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The pa~r deals with the manipc1lation of infinite trees in 
the context of the programming language Prolog. With this 
purpose a novel and concise model of Prolog is presented, The 
model does not explicity involve the first order logic. The 
problem of unifying two terms is replaced by that of det .er
mining whether or not a system of equations has at least one 
solution. Several examples of the use of infinite trees are 
also given. 

1. FOREWORD 

Prolog is a programming language that has been developed in 
Marseille, mainly by Roussel and Colmerauer in (Battani, 
1973; Colmerauer et al. 1973; Roussel, 1975). The name 
"Prolog" was given by Roussel for "Pro(gramming) in log(ic)". 
Originally, it was a theorem prover based on the resolution 
principle of Robinson ( 1965), with strong restrictions to 
reduce the search SJ:nce: linear proof, unification applying 
only on the first literal of each clause, etc •.• Credit is 
given to van Emden and Kowalski (1976) for having proposed a 
very simple theoretical model, the Horn clauses, which 
explains our restrictions and s~cifies exactly what Prolog 
tries to comillte (minimal Herbrand interpretation). 

However, there is a basic difference between most Prolog 
interpreters and the theoretical model: for efficiency 
purposes the interpreters utilize a simplified variant of the 
unification algorithm. The simplification consists of 
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suppressing the "occur check", that is, to allow the unifi
cation of a variable with a term already containing this 
variable. This simplification may be unsafe but the 
efficiency gains are considerable. For example, with the 
"occur check", the concatenation of two lists requires (at 
least) a time proportional to the square of the size of the 
first list. If the "occur check" is eliminated the time 
becomes linear. This is the case even when considering the 
fastest unification algorithms available (Baxter, 1976; 
Martelli and Montanari, 1976; Paterson and Wegman, 1976). 

The objective of this paper is to describe a novel theoreti
cal model of Prolog involving infinite trees. This model 
corresponds to the Prolog interpreters which do not perform 
the "occur check". However, the unification algorithm for 
these interpreters must be modified so as to assure terminat
ion. The best way to achieve this termination is an open 
problem which is not discussed here. 

The availability of elaborate data structures such as as 
infinite trees allow novel solutions to programming problems. 
Several examples of these solutions are given. The examples 
were tested using a recent Prolog system developed by 
Colmerauer et al. ( 1981) and which incorporates the ideas 
proposed herein. 

2. RATIONAL TREES 

In Prolog each variable re presents a finite tree which is 
constructed over a set F of functional symbols. To unify the 
variable x with the term f(a,x), means that xis also allowed 
to represent the infinite tree in (1). 
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~~~~~~~~ ................ 
An infinite tree is a tree with an infinite set of nodes. We 
need only consider a special class of infinite trees: the 
"rational" trees. 
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DEFINITION: a "rational" tree is a tree which has a finite 
set of subtrees. 

The tree in (1) is rational because it contains only the two 
subtrees: itself and the one node tree a. The tree in (2) is 
also rational, because it contains only two subtrees. 
However, the tree: 
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is not rational since the set of its subtrees is not finite. 

A rational tree may be transformed into a finite diagram by 
"merging" all the nodes from which the same subtrees start. 
For the two previous rational trees we obtain respectively: 

a 

0 I (4) (5) 

These diagrams are the "minimal representations" of the two 
infinite trees. The number of nodes in each diagram equals 
the number of subtrees , of the tree. Notice that even the 
minimal rerresentation of a finite tree may contain fewer 
nodes than the tree itself. For example: 

/f"" 
f f 

becomes 

/\ /\ 
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3. SYSTEM OF EQUATIONS 

In addition to the set F of functional symbols, we introduce 
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an infinite set V of variables which allows us to construct 
terms over FuV. 

A "tree-assignment" Xis a finite set of ordered pairs of the 
form: 

where the ri's are (possibly infinite) trees and the Xi's are 
distinct variables. If a given term t contains no variables 
other than the Xi's in X, then t/X denotes the tree defined 
by: 

if t = Xi then 
if t = ft, ••• tm then 

t/X = ri 
t/X = f (the one node tree f when m=o) 

/\ 
t1/X ••• tm/X 

An "equation" is an ordered pair of terms ( s, t) writ ten as 
s:t and a tree-assignment X is a "tree-solution" of this 
equation iff s/X= t/X. 

By systems of equations we mean only finite sets of 
equations. A tree-assignment Xis a tree-solution of a system 
E of equations iff Xis a subset of a tree-assignement which 
is a tree-solution of every equation in E. 

Let us consider a system of equations of the form: 
{x1=u1, ••• , xn=un}, where the Xi's are distinct variables 
and each ui contains exactly one functional symbol and no 
variables other than the xi's. 

It can be shown that such a system has exactly one tree
solution of the form {x1:=r1, ••• , xn:=rn} and that the ri's 
are rational trees. The proof of this property is beyond the 
scope of this pa per. 

For example, to the system: {x1=f(x 2 ,x 1), x2=a} corresponds 
diagram (8) which gives the tree-solution in (9). 

x, 
0 (8) 

x,j 
{x1== f , x2::a} 
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/\ 
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This leads to the first result: 

SOLVABLE FORM: A system of equations of the following form 
has at least one tree-solution: {x ,=t 1, ••• ,xn=tnJ-, where the 
Xi's are distinct variables and the ti's are any terms. 

The second result is obvious: 

UNSOLVABLE FORM: A system of equations containing an equation 
of the following form has no tree-solution: 

fs 1 ••• sn=gt 1 ••• tm, where f,g are distinct functional symbols. 

We now introduce five transformations on systems of equati
ons: 

COMPACTION (C): Eliminate any equation of the form x=x where 
xis a variable. 

VARIABLE ELIMINATION (VE): If x,y are distinct variables, x=y 
is in the system and x has other occurrences in that system 
then re place these other occurrences of x by occurrences of 
y. ( X-= d -;~S) 

VARIABLE ANTEPOSITION (VA): If xis a variable and tis not a 
variable then replace t=x by x=t. 

CONFRONTATION (CO): If x is a variable and t 1,t 2 are not 
variables and it 1i < it 2 i then replace {x=t,,x=t 2 } by 

x=t1,t 1:t 2 • By !ti we denote the size oft, i.e. the 
number of occurrences of elements of FuV. 

SPLITTING (S): Replace {fs 1 •• s,=ft 1 •• tn} by {s,=t,, •• ,sn=tn} 

These transformations have interesting properties: 
- They preserve equivalence. Two systems are equivalent iff 
they have the same tree-solutions. 
- Every repeated application of these transformations, on an 
initial system, leads, after a finite number of steps, to a 
dead end where no transformation can be applied. The sys tern 
thus obtained is a "simplified form" of the initial system. 
- A simplified form has a tree-solution iff each of its 
equations is of the form x=t, where xis a variable. 

The first property is obvious, the second will be proved at 
the end of this chapter and the third is a direct consequence 
of our solvable and unsolvable forms. 
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For example, let x,y be variables, h a unary functional 
symbol and k a 0-ary functional symbol. 

The system: {x:hhx, hhk=x} has no tree-solution because of 
the transformations in (10). 

The system: {x=y, x=hhx, y=hhhy} has a tree-solution because 
of the transformations in (11). 

{x:hhx, hhk:x} (VA) {x=y, x=hhx, y:hhhy} (VE) 
{x=hhx, x:hhk} (CO) { x=y, y:hhy, y:hhhy} (CO) 
{x=hhx, hhx=hhk} (S) ( 10) { X=Y, y:hhy, hhy:hhhy}(S) ( 11) 
{x:hhx, hx=hk} (S) { x=y, y:hhy, hy:hhy} (S) 
{x=hhx, x=k} (C) { x=y, y:hhy, y:hy} (CO) 
{k:hhx, x=k} { x=y, hy:hhy, y:hy} (S) 

{ x=y' y:hy} 

Note that the test in the confrontation is necessary: The 
following loop results from eliminating the test in the 
second confrontation of the last example: 

{x=y, y:hhy, y:hy} 
{x=y, y:hhy, hhy:hy} 
{x=y, y:hhy, hy:y} 
{x=y, y:hhy, y:hy} 

(CO, without test) 
(S) 
(VA) 
(CO, without test) 

(12) 

By introducing intermediate variables so that every term 
contains no more than one functional symbol the check for a 
greatest term is no longer necessary. The entire simplifi
cation process becomes similar to the efficient unification 
algorithm on general trees proposed by Huet ( 1976). The in
termediate variables correspond to the pointers needed to 
rei:resent a term in a computer. In our Prolog implementation 
we avoid the test in another way. We order the equations and 
then apply the transformations under certain conditions de
pending on the ·ordering. Unfortunately we have not been able 
to obtain a proof of the termination of this algorithm, but 
it has never failed in any of the programs we ,have run. 

We now give the outline of the proof that it is impossible to 
construct an infinite sequence of systems Ei of equations: 

where Ei+1 is obtained by applying one of our five transfor
mations to Ei. 

First we prove that such a sequence has to be finite if we do 
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not apply the splitting transformation. Let us consider the 
initial system Eo. Let N be the number of equations of the 
form x=x or x=y and let M be the number of equations of the 
form x=t or t=x. The number of compactions and the number of 
variable eliminations cannot be greater than N. The number of 
variable antepositions and the number of confrontations 
cannot be greater than M. 

Secondly, we consider the sequence of positive integers: 

defined by: II Eoll , IIE1II ' ... ' IIEill ' IIEi+1II ' ... 
ll{s1=t1, ••• , sn=tn}II = 

kmax{ Is 1 I ' It 1 I } + ••• + kmax{ lsnl ' ltnl} 

where k is the greatest n-arity of functional symbols 
occurring in E0 • From the definition of the transformations, 
it is possible to show that: 

> II Ei+ 1 II 
> 11Ei+1II 

for all the transformations, and 
in the case of a splitting transformation. 

Our first result proved that the existence of an infinite 
sequence of Ei's implies an infinite number of applications 
of the splitting transformation. From the above inequalities 
it follows that this infinite sequence is impossible because 
the integers IIEill would become negative. 

4. RECURSIVE DEFINITION OF ASSERTIONS 

Let F be a set of functional symbols and let V be an infinite 
enumerable set of variables. A Prolog program is basically a 
recursive definition of a subset A of the (possibly infinite) 
trees over F. The elements of this subset are called "asser
tions". This recursive definition has to be elaborated by 
means of set of rule schemas, each being of the form: 

t -> t1 ••• tn in which n can be equal to O and t,t1,•••,tn 
are terms over FuV, 

These rule schemas induce a set of rules: t/X -> t 1/X ••• tn/X 
obtained by considering all the possible tree-assignments X 
to the variables. 

Each of these rules: r -> r 1 ••• rn 
can be interpreted in two different ways: 



238 A. COLMERAUER 

1. As the "rewriting rule": 
r can be rewritten in the seguence r 1 ••• rn 
and thus, when n=o, as: r can be erased. 

2. As the "logical implication" dealing with the subset A of 
trees: 
r1 element of A and ••• and rn element of A implies r 
element of A. 
For n=O, this becomes: r element of A. 

Depending on whether we use the first or the second 
1

interpre
tation, the "assertions" are defined by: 

DEFINITION 1: The "assertions" are the trees which can be 
erased in a finite number of steps, using the "rewriting 
rules". 

DEFINITION 2: The "assertions" are the smallest subset A of 
trees which satisfy the "logical implications". 

It is shown· in ( Colmerauer, 1979b) that the two definitions 
are equivalent. The second has the advantage of being more 
abstract and related to logic. The first definition is more 
akin to the way the Prolog interpreter works. 

Consider for example the well known Prolog program consisting 
of the two schemas: 

plus(suc(x),y,suc(z)) -> plus(x,y,z) 
plus(zero,x,x) -> 

in which x,y,z are variables and zero,suc,plus are functional 
symbols of n-arity 0,1,3 respectively. These schemas induce, 
among others, the two rules: 

plus -> plus plus -> 

/I"'-- /I"'-- /I"---
sue sue sue zero sue sue zero sue sue 

I I I I I I I 
zero sue sue sue sue sue sue 

I I I I I I 
sue sue sue sue sue sue 

I I I I I I 

According to the first definition the rational tree: 
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plus 

/1~ 
sue sue sue 

I I I 
zero sue sue 

I I 
sue sue 

I I 
is an assertion, because it can be erased in two steps using 
the two preceding rules as rewriting rules. According to the 
second definition the above tree is also an assertion, 
because any set E which satisfies the logical implications of 
these two rules must contain this tree. Note that this tree 
being an assertion can be viewed as the existence of an x 
such that 1+x=x. If this is to be avoided one should give a 
more precise definition of plus(x,y,z), that is: 

plus(suc(x),y,suc(z)) -> plus(x,y,z) 
plus(zero,x,x) -> integer(x) 

integer(zero) -> 
integer(suc(x)) -> integer(x) 

5. COMPUTATION OF SUBSETS OF ASSERTIONS 

We have just explained what a Prolog program means, but not 
what it does. When the Prolog interpreter is invoked, it 
tries to solve the following problem: 
- given a program, which is a recursive definition of a set 
of assertions A, 
- given a set of terms {t1,t2,•••,tn} which acts like a 
"window" over the assertions, and given the set of variables 
{x 1 , ••• ,xm} which occur in it, 

find all the assertions which can be "seen" through this 
window, i.e.: comµ1te all the tree-assignments of the form 
X = {x1:=r,, ... ,xn;=rrJ such that {t1/X, ••• ,tn/X} becomes a 
subset of A. 

To do so we will work on pairs of the form: 

(t 1 ••• tn, E) where t 1 ••• tn is a (possibly empty) sequence 
of terms, and Ea system of equations. 

DEFINITION OF "=>": We introduce the following binary rela
tion between the above pairs: 
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(s 0s 1 ••• sm, E) => (t 1 ••• tns, ••• sm, Eu{so=t}) iff . 

t -> t 1 ••• tn is obtained by renaming the variables of a 
schema in such a way that its variables are dis
joint from those of so··•sm and those of E, and 

Eu{s 0:t} is a system of equation which has at least one 
tree-solution. 

We write x=>*y iff there exist a finite sequence of ui's 
such that x=uo, u0:>u1, u1=>u2,···Un=Y· 

The following is the main result on which the Prolog inter
preter is based: 

WINDOW PRINCIPLE: let {t 1, ••• ,tn} be a set of terms, let 
{x 1, ••• ,xm} be the set of its variables, and let X be a tree
assignement of the form X = {x1:=r,, ••• ,xm:=rm}: 

{t 1;x1, ••• ,tn/X} is a subset of the set A of assertions iff 
Xis a tree-solution of a system E of equatiol)L)such that: 
(t, ••• tn, {})=>*(empty, E) 

The proof of a similar result is found in (Colmerauer, 
1979b). A more precise explanation of the Prolog interpreter 
is now given. Let s0 be the sequence of terms in the window 
and Eo the empty system. The interpreter enumerates all the 
sequences of pairs (Si,Ei) which are such that: 

The interpreter expects all these sequences to be finite (It 
is up to the programmer to assure that this is the case). The 
ability of printing, at any time, a tree satisfying the 
current set of equations Ei, is one of the multiple features 
which have to be added to the theoretical model of Prolog to 
render it usable as a programming language. 

Let us consider again the rules schemas: 

plus(zero,w,w) -> 
plus(suc(x),y,suc(z)) -> plus(x,y,z) 

Assume that we wish to comµ.ite all the tree-assignemenfs: 

such that the set: 

{plus(suc(zero),u,v)/X, plus(suc(zero),v,u))/X} 
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becomes a subset of the assertions. Then the pairs (Si,Ei) 
become successively (Ei' is a simplified form of Ei): 

It 

So= plus(suc(zero),u,v) plus(suc(zero),v,u) 
Eo = {} 
Eo' = {} 

S1 = plus(x,y,z) plus(suc(zero),v,u) 
E1 = Eo u {plus(suc(zero),u,v)::plus(suc(x),y,suc(z))} 
E1'= {u=y,v:suc(z),x=zero} 

S2 = plus(suc(zero),v,u) 
E2 = E7 u {plus(x,y,z)=t)lus(zero,w,w)} 
E2'= {u=w=y=z,v=suc(z),x=zero} 

S3 = plus(x' ,Y' ,z') 
E3 = E2 u {plus(suc(zero),v,u)::plus(suc(x'),y' ,suc(z'))} 
E3 = {u=w=y=z=suc(z'),v=y'=suc(z),x=zero,x'=zero} 

S4 = empty 
E4 = E3 u {plus(x',y',z')=t)lus(zero,w',w')} 
E4'= {u=w=y=z=suc(z'),v=w'=Y'=z'=suc(z),x=zero,x'=zero} 

follows that the only solution is: 

X = {u::suc, v: =sue } 
I I 

sue sue 
I I 

sue sue 

I I 

6. EXAMPLE USE OF INFINITE TREES 

6.1 Grammars 

Consider the following context-free grammar: 

s -> N non-terminals: { S,N } 
s -> aSb initial non-terminal: s 
N -> C 

N -> cN terminals: {a,b,c} 

If we trace the rules of this grammar, starting from s, we 
obtain the infinite and-or tree which enumerates the genera
ted strings ("and" is to be understood as "followed-by"): 
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or 
or- ---and 

~ /~ 
letter-c and letter-a and 
~ I~ 

letter-c or or letter-b 

~ /------
letter-c and or and 

~ ~ / -----letter-c •• letter-c and letter-a and 
,,.-,-1 1-----

letter-c or or letter-b 

~ /------letter-c and or and 

letter-c~. letter-c~nd lett~ ~ 
..-/1 

letter-c or 

~ 
letter-c and 

letter-c~. 

The above is a rational tree whose minimal representation is: 

~ 

,,d[~ 
or ___ ► 

letter-c 

Let us assume that variables are represented by one-letter 
identifiers. The program to define the grammar is: 

grammar(s) -> 
equal(s,or(n,and(letter-a,and(s,letter-b)))) 
equal(n,or(letter-c,and(letter-c,n))) 

equal(x,x) -> 

Terminal strings are defined by: 
terminal-string(nil) -> 
terminal-string( 'and(a,x)) -> terminal(a) terminal-string(x) 

terminal(letter-a) -> 
terminal(letter-b) -> 
terminal(letter-c) -> 
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Examples of terminal strings are: 

string-1(and(letter-a,and(letter-c,and(letter-b,nil)))) -> 
string-2(and(letter-a,and(letter-b,and(letter-b,nil)))) -> 

Consider · the term produces(p,x) with: 

produces(p ,x) 
becomes an 
assertion 

iff 

It can be defined by: 

p becomes a grammar and 
x becomes a terminal string and 
x can be generated by p. 

produces(p,x) -> gives(p,x,nil) 

gives(or(p,q),x,y) -> gives(p,x,y) 
gives(or(p,q),x,y) -> gives(q,x,y) 
gives(and(p,q),x,z) -> gives(p,x,y) gives(q,y,z) 
gives(a,and(a,x),x) -> terminal(a) 

The reader will have guessed that: 

gives(p ,x,y) 
becomes an 
assertion 

iff p becomes a grammar and 
x becomes a tree of the form: 

and(a1,and(a2,•••and(an,Y) ••• )) 
and a,a 2 ••• an can be generated by p. 

To check if the strings acb and abb belong to the considered 
language, we start (respectively) from: 

grammar(p) string-1(x) produces(p,x) 
grammar(p) string-2(x) produces(p,x) 

It is also possible to use produce(p ,x) to enumerate (inde
finitely) all the strings x of the language defined by p. It 
is even possible, under certain conditions, to enumerate all 
the grammars p which generate x! Similary we can program 
produces-not(p,x) which means: 

produces-not(p,x) 
becomes an 
assertion 

The program is: 

iff p becomes a grammar and 
x becomes a terminal string and 
x cannot be generated by p. 
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produces-not(p,x) -> terminal-string(x) gives-not(p,x,nil) 

gives-not(or(p,q),x,y) -> gives-not(p,x,y) gives-not(q,x,y) 
gives-not(and(p,q),x,z) -> each-cut-fails(and(p,q),x,x,z) 
gives-not(a,x,x) -> terminal(a) 
gives-not(a,and(b,x),x) -> different-terminals(a,b) 
gives-not(a,and(b,x),y) -> terminal(a) ends(y,x) 

each-cut-fails(p,x,and(a,z),z) -> 
each-cut-fails(p,x,and(a,y),z) -> 

ends(z,y) cut-fails(p,x,y,z) each-cut-fails(p,x,y,z) 

cut-fails(and(p,q),x,y,z) -> gives-not(p,x,y) 
cut-fails(and(p,q),x,y,z) -> gives-not(q,y,z) 

ends(x,and(a,x)) -> 
ends(x,and(a,y)) -> ends(x,y) 

with of course, in this case: 
different-terminals(letter-a,letter-b) -> 
different-terminals(letter-a,letter-c) -> 
different-terminals(letter-b,letter-a) -> 
different-terminals(letter-b,letter-c) -> 
different-terminals(letter-c,letter-a) -> 
different-terminals(letter-c,letter-b) -> 

6.2. Back to the Finite 

Let us now introduce some general programs to manipulate 
rational trees. A rational tree has a finite set of subtrees, 
so it is possible to compute their list. Let us define: 

subtrees(p ,x) 
becomes an 
assertion 

We have: 

iff p becomes the tree r 1, 
r1,r2,•••,rn are the subtrees of r1, 
x becomes a tree of the form: 

list(i~(n,rn), 

list(is(2,r2), 
list(is( 1,r1) ,nil)) ••• ) 

subtrees(p,x) -> union-subtrees(nil,p,x) 

union-subtrees(x,p,x) -> in(is(n,p),x) 
union-subtrees{x,p,y) -> 

dominates(p,u) new-integer(x,n) unions(list(is(n,p),x),u,y) 

unions(x,nil,x) -> 
unions(x,list(p,u),z) -> union-subtrees(x,p,y) unions(y,u,z) 

PROLOG AND INFINITE TREES 

in(a,list(a,x)) -> 
in(a,list(b,x)) -> in(a,x) 

new-integer(nil,n) -> first-integer(n) 
new-integer(list(is(n,p),x),m) -> next-integer(n,m) 

where, for the previous grammar trees: 
dominates(a,nil) -> terminal(a) 
dominates(or(p,q),list(p,list(q,nil))) -> 
dominates(and(p,q),list(p,list(q,nil))) -> 

We must also introduce: 
first-integer(1) -> 

next-integer(1,2) -> 
next-integer(2,3) -> 

245 

From the subtrees of a tree we can compute a system of 
equations which define it. Consider: 

equations(p,s) iff 
becomes an 
assertion 

The program is: 

p becomes a tree with r,, ••• ,rn 
as subtrees, 

s becomes a system having 
{x1:=r,, ••• ,xn:=rn} as solution 

the variables x1, ••• ,xn are 
re presented . by 1, ••• ,n, 

sis represented by the tree: 
li;t(equal(n,fn(in1,in2,••·,inkn)), 

list(equal(2,f2(i21,i22,•••,i2k 2)), 
list(equal( 1,f1(i11,i12, ••• ,i1kl)), 

nil) J ••• ) 

equations(p,s) -> subtrees(p,x) into(x,s,x) 

into(nil,nil,x) -> 
into(list(is(n,p),x),list(equal(n,q),s),y) -> 

similar(p,q) dominates(p,u) dominates(q,v) 
into-bis(u,v,y) into(x,s,y) 

into-bis(nil,nil,x) -> 
into-bis(list(p,u),list(n,v),x) -> 

in(is(n,p),x) into-bis(u,v,x) 

with (in the case of our grammar tree): 
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similar(a,a) -> terminal(a) 
similar(or(p,q),or(x,y)) -> 
similar(and(p,q),and(x,y)) -> 

This program allows us to compute the equations which 
correspond to the minimal representation of a rational tree. 
For example, if we consider the previous grammar and we start 
from: 

grammar(p) equations(p,x) 

x becomes as first solution as shown in (13), which gives the 
already mentioned minimal re pres en ta tion of the grammar as 
shown in (14). 

list 

I"----
equa1 list 

..-----\ I "----
8 letter-b equal list 

__..-\ I "---- (13) 
1 and(1,8) equal list 

...---\ I "----
6 letter-a equal list 

....----------\ / "----
5 and(6,7) equal list 

....----------\ / "----
4 and(3,2) equal list 

....----------\ I"----
3 letter-c equal list 

~\ I"----
2 or(3,4) equal nil 

....----------, 
1 or(2,5) 

or 

2/ ~5 

(o\~ fZ~:nd 
31 ~ 

(14) 

letter-c letter-b 

The program which defines 'equations(p ,x). is a fundamental 
one. One can also use it to output infinite trees in a finite 

PROLOG AND INFINITE TREES 247 

way. For this purpose there is a simpler program which 
transforms any rational tree pinto a finite pseudo-term q, 
which, in case of infinity, contains pointers to upper level 
nodes. 

into-pseudo-term(p,q) -> changes(p,q,nil) 

changes(p ,to(n) ,x) -> in(is(n,p) ,x) 
changes(p,q,x) -> 

similar(p,q) dominates(p,u) dominates(q,v) 
new-integer(x,n) change(u,v,list(is(n,p),x)) 

change(nil,nil,x) -> 
change(list(p,u),list(q,v),x) -> changes(p,q,x) change(u,v,x) 

If one runs the program starting from: 

grammar(p) into-pseudo-term(p,q) 

then q becomes: 

level 

level 

level 

level 

1 •••••••••••••••• or ••••••••••••••••••••••• 

-----------2 •••••••• or •••••••••••••• and •••••••••••••• 
/~ /~ 

3 •• letter-c •• and ••••• letter-a •• and •••••••• 

/ "--- / ~ 
4 •• letter-c ••••• to(2) •••••• to(1) •• letter-b 

6.3. Finite Automatons 

1 N 

l 
(15) 

F ......----....F 

~ 
2 3 

b 

A finite state automaton consists of: 
- An in p..it vocabulary. We will limit ourselves to { a, b}. 
- A non-empty finite set of states which will be the nodes of 
a grafil. There are two kinds of states: final and non-final 
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states (respectively labeled by F and N). 
- A selected state called the initial state. 
- A set of arrows connecting the states. Each arrow is 
labeled by an inp..1t symbol. We will only consider automata 
which are complete and deterministic, that is: for each node 
and for each inp..1t symbol there is exactly one arrow which 
exits the node and which is labeled by the symbol. 

Our first automaton in (15) can be programmed by: 

automaton-1(s1) -> non-final-state(s1) 
final-state(s2) 
final-state(s3) 
arrow(s1,letter-a,s2) arrow(s1,letter-b,s3) 
arrow(s2,letter-a,s3) arrow(s2,letter-b,s3) 
arrow(s3,letter-a,s2) arrow(s3,letter-b,s2) 

where final, non-final, and arrow will be specified later. 

An automaton accepts (otherwise rejects) a string of input 
symbols a 1 a2 ••• an iff there exists a path of the form 

which starts from the initial state and ends on a final 
(otherwise not final) state. 

Acceptance can be programmed as: 
accepts(s,nil,true) -> final-state(s) 
accepts(s,nil,false) -> non-final-state(s) 
accepts(r,list(a,x),v) -> arrow(r,a,s) accepts(s,x,v) 

From the point of view of string acceptance, our first auto
ma ton in ( 15) can be re µ--esented by the infinite gra JXl in 
(16) which can be coded as the rational tree: 

state 

______-:J_f -------
state 

/fila1~ 
state state state 

f ila\ /fi~a\ 
state state state state 

We can now define: 
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final-state(state(x,final,y)) -> 

non-final-state(state(x,non-f,y)) -> 

arrow(state(x,f,y),letter-a,x) -> 
arrow(state(x,f,y),letter-b,y) -> 
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Consider the problem: compute the automaton which has the 
smallest number of states and which, from the point of view 
of acceptance, is equivalent to a given automaton. The solu
tion to the problem is to compute the _minimal representation 
of the rational tree which corresponds to the automaton. As 
we have already seen the program which defines equation(p,s), 
does this task. To properly execute it we need, however, to 
add the two rules: 

dominates(state(x,f,y),list(x,list(y,nil))) -> 
similar(state(p,f,q),state(x,f,y)) -> 

If we invoke the program, starting from 
automaton-1(s) equations(s,x) 

x becomes as first solution: 

list 

I ------equa1 list-------
/\ I 

2 state(2,final,2) equal nil 

/\ 
1 state(2,non-f,2) 

that is the automaton in (17). 

(17) 

Therefore our first automaton in (15) was not 
Consider the second automaton in (18). 

(18) 

minimal. 
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automaton-2(s1) -> non-final-state(s1) 
final-state(s 2) 
non-final-state(s3) 
arrow(s1,letter-a,s 2) arrow(s1,letter-b,s 3) 
arrow(s2,letter-a,s 3) arrow(s2,letter-b,s 3) 
arrow(s3,letter-a,s2) arrow(s3,letter-b,s2) 

By starting from: 
automaton-2(s) equations(s,x) 

x becomes now: 

lii8t -------

;zal lit ------
3 state(2,non-f,2) equal list /'\ 1----2 state(3,final,3) equal nil 

/'\ 
1 state(2,non-f,2) 

which proves that the second automaton is already minimal. 

Consider now the set of "good" inp.it strings: {ab, ba} 
and the set of "bad" in p.it strings: {a, b, aa, bb, aab, bba}. 
The problem is to comp.ite the automata which have no more 
than three states and which accept the good strings and 
reject the bad ones. We write: 

solution(x) -> automaton-3(s) equations(s,x) 

automaton-3(s) -> good-1(x1) accepts(s,x1,true) 
good-2(x2) accepts(s,x2,true) 
bad-1 (y1) accepts(s,y1 ,false) 
bad-2(y2) accepts(s,y2,false) 
bad-3(y3) accepts(s,y 3 ,false) 
bad-4(y4) accepts(s,y4,false) 
bad-5(y 5 ) accepts(s,y 5 ,false) 
bad-6(y5) accepts(s,y5,false) 

good-1(list(letter-a,list(letter-b,nil))) -> 
good-2(list(letter-b,list(letter-a,nil))) -> 
bad-1(list(letter-a,nil)) -> 
bad-2(list(le t ter-b,nil)) -> 
bad-3(list(letter-a,list(letter-a,nil))) -> 
bad-4(list(letter-b,list(letter-b,nil))) -> 
bad-5(list(letter-a,list(letter-a,list(letter-b,nil)))) -> 
bad-6(1ist(letter-b,list(letter-b,list(letter-a,nil)))) -> 
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The limit on the number of states is introduced by reducing 
the definition of next-integer to: 

next-integer(1,2) -> 
next-integer(2,3) -> 

By starting from solution(x), x becomes: 

lilst ------- · 

equal list 

,/\ I -------3 state(1,non-f,2) equal list /"'\ I---_ 
2 state(3,non-f,1) equal nil 

/'\ 
1 state(2,final,3) 

which is the automaton in (19). 

(19) 

The strings accepted by this automaton are those whose number 
of occurrences of a's is the same as the number of occurren
ces of b' s, modulo 3. The reader famliar with Pro log will 
notice the small . number of non-deterministic situations this 
program will confront. 
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