prolog program succeeds with, for-example. M bound
to· [a IM•] •

Prolog programmers might rationalize the problem of
which this example is a symptom by insisting that, although
one wishes to take advantage of the model theoretiri semantics
of Horn clauses in viewing a Prolog program as a lucid
specification, one should be willing in Prolog as in any
other language, to rewrite (transform) one's specification~
now viewed as a program, with the pragmatics of the
procedural interpretation (defined by the particular
interpreter or whatever) in mind.

In the particular case of 'mem', and with the procedural
interpretation of Prolog firmly in mind, one might
rationalize away any unease with so~e argument that "it's
obvious that one should have given the base case of the
recursion first" and in this Prolog is no worse than a
"conventional" applicative language where the "same thing"
might have happened. Certainly Prolog programmers are well
aware of the problem and acknowledge it (see for example
Clocksin & Mellish, 1982). My readings, however, lead me to
believe that many still do not treat the phenomenon with the
seriousness it deserves. This note exploits one of my own
five-finger exercises using Prolog in the hope of drawing
further attention to the problem.

I j I

rhe pragmatics of Prolog: some comments

i
i
~e,rmutations of a problem
!

Page 4

Let•s now turn to a more focal example: that of using
rrolog to write a specification of a solution of the eight
[ueens problem. We specify a board position by an ordered
1air of row and column numbers (r,c) l=<r,c:<8 • We wish
fo specify the set of subsets of size 8 such that no two
,embers of a subset lie on the same row, column or diagonal.
fe take advantage of the fact that the interpretation of a
iequence of the eight numbers 1 to 8 as a set of ordered
lairs (r,c) , where c is the r'th number in the sequence.
luarantees that no two members of the set have the same row
Ir column number. With this representation of subsets we
iimply have to restrict the sequences to be such that no
~o (r,c) pairs in the represented subset are-on the same
jiagonal.
!

I With this preamble we might begin to specify a solution
lo the eight queens problem with the Horn clause
'

1. queens(Q) :- perm([1,2,3,4,5,6,7,8),Q) , dsafe(Q)

~th the intended interpretation that .perm(M,N) specifies
~at the lists M and - N stand in the (symmetrical)
~lation permutation to one another, and that the predicate
psafe' will be suitably specified to capture the intended
nterpretation discussed above.

I So far, so good: the specification has a very clear
Ddel theoretic (declarative) semantics contributing to our
~tended interpretation - still to be filled out by
becifications of 'perm' and 'dsafe'. Let's look at the
bllowing specification taken from Clark , and McCabe's
reatment of the eight-queens problem (1979):
I

1. perm([],[])

2. perm(L,[UlM]) :- inserted(U,L,L1) • perm(L1,M)

3. inserted(U,[UIL],L)

4. inserted(U,[VIL],[VIM]) :- inserted(U,L,M)

1ere 'inserted(U,L,L1)' has the intended interpretation
!at the list L is the list L1 with the element U

The pragmatics of Prolog: some comments Page 5

inserted at some (arbitrary) position.

Again these specifications could be claimed to have
clear and acceptable declarative readings. We will assume
that 'dsafe' can be equally nicely specified - it has no
detailed pedagogic role to play in our example.

We seem then to have exploited the model theoretic
semantics of Prolog to obtain a very clear and complete
specification of a solution to the eight-queens problem by
the set of Horn clauses 1.2 •••• Let us call this set of
sentences "A" • The existence of a' solution to the eight
queens problem could now be asserted by the sequent "A=>
queens(Q)" •

Prolog would instantiate Q properly. However, if
clause 1 of the specification were changed to the apparently
_equivalent clause

1. queens(Q) :- perm(Q,[1.2,3,4,5,6,7,8]),dsafe(Q)

leaving everything else unchanged, then Prolog would .D..Q..t
instantiate Q •

This remark is not intended as a criticism of Clark &
McCabe, but to draw attention again to the difference between
possible expectations and the reality. One has the
expectation that a satisfactory axiomatization of 'perm'
would necessary capture the symmetry of the· relation. The
Prolog implementation of the axiomatization by Clark & McCabe
does not. In the context of its sole use in a particular
axiomatization of the eight-queens problem, the effects of
asymmetry have been nullified: in· general, however, this
might be treating the symptom rather than the disease and
would become increasingly opaque in more complex problems
involving deeper nestings of axiomatized relations.

The difficulty of the Clark & McCabe axiomatization lies
in the fact that if one backtracks to a call
of perm(M,L) where M is a variable, then clause 4 for
inserted is repeatedly used, each use generating a candidate
permutation M consisting of a list with one more
uninstantiated variable at its head and an uninstantiated
variable tail, each of which candidate permutations finally
fails the call perm(M,[]) - as, of course, it should!

~he pragmatics of Prolog: some comments
i I

Page 6
, I

I I

I
I !

, It might be thought this problem with 'perm' could be
of Prolog in some :ol ved by using meta-logical features

lpecification such as:

1 • perm(L,M) :- nonvar(L)
' !

'
perm1(L,M)

2. perm(L,M) :- nonvar{M) • ! , perm1 (M, L)

3. perm 1 ([], [])

4. perm1(M,[UIL]) :- inserted(U,M,N) • perm1(N,L)

5. etc., etc.

!i th the intention that "perm 1" is only called with an I

IPPropriately instantiated argument pair such that "inserted"
1s well-behaved. This specification would certainly "solve"
~e original problem associated with the eight-queens
~ecification: however, the new specification of "perm"
•haves in a similar way to the first for pairs of calls such
~ "perm([1,2,3],(21L])" and "perm([2IL],[1,2,3])".

ln order to emphasize the point made earlier about the
btivation of this brief note, a digression is in order. The
~llowing is a quotation from comments by an unknown referee
~resumably chosen for his expertise) of an earlier version
r this note: .

" ••• ;for that matter any Prolog programmer
knows or should know, that if he wants his predicate
to work independently of the data flow he m.Y.at, be
careful; hence program • • • is ..ll.Q.t to be written if
one knows that L can be a free variable or
"infinite" (i.e. end up with a free variable);
further the problem is not necessary with "perm", it
can be argued that it is with "inserted ": one
should then write:

inserted(U,V,L) :-
not var(V), !·, insert(U,V,L)

where "insert" is given by

insert(U,[UIL],L)

insert(U,[VIL],[VIM) :- inserted(U,L,M)

97 .

The pragmatics of Prolog: some comments Page 7

Admittedly this is a partial solution, but is
it correct in all cases whe~e inserted is called; in
particular perm([1,2,3],[2lL]) gives the two
correct answers for L and M; similarly
for perm([2IL],[1,2,3]) which fails ••• Hence
there is a natural way to get it right." (My
underlining - E.W.E.)

Adopting the referee's suggestion, the
specification of "perm" becomes:

perm([],[]) '
perm(L,[UIM]) :- inserted(U,L,L1) , perm(L1,M)
inserted(U,V,L) :/ not var(V), !, insert(U,V,L)
insert(U,[UIL],L)
insert(U,[VIL],[VIM) :- inserted(U,L,M)

Note that the referee has essentially addressed
the subproblem of non-termination by making one of
"perm(M,L) 11 and "perm(L,M) 11 !..ail! I did not and
still do not regard this as a "natural 11 way to get
nil" right!

Finally, to avoid potential misunderstandings
let me stress ·that this somewhat curious digression
has been made to emphasize that my men are not all
strawl Some are flesh and blood and refereeing!

Returning to the symmetry problem: in all
cases the incompleteness stems fr·om the potential
for generating objects from an infinite domain by
backtracking. Both the specification of "mem" at
the beginning of the paper and our specifications
of "perm" give trouble for this reason.

In the case of "mem" the difficulty was
removed by a reordering of clauses with the result
that no new candidate was generated "unnecessarily".
In the case of "perm" the problem is deeper: it
cannot be solved by reordering nor by meta-logical
wizardy which indeed addressed the "wrong"
problem. Equally important, this kind of
incompleteness is potentially difficulty to detect -
particularly when the calls to an offending m-ary
relation are part of higher relations themselves
possibly with completeness constraints of their
argument tuples. Thus, in our introductory
pedagogic context. the call of

100

~e pragmatics of Prolog: some comments Page 8

11 perm([1,2,3,4,5,6,7,8],Q)" comes from the body of
the specification of "queens". Although, as already
mentioned, once having diagnosed our difficulty, it
is not onerous to change the call
to 11 perm(Q,[1,2,3,4,5,6,7,8]) 11 , one could easily
construct more sophisticated examples where the
choice of appropriate orderings of argument tuples
could become quite a tricky problem.

In the· case of our illlustrative example
of "perm", and having identified that the
difficulty stems from the potential for "inserted"
in the specifications above to generate an infinite
sequence of objects each of which possesses a
property which is going to lead to failure. we can
see that it is possible to respecify "perm" to
make this impossible. There are two interestingly
different ways to do this.

The property in the "perm" . specification is
that each of the generated lists, L , say, has a
length one greater than its predecessor and that the
initiation of backtracking takes place by a failure
of 11 perm(M,[]) 11 ! Recognition of this motivates the
specification:

1. perm(L,M) :- samelength(L,M) , perm1(L,M)

2. samelength([],(])

3. samelength([UIL],[VIM]) :- samelength(L,M)

4. < clauses specifying 11 perm1 11 as in Clark &
McCabe specification above. say>

With this specification, any call of "perm"
with an argument tuple which fixes the common
(finite) length of the argument lists will lead to
"inserted" being called in a context in which
generation of an infinite sequence of objects cannot
occur. For example, one of our earlier "problem"
calls 11 perm([2IL],[1,2,3]) 11 would now result in
11 perm1([2IL],[1.2,3]) 11 being called in an
environment in which L is bound to the list [X,Y].
In effect we have a call of
11 perm1([2,X,Y],[1,2,3]) 11 : which call does not permit
infinitary generation.

The pragmatics of Prolog: some comments Page 9

One might, somewhat impudently, present the
specification with the motivation that the intended
procedural reading is to be "well, we'll do a quick
check that the two argument lists are indeed
globally consistent with the relation of permutation
before we get down to crossing the i's and dotting
the t's" !!! Indeed, in the case
where L and M are both explicit finite lists
then "samelength" acts like this (apart from the
tongue in cheek adjective "quick"). More generally
however "samelength" acts tp construct the most
general finite lists L and M which can satisfy
"samelength(L,M)" and it has been introduced into
the specification for just this reason.

A second (and more "honest"?) way to
axiomatization which is symmetric under
interpreter is to use a subtler kind of
and write the 'constructive' axioms:

perm([],[])

obtain an
the Prolog
redundancy

perm(X,Y) :- perm(X1,Y1) , inserted(U,X,X1)
inserted(U,Y,Y1)

with the previous axiomatization of "inserted".

Here.we simply have the embarrassment that each
of the permutations is generated twice!

"This is a long cautionary tale" said the mouse.

The Prolog "perm" saga ~oes not end here. What
happens if one wants the~ of permutations of some
finite list say?

Sets of consequences in Prolog are handled by a
non-logical operator "set-of" which essentially
explores the whole potential sequent space
aggregating appropriate instantions of variables in
provable sequents.

Certainly "set-of"
axiomatization of "perm"
"samelength" device within
device.

works with
using the

the domain of

the
covert

this

'
I I

The pragmatics of Prolog: some comments Page 1 O

However, "set-of" does JlQ.t work with the more
·"honest" axiomatization immediately above and for
the same reason as for previous failures: "set-of"
eventually enters an infinite search space, and we
once again have the problem of non-termination.

We see here a subtle interaction in Prolog of
incompleteness (in the obvious sense), and
no~-logical operators specifically introduced to do
what otherwise couldn't be done!

' An adjournment

Having got the bit between one's teeth and with
the success of 'samelength' to motivate one. one can
return to the original attempt at a direct symmetric
specification of "perm" and try

perm([],[])
perm([XIL],[XIM]) :- perm(L,M)
perm([XIL],[YlM]) :- inserted(X,M,M1,Y,L,L1) ,

perm(L1,M1)
inserted(X,[XIM],M,Y,[YIL],L)
inserted(X,[XIM],M,Y,[Y1lL1],[Y11L2]) :­

inserted(X1,M;M1,Y,L1,L2)
inserted(X,[X1lM1],[X1IM2],Y,]YIL],L) :­

inserted(X,M1,M2,Y1,L,L1)
inserted(X,[X1lM1],[X1lM2],Y,[Y1lL1],[Y11L2]) :-

inserted(X,M1,M2,Y,L1,L2)

where. inserted(X,L,L1,Y,M,M1) has the intended
interpretation that L(M) is the list L1(M1) with
X(Y) inserted in it. This is Prolog - symmetric and
works with "set-of". (Of course, one should prove
these statements?)

The necessity for the 6-ary function and the
multiplicity of cases in the model theoretic reading
rather detract from any sense of achievement!

summary

The late Christopher Strachey told the story
that whenever he gave talks on his design for the
language CPL, he would inevitably be asked "but can
it do so-and-so?" Strachey claimed that as the
designer of a good programming language there were

103

I •

The pragmatics of Prolog: some comments Page 11

only two possible answers he could give and they
were either "of course it can!", or "of course it
can't!"

One of the difficulties with Prolog is that it
does not meet this criterion and this note has
attempted to give a simple example of an important
way in which it fails. In a phrase: Prolog holds
out promises it cannot fulfill. In particular, to
have to consider potentially difficult proofs of
termination of procedural readings of obviously true
sequents, seems to run counter to one's intuition of
what "logic programming" is all about. One of the
reasons for the author's concern is that it is like
Absys (Foster, 1969) in this. Examples of other
ways in which Prolog fails to meet Strachey's
criterion could be given. It may well be that there
will emerge brands of logic programming languages
that will be both pragmatically useful and which
will indeed meet Strachey's criterion. It is
consistent with the goals of much current research
in Artificial Intelligence that the cause of
difficulties arising from a first tentative
specification might be automatically diagnosed and
rectified by a suitable respecification and, as an
issue in the study of knowledge representation and
use, some form of the problems identified with
Prolog above will have to be faced as part of that
study as such.

In the absence, however, of substantive
progress on such issues it might be better to
recognize that the goals of logic and the goals of
programming should be regarded as essentially
different unless proven otherwise. The goal of
logic as usually conceived is to exhibit what things
follow from what. The goal of programming as
usually conceived is to exhibit how to construct
something from oiher things. Although "what follows
from what" certainly provides the framework in which
a construction is demonstrated to be valid, to call
this validation process "control", at least in the
simplistic sense of current computational control
structures, and to regard Prolog programming as
"logic plus control" e.g. Kowalski~ 1979, is to
stretch a good catchphrase too far. In what sense,
for example, is it appropriate to regard the
1 samelength' assertion as a control component of the
specification of 'perm' in the example above? Like

10~

1
I tl'he pragmatics of Prolog: some comments Page 12

most provoking catchphrases, "programming as logic
plus control" can be given interesting
interpretations. However, for now a better
catchphrase, if one wants catchphrases at all, might
be that "logic is (Prolog) programming minus
control": a Prolog program, [A,G] , terminating
or not, stripped of a particular procedural
semantics with its particular concomittant
'control', and re-interpreted as a sequent A=>
G , is always, if true# demonstrably true in first
order logic. (The asymmetry in the two catchphrases
is, of course, only in the'eye of the believer!).

As mentioned in the introduction, although the
declarative aspect of computational text is very
important and has been increasing illuminated by the
study of the relation between logic and programming,
the relationship between consequence and
construction is very subtle, and its subtlety must
be· respe_cted.

The content of this note and, in particular,
the relationship between consequence and
construction, is being elaborated in a further
technical report in preparation. The work is being
conducted under Operating Grant Number A9123 from
the Natural Sciences and Engineering Research
Council of Canada.

105

The pragmatics of Prolog: some comments Page 13

References

1. Clark, K.L. & McCabe, F.G. (1979). The control
facilities of I.e. Prolog, Expert Systems in the
Micro Electronic Age (D. Michie, ed), Edinburgh
University Press.

2. Clocksin, W.F. and
Programming in
Berlin.

Mellish,
Prolog.

c.s. (1981).
Springer-Verlag.

3. Foster, J.M. and Elcock, E.W. (1969). Absys 1:
an incremental compiler. for assertions: an
introduction. Machine Intelligence 4, (Eds.
Meltzer. B. and Michie, D.). Edinburgh
University Press. Edinburgh. pp. 423-429.

4. Kowalski, R.A. (1979). Algorithm = Logic +
Control. C.A.C.M. Vol. 22, No. 7. pp. 424~436.

JOG

