
An Introduction to MU-PROLOG

by

Lee Naish
Technical Report 82/2

(Revised July 1983)

Department of Computer Science
University of Melbourne

Abstract

As a logic programming language, PROLOG is deficient in

two areas: negation and control facilities. Unsoundly

implemented negation affects the correctness of programs and

poor control facilities affect the termination and

efficiency. These problems are illustrated by examples.

MU-PROLOG is then introduced. It implements negation

soundly and has more control facilities. Control information

can be added automatically. This can be used to avoid

infinite loops and find efficient algorithms from simple

logic. MU-PROLOG is closer to

programming.

Keywords and Phrases:

PROLOG, MU-PROLOG,

coroutines .

CR Categories:

+· nega .. ion,

the ideal of logic

control facilities ,

I.2.3 [Artificial Intelligence]: Deduction and Theorem

Proving - Logic Programming.

D.3.2 [Programming Languages]: Language Classifications

Very High-Level Languages.

2

1. Introduction

This paper is intended to give an overview of the MU-PROLOG system in

relation to other PROLOG sys terns. Readers who are interested in the details of

the facilities provided should consult the reference manual [Naish 83]. In this

paper a variety of aspects of PROLOG are discussed. The comments made are true

of most PROLOG systems and specifically are true of DEC-10 PROLOG [Pereira and

Warren 79].

The second section of this paper describes two areas where PROLOG falls

short of being an ideal logic programming language. They are the implementation

of negation, which affects the correctness of programs, and control facilities,

which affect efficiency and termination. Section three introduces MU-PROLOG and

illustrates how its facilities partially overcome these weak points of PROLOG.

2. Deficiencies of PROLOG

The ideas of logic programming have been summed up in Kowalski's "equation "

Algorithm~ Logic+ Control

[Kowalski 79]. Ideally, one should be able to specify a problem in simple logic

and the logic programming system should find an efficient algorithm to solve it.

PROLOG has two problems here . Firstly, negation cannot be expressed using only

Horn clauses, on which PROLOG is based. Secondly, the simple left to right

evaluation of PROLOG often results in inefficient algorithms.

For these reasons PROLOG needs non-logical primitives, notably cut, which

can be used to implement something close to negation and can be used to provide

extra control . The non-logical primitives often detract considerably from the

simple declarative nature of programs and make verification far more difficult.

3

2.1. Negation in PROLOG

Initially, we should define what is meant by negation in PROLOG. Horn

clauses can only be used to deduce positive information: they tell us what is

true but not what is false. One way of dealing with negation in this context is

the "closed world assumption" [Reiter 78]. That is, everything that cannot be

proved true is assumed to be false. This cannot easily be implemented, so

PROLOG uses a weaker rule, "negation as failure" [Clark 78]. A goal is assumed

to be false if the interpreter finds a finite proof that the goal is unprovable

(that is, the goal fails).

Unfortunately, very few PROLOG systems implement negation as failure

soundly. In most cases, not and not equals (\=) behave as if they are defined in

PROLOG as follows .

not(X) :- X, !, fail.

not(X).

X \~ Y :- not(X .. Y).

If we have a goal?- not(p(X)) then the first clause of not is tried and

p(X) is called. If it fails, then the interpreter backtracks and the goal

succeeds using the second clause of not. This is what we want since the failure

of p(X) means it is false by the negation as failure rule, However, if p(X)

succeeds then the cut is called, followed by fail. Because of the cut, the

second clause is not tried and so the call to?- not(p(X)) fails. This may not

be correct.

The call to not should, ideally, try to find an X such that p(X) fails and

if there is no such X then not(p(X)) should fail, What the call to not act-ually

does is to look for an X such that p(X) succeeds and if there is such an X, it

4

fails. Thus not(p(X)) is implemented as "for all X, ~p(X)" rather than "there

exists X such that ~p(X)". It can be proved that variable-free calls do work

soundly [Clark 78] (see also [Lloyd 82]), but those with variables can cause

problems as the following examples illustrate .

?- X \':" 2, X = 1. fails

?- not(X \~ 2), X = 1. binds X to 1 and succeeds.

Errors such as these may occur deep inside some computation with disastrous

cons eq_uences •

To ensure a procedure with not (or\=) as a subgoal works correctly, it is

sufficient to demand that when not is called, all the variables in the call are

bound. This often restricts the way in which we can call the procedure. For

example, the procedure q_ below should only be called with the first argument

ground.

q_(X, Y) :- not(p(X)), r(Y).

The correctness of many PROLOG procedures depends on the way in which they are

called. They are not general-purpose, and if they are called in the wrong way,

incorrect answers may result.

2.2. Control Facilities of PROLOG

The basic control facilities of PROLOG are just the ordering of clauses and

atoms within clauses. Once a program has been written in a particular way, the

clauses and sub-goals are always tried in the same order. This restriction can

be partly overcome by adding non-logical primitives such as cut and var, but

this has undesirable consequences in terms of correctness, clarity etc.

Lack of a clever control component means that simple logic tends to lead to

inefficiency. To achieve an efficient algorithm, programs must often over-

5

specify the problem. The result of this extra programmer effort is more complex,

less understandable code. Another symptom of poor control is PROLOG 's propensity

for infinite loops. Procedures can be efficient and terminate for some types of

calls but not for other, quite reasonable calls, This again prevents many PROLOG

proceduras from being general-purpose.

The following simple example illustrates some of these problems. The task

is to implement a predicate append3(A, B, C, D) which is true if list D is list

C appended to list B appended to list A. The simplest and most obvious way to

write it is using the well known predicate for appending two lists together.

append3(A, B, D, E) :- append(A, B, C), append(C, D, E).

append([], A, A).

append(A.B, C, A.D) :- append(B, C, D).

Now, given the goal

?- append3(1.2.[], 3,[J, 4.[], X).

the interpreter will execute the first call to append, binding the intennediate

variable C to 1 .2.3.[J. The second call to append will then bind X to 1.2.3,4.[J

as desired and if backtracking occurs the calls fail. Thus append3 is ideal for

joining three lists together. However, as many introductions to PROLOG point

out, a nice feature is that append can be used for splitting lists as well as

joining them. Let us see if append3 can do the same thing.

Cons id er the goal

?- append3(X, 3,[J , 4,[J, 1.2.3.4.[]).

The first call to append will match with the first clause, binding X to[]. The

second append call will fail immediately and cause backtracking. The first call

will then be retried and X will be bound to a list of length one. The second

6

call will eventually fail again, the first will be retried again and X will be

bound to a list of length two. This time when the second append is called it

succeeds and the final binding of Xis 1.2.[].

The order of the time taken is the square of the length X rather than the

optimal time which is proportional to the length of X. More serious though, from

a practical point of view, is what happens on backtracking. The call to the

second append fails but the first one, rather than failing, binds X to a list of

length three and succeeds. The second call eventually fails again but Xis then

bound to a list of length four and so on.

Infinite loops such as this quite common in PROLOG. The typical first

reaction is to add a cut at the end of the clause for append3. This does not

improve the efficiency and worse, it affects the correctness of some types of

calls. Another possibility is to change the order of clauses and calls of

append. Unfortunately, no ordering works for both joining and splitting lists. A

partial solution is to duplicate the logic of append3 and add non-logical

primitives like var, nonvar and cut.

The goal

?- append3(1 .W, X, Y, 2.Z) .

causes an infinite loop for any order of goals and clauses and even the non

logical primitives don't give a simple solution. For many predicates like

append3 the simplest definitions in PROLOG .do not work correctly, with

reasonable efficiency and termination for all types of calls. The non-logical

primitives are sometimes useful but usually affect the correctness, so it is

often necesssary to completely change the logic. What is really needed is

cleverer control which avoids inefficiency and infinite loops.

7

3. MU-PROLOG

MU-PROLOG extends PROLOG in both the areas mentioned so far. It provides

soundly implemented predicates for negation and an improved control component in

the form of a more flexible computation rule, The default is the simple left to

right execution of PROLOG but some calls may be delayed and resumed later. The

order in which sub-goals are solved has no effect on correctness, only

efficiency and termination.

3.1. Negation in MU-PROLOG

There are three predicates provided which implement negation: = and

if-then-else. The first two are sound versions of PROLOG 's not and \= and the

third is a substitute for a common use of cut.

As we noted earlier, negation as failure works correctly if the negated

goal is ground. The~ predicate uses this fact by waiting until this condition

is satisfied, If the call does contain a variable then the call gets delayed and

the variable is marked. When the variable is bound (by some later call)~ is

retried. For example :

?- ~(x ~ 1), X ~ 2.

The first call delays and marks X. The second call is then executed, which binds

X to 2. This wakes the first call which is now ground so it is executed and the

goal correctly succeeds.

Waiting until the call is ground is more restrictive than we would like,

but there are difficulties in implementing more general negation correctly. For

the particularly common case of inequality it can be done though. MU-PROLOG's

= only waits until its arguments are sufficiently (not necessarily completely)

instantiated. For this reason the correctness proof of = must extend the

8

previous theoretical framework. The same is true of the if-then-else predicate.

It waits until the condition is ground, but the condition is only executed once,

followed by the then or else part .

Negation in MU-PR0L0G is slightly restricted but it is implemented soundly.

This makes it closer to logic than PR0L0G and easier to verify. If a MU-PR0LOG

program returns some answer, you can be confident that it is correct.

3.2. Control Facilities of MU-PR0L0G

MU-PR0L0G allows each user-defined predicate to have its own control

information. Each predicate then becomes a self-contained module which should

behave sensibly for all types of calls. The control has the effect of sometimes

delaying a call when it would normally have succeeded. It takes the form of

wait declarations which are best explained by an example.

?- wait append(1, 1, 0).

?- wait append(O, 0, 1).

append([], A, A).

append(A.B, C, A.D) :- append(B, C, D).

The effect of the wait declarations is to slightly restrict the way append

can be called. If we call append, and either of the first two arguments are

constructed, then the third argument must not be constructed. If this condition

is violated then the call delays. A "1" in a wait declaration means that the

corresponding argument in a call may be constructed. A "O" means the

corresponding argument must not be constructed. Multiple wait declarations

provide alternative ways of calling procedures. For example, the call

?- append(X, 3.[], 1. 2.3.[]).

would cause X to be bound to A.Band the call would succeed. Similarly, for the

call

9

?- append(1,2.[], 3.[], X).

which binds X to 1 .D. However, the call

?- append(X, 3,[], Y).

binds X to[] and Y to 3,[J. Because no wait declarations have ones as the first

and third arguments this call delays, The bindings are undone and X and Y are

marked in the same way as with N. The call will be redone when either one is

bound.

The only difference between the PR0L0G and MU-PR0L0G versions of append is

the extra control information. This prevents append from being used

inefficiently and, in particular, ensures it will never cause an infinite loop.

Furthermore, the wait declarations are easy to write and can even be generated

automatically, We have developed a program (three pages of PR0L0G) whi~h will

generate sufficient wait declarations for most procedures. The method used is to

look for potential infinite loops and find a minimal set of wait declarations to

prevent them.

With the append3 example the programmer can use exactly the same logic as

before then have wait declarations added automatically . No matter what order the

append clauses and calls are in, the resulting program runs efficiently and

terminates for all the goals given before. The user just provides logic and all

the control is supplied by the system, With the same ordering the program is as

follows.

append3(A, B, D, E) :- append(A, B, C), append(C, D, E).

?- wait append(1, 1, 0).

?- wait append(O, 0, 1).

append([], A, A).

append(A.B, C, A.D) :- append(B, C, D).

10

For joining lists it works exactly as the PROLOG version does. For the

call

?- append3(1.2.[], 3.[], 4.[], X).

the first call to append binds C to 1.2.3.[] and the second binds X to

1.2.3.4.[J. No calls are delayed and the wait declarations have no effect. For

splitting lists however, the wait declarations play a vital role,

?- append3(X, 3.[J, 4.[J, 1.2.3.4.[]).

The first append call needs to bind X to[] and C to 3,[]. This conflicts

the wait declarations so the call delays and the variables are marked.

second append is then called, binding C to 1.B1 and therefore waking the

with

The

first

call. The first clause of append no longer matches so the first append avoids

the mistake of choosing it. Instead, the second clause is used, binding X to

1.B2. Then the recursive call, append(B2, 3.LJ, B1), is tried. This delays, so

we continue with the second append call. The effect is for the two append calls

to act as coroutines. The time taken is proportional to the length of X.

This efficient algorithm is basically due to the sensible behaviour of the

first append call. Because append has its own control information it does not

make a rash guess at the length of X. It waits until the second call has

provided more information in the form of bindings to C. Because append does not

make wrong guesses the algorithm is more efficient and the infinite loop is also

avoided . Another illustration of how append avoids infinite loops is the last

example we gave with PROLOG.

?- append3(1 .W, X, Y, 2.Z).

The first append call matches the second clause and binds C to 1.D1. The

recursive call, append(W, X, D1), delays rather than succeeding, which would

cause an infinite loop. The second append call fails, the delayed call wasn't

11

executed so it is not retried and the first call to append has no more clauses

to try so the goal fails.

The final example we give is a program to solve the eight queens problem.

The logic is due to Clark, who uses it to illustrate how the control facilities

of IC-PROLOG can be used to achieve an efficient algorithm from simple logic

[Clark 79].

queen(X) :- safe(X), perm(1.2.3,4.5.6.7.8.[], X).

safe([]).

safe(A.B) : - notake(A, B, 1), safe(B).

notake(_, [], _).

notake(A, B.C, N) :- nodiag(A, B, N), Mis N + 1,

no take(A, C, M).

nodiag(A, B, N) B > A, w is B A, w =\=: N.

nodiag(A, B, N) : - A > B, w is A B , w =\= N.

perm([], []).

perm(A.B, C.D) :- delete(C, A.B, E), perm.(E, D).

delete(A, A.B, B).

delete(A, B.C, B.D) :- delete(A, C, D).

The position of the eight queens is represented as a list of integers. We

take the ith number in the list as the column number of the queen in the ith

row. The program states that a list Xis a solution to the eight queens problem

if it represents a safe position (that is, no queen can take another queen), and

it is a permutation of the list of numbers from 1 to 8. The notake predicate

checks that a given queen cannot take any queen in the following rows. It calls

nodiag, which checks if two given queens, N rows apart, are on the same

12

diagonal. The remaining details are left to the reader.

With this logic, most PROLOG systems would, at best, generate complete

permutations and then test whether they are safe. A more efficient algorithm is

to place the queens one at a time, testing for safeness at each stage. To get

this algorithm in PROLOG we would have to completely change the logic. In MU

PROLOG (and IC-PROLOG) all we need do is add some control information. In MU

PROLOG we need the following wait declarations.

?- wait safe(O).

?- wait notake(O, O, 0).

The calls to safe and perm act as coroutines. The initial call to safe

delays. When perm decides the position of the first queen, safe is woken. Safe

ini tia'Les calls to no take and safe, both of which delay . Perm continues, and

places the next queen. The notake call is woken and it calls nodiag to check if

the first queen can take the second queen . If the position is unsafe the call to

nodiag fails, and we backtrack. If the position is still safe then nodiag

succeeds and notake calls itself, which delays. The delayed call to safe was

also woken by perm. It makes two calls, which delay as before.

After perm has generated the positions of the first N queens , there is one

call to safe delayed, and N calls to notake delayed (one for each queen). When a

new queen is added, these calls are woken. Each of the calls to notake check if

the new queen can be taken. The call to safe creates a call to notake, for the

new queen, and another call to safe. When all eight queens have been

successfully placed , perm binds the end of the list to [] and all the delayed

calls succeed.

There are a couple of points that should be made here. Firstly, we have

glossed over the details of how perm generates the positions of successive

13

queens. The version of perm given, constructs the list X before it chooses the

position of the next queen (by calling delete). This causes the calls to notake

to be woken too early, which results in calls being delayed unnecessarily. This

overhead can be eliminated if the definition of perm is changed slightly.

The second point is that the order of the calls to safe and perm is

crucial. If perm is called first we get back to PROLOG 's inefficient algorithm.

There is a general rule in MU-PROLOG, that tests should be called before

generates. In this case safe tests the list X, and perm generates it. In

PROLOG, generates usually must come before tests, if infinite loops and other

errors are to be avoided. In MU-PROLOG, calls just delay, and the test and

generate can be efficiently coroutined.

4. IC-PROLOG

IC-PROLOG is probably the best known PROLOG sys tern with improved control

facilities. A comparison of MU-PROLOG with the growing number of other similar

systems will be explored in a future report. IC-PROLOG has soundly implemented

negation and improved control facilities [Clark and McCabe 81], though neither

are done in the same way as MU-PROLOG. Control information is specified by

adding annotations to the program clauses. There are a wide range of

annotations, and for some logic, IC-PROLOG can achieve more efficient algorithms

than MU-PROLOG. Most. annotations are attached to procedure calls, rather than

definitions. This allo~s different control for different calls to the same

procedure.

However, there are advantages in having control attached to predicate

definitions too. It makes programs more modular. A procedure can be written, and

wait declarations added. When that procedure is used, only logic need be

considered: the control has already been added. It is also easier to add wait

14

declarations than it is to add annotations to achieve the same effect. Wait

declarations are definitely advantageous when it comes to programs like append3.

·Despite the control facilities available, it is not easy to write a good version

of append3 in IC-PROLOG, without changing the logic.

5. Conclusions

PROLOG has poor facilities for negation and control. This leads to reduced

reliability, infinite loops and inefficient algorithms, To get efficient

algorithms, programs often must over-specify the problems. Procedures are not

general-purpose and programs are less logical than they could be.

MU-PROLOG goes some way to solving these problems. By having a more

powerful control component, efficient algorithms can be found using simple

logic, and infinite loops can be avoided. Each procedure can become a self

contained module which behaves sensibly for all types of calls. Wait

declarations can be written easily or generated automatically. The MU-PROLOG

programmer can therefore spend less time working on control and can just

concentrate on the logic . Thus MU-PROLOG is a step closer to the ideal of logic

programming.

15

6. References

[Clark 78] Clark, K. L., "Negation as Failure", in Gallaire, H. and Minker J.

(Eds.), "Logic and Data Bases", Plenum Press, New York, 1978, pp 122-

149 ,

[Clark 79] Clark, K.L., "Predicate Logic as a Computational Formalism " , Research

Report 79/59, Dept. of Computing, Imperial College.

[Clark and HcCabe 81] Clark, K.L. and McCabe, F., "The Control Facilities of

IC-PROLOG", in "Expert Sys terns in the Micro Electronic Age"; D. Mi tchie

(Ed), Edinburgh University Press, pp 122-149,

[Kowalski 79] Kowalski, R., "Algorithm = Logic + Control", CACM, 22 , 7 (July

1979), pp 424-436.

[Lloyd 82] Lloyd, J . , "Foundations of Logic Programming", TR 82/7, Computer

Science Department, University of Melbourne, 1982.

[Naish 83] Naish, L., "MU-PROLOG 3- 0 Reference Manual" , Computer Science

Department, University of Melbourne, 1983.

[Pereira and Warren 79] Pereira, L.M. and Warren, D., "Users Guide to

DECsystem-10 Prolog", DAI Occasional Paper 15, Department of Artificial

Intelligence, University of Edinburgh, 1979,

[Reiter 78] Reiter, R., "On Closed World Data Bases ", in Gallaire, H. and Minker

J. (Eds.), "Logic and Data Bases", Plenum Press, New York, 1978, pp 55-

76.

