
MU-PROLOG (Version 1)

USER MANUAL

March 1981

J.W. LLOYD

..

- 2 -

Contents

1 . Introduction

2. Command Predicates

3. System Predicates

~. Control Predicate

5. Syntax

6. Error Messages

7. A Note on Implementation

8. A Sample Session

9. References

. .
Appendix 1. Syntax Diagrams

2. Internal Data Structures

3. Current Values of Constants

- 3 -

1. Introduction

This manual briefly describes the facilities available in MU-PROLOG.
Version 1 is experimental and rather primitive. Later versions will im
prove the user interface and provide many more facilities. Any problems
should be reported to the author.

MU-PROLOG (Melbourne University PROLOG) is an interpreter written in
PASCAL for the programming language PROLOG (PROgramming in LOGic). PRO
LOG is based on first order logic. In fact, the interpreter is essen
tially a theorem prover, highly specialized so that it can efficiently
run user programs. For the background on PROLOG and logic programming,
the reader is referred to [2], [3], [4), [5].

A user runs the interpreter in a similar way to an interactive LISP sys
tem. In fact, PROLOG has close similarities to LISP, although based on
a different foundation (first order logic rather than the A -calculus).
A user can load previously edited programs and run them in an interac
tive way. Various debugging aids are provided. Furthermore, a number
of built-in system predicates are available, which provide integer ar
ithmetic capabilities.

MU-PROLOG, like nearly every other PROLOG interpreter, uses backtracking
as the search strategy. Backtracking is implemented in the standard way
using a stack. This stack contains the goal clauses which are generated
during the computation. In fact, a computation is essentially just an
interleaved sequence of stack pops and pushes. The computation is suc
cessful when the NIL clause is generated.

2. Command Predicates

The interpreter is called up by the command

prolog

The system responds ' with the reply

MU-PROLOG version 1

<-

The system prompt is always<-. The user is now in the top level of the
interpreter. At this level the user may load programs, trace, run pro
grams etc. The generic term for predicates which do such things as load
programs and so on is command predicate. The following are those com
mand predicates available in version 1.

load

The load command has the form

ld(filename).

Note the full stop. ld takes one argument. The interpreter looks for a

- 4 -

file called filename.pl in the current directory and tries to load it as
a PROLOG program. Syntax errors, if any, are reported. When the com
mand is finished, the interpreter responds with<-.

list

The list command has the form

ls.

This command lists the currently loaded program (there can be only one
at a time). It also numbers the clauses in the program. Other command
predicates refer to these numbers. Program clauses appear 12 at a time.
To get the next lot, type y return (or simply return twice). To cease
listing, type n return.

trace

By default the trace facility is off. To turn it on, the command is

tr.

and to turn it off, the command is

tf.

When the trace is on, the interpreter displays on the screen the goal
clauses as they are generated during the running of the program. The
number on the left of the clause refers to the program clause which was
one parent of the curr~nt goal clause. The other parent is always the
first atom in the immediately preceeding goal clause.

Subscripting is used to distinguish variables with the same identifier
in a particular goal clause. Thus x:14 is to be read x14 .

The trace command is very expensive because _the interpreter has to
reconstruct each goal clause from a rather complicated internal
representation. However, trace provides a very useful debugging aid and
also a check that a program is performing as expected.

Goal clauses are displayed 5 at a time.
n return. To. continue the trace,
Stack pops are indicated by

To discontinue the trace, type
type y return (or return twice).

****pop***

Proof

This command has the form

pr.

The proof command displays goal clauses (5 at a time) starting with the
initial goal clause and following all the way down the branch which led

- 5 -

to the successful computation, finally ending with NIL. (This is to be
compared with trace which prints all goal clauses as the interpreter
traverses the search tree during the computation).

next

The next command has the form

nx.

This command is used to find the next solution, and by repetition, all
solutions to a problem. Next pops the last goal clause (NIL) off the
goal stack and continues the computation until the next solution is
found. This solution will generally be different to the previous solu
tion, although, depending on the program, it need not be. The command
can be repeated. When there are no more solutions, the interpreter
responds with "no".

Exit

To exit the interpreter, the command is

ex.

Occur

The command predicate to turn the occur check on is

oc.

The command to turn it off is

of.

By default, the occur check is off. When the occur check is on, during -
unification the int'erpreter checks whether a term, which is about to be
bound to a variable, contains that variable. If it does the proposed
unification should fail. With the occur check off (the default), the
interpreter will quite happily make the binding (and subsequently get
itself into a dreadful tangle!)

However, it is important to realise that only the most contrived PROLOG
programs will run into this problem and, since the occur check is very
expensive, current interpreters do not make the check.

If you need the occur check to make a program run, there is probably
something wrong with your program!

l· System Predicates

The interpreter contains a number of system predicates. Tnese are
built-in predicates mainly relating to arithmetic capabilities. These
may be used in programs. When called, they are handled specially by the
i nterpreter with PASCAL procedures.

- 6 -

Command predicates and system predicates are contrasted with user predi
cates, which are predicates defined by clauses in user programs.

Arithmetic Predicates with~ Arguments

These predicates are

lt less than

le less than or equal to

eq equal to

ne not equal to

Each of the above predicates has 2 arguments · which must both be
bound to integers at the time the predicate is encountered during the
computation. If one or both of the arguments are not bound to integers
an error occurs and the computation ceases. The predicate succeeds
when the stated relation holds, otherwise it fails.

Arithmetic Predicates with 1 Arguments

These predicates are

plus

minus

mult

div

mod

(integer) addition

subtraction

multiplication

division

remainder modulo

Thus, plus (x,y,z) ·rfteans x+y=z and so on. Each of these predicates ex
pects the first two arguments to be bound to integers at the time the
predicate is encountered during the computation. Otherwise, an error
occurs and the computation ceases with an error message. The third ar
gument can either be a ("free") variable or be bound to an integer. In
the first case, the variable is bound to the value resulting from the
operation, and the predicate succeeds. Otherwise, the interpreter
checks whether the stated relation holds between the 3 integer argu
ments, succeeds if it holds and fails if it does not hold.

Write and Newline

The write predicate has the form

write(arg1. arg2. arg3 argn)

When the write predicate is encountered during a computation, it
transmits output to the terminal. For those arguments which are vari
ables with a current binding the predicate writes out the current bind-

- 7 -

ing. Arguments with no current binding are simply written out directly.
Arguments which are integers cause that number of blanks to be written.
The dots in the write predicate cause a single blank to be output. Thus
if xis currently bound to 34.123.847.NIL, then:

write(5.Sorted.list.is.x)

causes the message

~wuuuuSortedviist~is 34.123.847.NIL

to be output.

One can cause newlines to be output by the predicate

nl

fail

The system predicate

fail

always fails when encountered as a goal during the computation.

4. Control Predicate

Apart from the ordering of program clauses and the ordering of atoms in
a program clause, one other control feature is provided. This is the
"cut" control predicate, written ! .

! is inserted into the body of a program clause like an ordinary atom.
However, it has a special behaviour. When first encountered as a goal
during the computation, cut succeeds immediately. If backtracking
should later return to the cut, the effect is as follows. The inter
preter will pop clau~es all the way back to the parent clause which
first caused the cut to be introduced. (That is, this clause matched a
clause which contained the cut in its body). The parent clause is it
self then popped (i.e. failed). For further discussion of the use of
the cut predicate the reader is referred to [6].

2.· Syntax

A MU-PROLOG program consists of a sequence of clauses which are essen
tially first order logic Horn clauses of the form

p <- q, r, ... , z.

where the p,q, ... are atoms. The only variation from logic notation is
that "," denotes conjunction and each clause must end with a full stop.
In general, the right hand side can be empty in which case the clause is
written

p.

•

- 8 -

The left hand side of the clause is called the clause (or procedure)
head and the right hand side is called the clause (or procedure) body.

A loaded program is run by giving it an initial goal clause of the form

s, t, ... , x.

If the computation succeeds and there are variables in the goal clause,
their values are printed out at the end. If there are no variables and
the computation succeeds the interpreter responds with "yes", otherwise
it responds with "no".

A primitive commenting facility is available. Just insert in the pro
gram, at any point between clauses, something like

comment (this.is.a.very.primitive.comment).

There is one reserved function available. This is the cons function,
familiar from LISP. cons(x,y) is the list with x as the first element
and y as the rest. For notational convenience, the dot notation for
cons is provided. Thus

cons(x,y) can be written x.y

Hence, cons(A, cons(B, cons(C, NIL))) is the list

A.B.C.NIL

NIL is conventionally used as a list terminator. The cons and dot nota
tion are interchangeable. Thus, one could write for example

cons(A,B.NIL).

The interpreter always outputs the dot notation. _The only restriction
is that it does not understand, for example

. '
((A.B).C).

Instead, one must write:

cons(cons(A,B) ,C).

To distinguish between variables and constants in a program the follow
ing convention is used. A function with no arguments is a constant if
its first letter is upper case, otherwise it is a variable.

Identifiers must be no more than 10 characters long.

6. Error Messages

A fairly comprehensive list of errors is reported. The following is a
complete list of error messages with their explanation.

Syntax error in goal - the initial goal clause has a ~yntax error.

- 9 -

Since the syntax for MU-PROLOG is so trivial the precise problem will be
evident.

Syntax error in clause n - the nth clause in the program being loaded
has a syntax error.

Unexpected eof - the file containing the program does not contain a com
plete program.

Predicate not found: identifier - the identifier is not known as a
predicate to the interpreter.

Wrong no of args in goal~ a predicate or function in the goal contains
the wrong number of arguments. For a user defined predicate or func
tion, this means that an earlier occurrence had a different number of
arguments. It could also mean that a predicate or function had>
maxargs-1 arguments. Maxargs-1 is the maximum number of arguments al
lowed.

Wrong no of args in clause n - the nth clause has a predicate or func
tion with the wrong number of arguments.

Predicate table overflow - the program being loaded has too many predi
cates to fit into the predicate table.

Function table ·overflow - the program being loaded has too many func
tions to fit into the function table.

Goalstack overflow - the stack containing
during the ·computation has become full.
bug!

the goal clauses generated
Your program probably has a

Command predicate illegally used - it is not legal to mix command and
user predicates in a goal clause. Also it is not legal to have a goal
with more than one command predicate in it. So, for example,

. '
ld(fred) ,ls.

is illegal.

Too many vars in goal - the goal clause contains too many variables to
fit into the variable table.

Predicate not defined in program: identifier - a predicate has been en
countered during the computation which is not a system predicate and
does not appear on the left hand side of any program clause.

Error in system pred _icate - one of the arguments of one of the arithmet
ic predicates is not bound to an integer. The offending predicate can
be found by trace.

7. ~ Note on the Implementation

The main implementation technique used in the program is the structure

- 10 -

sharing idea of Boyer and Moore [1]. In fact, the basic unification
routines in the interpreter are essentially the algorithms given in [1].
However, they have been partly improved by removal of recursion and ad
dition of lots of lovely goto's!

The only real disadvantage of their scheme is that goal clauses on the
goal stack have to be reconstructed from their component parts before
they can be printed, as in a trace, for example. Otherwise, their
scheme gives a fast and space efficient implementation.

The internal data structures used are given in Appendix 2. This should
be read in conjunction with a program listing. The main data structure
is the predicate table, which is a table of predicates, user, system and
command. Program clauses with the same predicate in the head are put on
a linked list which hangs off the corresponding predicate in the predi
cate table.

. .

$ Proloe
MU-PROLOG version 1
(-ld(111et'\ber->,
<.-1s.

1 rri e 111 b E· 1 · (;< , :-: • ~!) ,

2 111 e nib r:1 r· (:-,. r ~ , z) < - H1 em be r (:-: , z)
< - mer:, b '=' r < :-: ~ 1 2 3 • 4 • 3 2 Jl . • r~ IL) •
: , == :I. 23
< -n: <.
>~ = 4
<-n:-: •
:-' = 324
·<-~:-r <

r, u

2 m e r11 b e T' (;-: : 2 , 4 • 3 2 4 , N I L)
2 member(x:3,324,N IL)
1 NIL

<-.. J.ci(front),
< --]. ':..

1 front(n,z,x) <- aPPendCx,s~z)
2 le n =.it h OHL , 0)

1 ens th (:< , n)

~·
4

length(u,x,n) <- len~th(x ,nl)
aPPe nd CNIL,1/,x) •

Flu·:: , (n1, 1 ,n)

~ aPPend(u , x ~s,u.z) <- aPPend(x,s ,z)
<- tr,
<-frontC2,A,B,C,D,NIL,z),

1 aPPe nd(=,s: 1,A ,B-C, D,NIL) , length(z,2) •
4 len~thCNIL~2) ,

r. 2PP ~nrl(x! l~s:2,B ,C, D,NIL) , len~th(A, x :1,2)
len~th(A,NIL,2) ,

-,~=·

2

len~th(NIL,n1!1) Plus'nl!l,1,2)

r:, J. IJ S (0 1 1 , 2)

;yft PDP ***
l POP*

4
aPPend(x:1,Y:3,C,D,NIL) , len5th(A,B,x:1,2)
lensth(A.B,NIL . ,2) ,
lensth(B,NIL,n1!1) , Plus(n1!1,1,2)

·-· len~th(NIL,n1:1) Plus(n1!1,1,n1!2) Plus(n1!2,1,2)

2 P lus(0,1,nl:3)-, P lus(n1!3,1,2)
0 PllJ':. , (1.,1,2)
0 NIL

:?: :c: (1 • !:,: , N I L_
·< -·· r-· r· ,

1 2PPend(z :2,Y!1,A.R,C.D,NlL) , len~thCz:2,2)
'i .,:, :::• r·· F• n d (>:: ; l , 'd ! 2 ~ f: , C , D • N I L. :, 1 e r , :::=: t h ((.:1 , :-· : 1 , 2)
5 c' :::-Pe ii d (>; ; 1 , ~~ : 3 , C • D , N I L) , 1 E· n st h (A • 1-: • :< : 1 , 2)
4 len~thCA,B,NILs2) •
3 1 E· n s t h (B • N I L. , n l : l) r Flu·= (r, 1 ! 1 , l , 2) •

~ Plu s (O,l,nl ! 3)
0 F' l 1_1 s. (1 , 1 r 2)
0 NII

r=--J u '::; (ii l : 3 , l , ~_::)
F1us(n 1!2,1,2)

- 12. -

.2_. References

[1] R.S. Boyer and J.S. Moore, The Sharing of Structure in Theorem
proving Programs, MI7, 101-116.

[2] R. Kowalski, Logic for Problem Solving, North Holland, 1979.

[3] R. Kowalski, Algorithm: Logic+ Control, CACM, 22(1979), 424-436.

[4] R. Kowalski, Predicate Logic as Programming Language, IFIP74, 569-
574.

[5] D.McDermott, The PR0LOG Phenomenon, SIGART, 1980.

[6] D.H. Warren, Implementing PR0LOG - compiling predicate logic pro
grams, Vol. 1 and 2, D.A.I. Research Report Nos. 39 and 40, Edinburgh
University, 1977. ·

..

~

----,--~-r 11 cu~ L§=r t f >

~ t--------------7' r '(not:.: ~
- I r, ofto ,J4wf

at~, v.e
dot~.
~e. s~~s)

l~ o

1\X 0
Ji 2

~

')t

•
.
.

-!-
. .
.

Jr

2
0

.3

0

. . .

~~ ~ . . .

~-LC-l ~ootcfu.Mse

0

i
2
3

- 15 -

Appendix l· Current Values of Constants

pmax = 200
pmax is the length of the predicate table. 22 locations are taken up
by command and system predicates.

fmax = 200
fmax is the length of the function table.

maxargs = 7
maxargs -1 is the maximum number of arguments allowed in any predicate
or function.

gmax = 1000
gmax is the goal stack depth.

vmax = 10
vmax is the maximum number of variables allowed in any initial
goal clause.

In addition, as a rough way of preventing endless loops, the interpreter
writes a message after a certain large number of successful resolutions
have been completed during a computation. It is possible, by typing y
or n return, to continue or discontinue the computation. The current
limit is 1100.

All the above constants are subject to change in the future. In partic
ular, gmax will most likely be increased as programs get larger.

, .

p3. ~ ~ ~I .1.1

~ 3 . -lrtd ~ ~ oho ~ ~
id (ft. f2. fs).

~ lodr flt_1 f 1-.1p-e_J f1. pl) f s.pl

ON.-Lo-- D.b'o ~
eel cu~").

0~ t/4,, ~ ,o ~ °'f ~ c,.,-<.. wu..d. o-d.

-th_ , pl -e_'fu~ fr ~ ~-

pb ¼ w--,.J.., s+o.k~ fu ¼ ~ ~ t/4._ ~:

~ (~) ~J ~ -lu-- :>(. •

S'
0

, f- ,c. , 's t~ +o 1 .1 . N f L J ~
~ (~ H) ~ fv,--r__ u U-ll L) .

.. - s~) i,.,, ;t,.- (' ,~ ,) ~ ~
~ ~~ ,. A~ '-' ~ ~u ~ ().._ ~ , •,
~ ~ 0-- l.sl- ~f d<levJ.

W 1 ~ ~r a,-e 1~e,:i . Jv er,. ~ 4-,.,_

-~ l NIL) X) ~) .
.. --

