
MU-PROLOG _I.O reference manual

Lee Naish
Melbourne University

July 1983

Herein is a description of the
facilities of version . 3.0 of the MU-
PROLOG interpreter. This is a reference
manual only, not a guide to writing
PROLOG programs.

I

1. Introduction

MU-PROLOG is (almost) upward compatible with DEC-10 PROLOG and UNIX PROLOG.
The syntax and built-in predicates are therefore very similar. A small number
of DEC-10 predicates are not available and some have slightly different effects.
There are also some MU-PROLOG predicates which are not defined in DEC-10 PROLOG.
However most DEC-10 and UNIX PROLOG programs should run with few, if any,
alterations.

However, MU-PROLOG is not intended to be a UNIX PROLOG look-alike. MU­
PROLOG programs should be written in a more declarative style. The non-logical
"predicates" such as cut(!), \'7, not and var are rarely needed and should be
avoided. Instead, the soundly implemented not(~), not equals(~~) and if-then­
else should be used and wait declarations should be added where they can
increase efficiency.

2. Using MU-PROLOG

To use MU-PROLOG type the shell command "pro log". The interpreter will
print a short message followed by a prompt. You are now at the top level of the
interpreter and if you type PROLOG commands they will be executed, For example,
if you type "[myfile]." then the file myfile in your current directcry will be
consulted (loaded). lf you then type "ls." the program will be listed. Commands
are PROLOG terms terminated by a full stop and a carriage return.

After you type a goal without variables the top level will print yes or no
(depending on whether the goal succeeded or failed). If a goal with variables
succeeds then the bindings of the variables are printed, followed by a question
mark prompt. If you want to see the rest of the solutions then type a semicolon
followed by a return; otherwise just hit return. It is possible that some
subgoals get delayed and are never woken. If this happens then a message
indicating how many calls have not been executed is printed. The interpreter has
not proved or disproved the goal but it is often indicative of an infinite
number of solutions.

Because commands are often repeated, especially during debugging, the
system saves the most recent ones you type. Each top level prompt contains a
command number. If the command you type is a positive number then the command of
that number is repeated. If you type "-1." then the previous command is printed
and "-2." means the one before that etc . The h (for history) command lists the
saved commands.

Under Berkeley UNIX (at least), an alternative way to run MU-PROLOG is
possible if you have a saved state (created by the save predicate) in a file
(say s avefile). If you type

prolog savefile arg1 arg2 •.•
or equivalently (with Berekely UNIX, at least), just

savefile arg1 arg2 .••
then the state is restored and the arguments may be accessed with the argv
predicate. In this mode, no message is written and interrupts are not trapped.
There is a utility available on the system to save PROLOG programs. If you type
"plsave f .pl dir", then a save file named f is created in directory dir (the
default is the current directory). The program inf.pl should have a procedure
called main, with one argument. When the saved file is run, main is called with

I

2

the command line list (from argv) as the argument. To save space, some of the
facilities (the debugging package, for example) are not provided by plsave.

3. Built-in Predicates

Here are brief descriptions of the predicates supplied by the interpreter.
There are also a number of library predicates which should be used freely,
rather than re-inventing the same predicates with different definitions and
names. The system also has many predicates with names starting with dollar
signs. These are protected from the user but to avoid confusion, you should not
start predicate names with dollars.

3.1. Internal Database Predicates

The following predicates are used in accessing and updating the database of
clauses stored in main memory.

assert (X)
Adds clause X (a rule or fact) to the database. It is the same as assertz.

asserta(X)
Adds X at the start of a procedure.

assertz(X)
Adds X at the end of a procedure.

clause(X, Y)
There is a clause in the database with head X and body Y. The body of a
fact is "true".

consul t(X)
The file with name Xis consulted. X must be an atom.
definite clause grammar
goals are executed.
"?-goal.".

deny(X,Y)

rules in the file are added
Goals are written

Equivalent to retract((X :- Y)),

hidden

All clauses and
to the database and
in the form

Used in conjunction with hide(X) to hide the implementation of some
predicates and make some procedures local to a file.

hide(X)
X is a procedure name or list of procedure names in the form
<procname>(<number of args>). If hide is called at the start of a file
being consulted and hidden is called at the end then the effect is to make
the procedure(s) local to that file. They cannot be accessed except by
other procedures in that file. When hidden procedure names are printed they
are followed by an underscore.

I

3

lib X
Reconsults the file named X in the PROLOG library.

libdirectory(X)
Xis the atom whose name is the UNIX directory where the PROLOG library
resides.

protect(X)
X specifies a number of procedures, in the same way as with hide. The
procedures are protected, so they can still be called but not listed or
altered in any way.

re consul t(X)
Reads clauses and grammar rules from file X to supersede existing ones
(like consult but previous definitions of predicates are retracted).

retract(X)
The first rule or fact that matches Xis removed from the database. On
backtracking, the next matching clause is removed.

retractall(X)
Retracts all clauses whose head matches X.

[file1, file2, ••. J
Consult file1, file2, etc. If "-file1" is used then that file will be
reconsulted instead.

3.2. I/0 Predicates

These predicates are related to input and output. There are more low level
I/0 predicates in the UNIX section of this manual.

display(X)
Write term X on the current output in prefix format. Eq_uivalent to
"writef(X,2'1011)".

eof(X)
Eq_ui.valent to "X = (?-end)" (but more portable) .

get(X)
Reads characters from current input and returns X, the first printing
character.

getO(X)
Returns the next character, X, from the current input. At the end of file
it returns 26 c·z).

next(X, Y)
Changes the standard input to X and the standard output to Y. If X(Y) is
"user" then the input(output) is not changed. After calling next the new
standard input and output are still referred to as "user". The old input
and output are lost. By default read and write use the standard files but
this can be overridden by using see and tell. These should generally be
used in preference to next.

/

4

nl
A newline is printed on the current output.

op(X,Y,Z)
Declares Z, an atom (or list of atoms), to be an operator of type Y and
precedence X. The standard operator declarations are nearly all the same as
in DEC-10 PROLOG are as listed at the end of this manual.

portraycl(X)
Write clause X in a suitable fomat.

portraygoals (X)
Write goal X in a suitable format.

print(X)
Print X on the current output. If the user has defined a predicate called
"portray", with one argument, then this is called. If "portray(X)" fails
then "write(X)" is called.

printf(X,Y)
List Y is printed with format X. Y is a list of strings, constants and
integers.Xis a string specifying the format. Exactly the same conventions
are used as with printf in the C language. For strings and constants a %s
fomat is used, %d for decimal output of integers, %0 for octal, %c for
characters (small positive integers in PROLOG). Field widths can be
specified in the same way as in C. The types of the elements of Y must
match the format string.

putatom(X)
Atom Xis printed on the current output.

put(X)
Character Xis written on the current output. X may also be a string.

read (X)
Read a term terrnina ted by a full stop and a whitespace from the· current
input. If the term contains variables these are considered distinct from
all o t.her variables. At end of file read re turns
"?-end". X must be a variable. If a syntax error in encountered, a message
is printed and read fails.

s ee(X)
Switches current input to file X. If X has not. already been opened by see
then it is, otherwise the old file descriptor is used. After calling see,
all calls to r ead, get, getO and skip cause X to be read. X must be an
atom.

seeing(X)
X names the current input file,

seen
Closes the current input file and reverts to the standard input.

skip(X)
Reads characters from current input until X appears or end of file is
reached. If X is a list, then it reads until a member of the list is
found.

/

5

tab(X)
Prints X spaces on the current output.

tell(X)
Switches current output to file X.

telling(X)
Xis the current output file.

told
Closes current output and reverts to standard output.

wflags(X)
If Xis an integer, the write flags are set to X. If Xis a variable, it is
bound to the current value of the write flags. Write interprets the value
as a bit string. If the 1 bit is set, terms are written in prefix format.
If the 2 bit is set, names containing non-alphanumeric characters are
quoted. If the 4 bit is set, lists of integers between 32 and 126 are
written as strings. If the 8 bit is set, level numbers are written after
variables, to distinguish between different variables with the same name.
If the 16 bit is set, lists are written with the dot notation, instead of
brackets. The write flags are initially set to 2'01100.

wri te(X)
Writes term X on current output, taking into consideration current operator
declarations and write flags. Write is currently written recursively, so
for deeply nested terms some systems may have problems with the stack size.

wri tef(X, Y)
Write term X using flags Y, r a ther than the current write flags.

wri teln(X)
The same as "wri te(X), nl" .

3,3. Interactive Predicates

These predicates are usually called from the top level of the interpreter,
or used for debugging, rather than being part of programs.

abort
Aborts execution of the current goal and reverts to top level.

backtrace(X)
Write the X most recent ancestors.

backtrace

break

Write the 10 most recent ancestors.

Causes a new invocation of the top-level interpreter. When this has
finished, the previous computation is resumed.

debugging
Lists all current spypoints.

I

6

h
Print a history of the top level commands that have been saved .

ls
Write all predicate definitions (except hidden and protected ones).

listing

ls X

Write all predicate definitions (except hidden and protected ones).

Write all definitions of predicates named X (except hidden and protected
ones). X may be a list of predicate names.

listing X
Write all definitions of predicates named X (except hidden and protected
ones) • X may be a 1 is t of predicate names •

nodebug
Removes all spypoints. See " .. spy.

nospy X
Removes any spypoints on procedure(s) X.

notrace
Equivalent to trace(O).

res tore(X)
Restores the prolog state saved in file X. If Xis not a compatible save
file, restore fails. No files (other than the standard ones) should be open
when restore is called.

s ave(X)
Saves a copy of the current prolog state in file X. Xis made an executable
file which, when run or used as the first argument to prolog, restores the
state and continues as if the save had just succeeded. No files (other than
the standard ones) should be open when save is called.

spy X
Places a spypoint on procedure(s) X. X is a procedure name or list of
procedure names i n the form <procname> or <procname>(<number of args>).
When a procedure with a spypoint is called a message is printed and the
user is able to trace and control the execution.

trace(X)

trace

Turns universal tracing on/off. X is an integer interpreted as a bit
string. If the least significant bit (1) is one then each time the
interpreter tries to match a call with a procedure head, a message is
printed. The second bit (2) causes messages when backtracking occurs. The
third bit (4) causes messages when a calls delay. The fourth bit (8) causes
messages when delayed calls are woken. Some system predicates turn tracing
off.

Equivalent to "trace(2'1111)".

I
i

7

3.4. Arithmetic Predicates

The following predicates deal with integers or integer expressions.
Integer expressions may contain integers, variables bound to integer
expressions, strings of length one and arithmetic operators. The allowable
binary operators are +, , *, /, mod, /\ (bitwise and), \/ (bibrise or), "'
(exclusive or),<< (shift left), >> (shift right), and (logical and), or
(logical or) and the relational operators<,=<, >, >=, =:=and=\=. The valid
unary operators are - and\ (bitwise not). Logical expressions evaluate to one
(true) or zero (false). All predicates which use integer expressions delay
until all variables in the expression(s) are bound.

maxint(X)

X < y

X is the largest integer possible in the system. The smallest is
- X - L

Integer expression Xis evaluates to less than integer expression Y.

X 7< Y
Integer expression X is less than or equal to expression Y.

X > y
Integer expression X is greater than expression Y.

X >=:: y
Integer expression X is greater than or equal to expression Y.

X =: = y
Integer express ions X and Y are equal.

X =.\= y
integer express ions X and Y are not equal.

X is Y
Integer expression Y evaluates to X (a variable or integer). Remember that
it delays if Y contains an unbound variable so it can only be used "in one
direction", unlike plus.

plus(X, Y,Z)
X + Y = Z. If at least two arguments are variables it will delay. lf two
are integers then the third will be calculated. If all three are integers
it acts solely as a test.

length(X,Y)
Xis a list of length Y. X or Y may be variables. If they are both
variables, then the call delays.

/

8

3. 5, Control and Meta Level Predicates

Those predicates in this section which are non-logical, should be avoided
where possible.

ances tor(X, Y)
Y is the Xth ancestor (not including "call", ";" or ", ") of the current
call.

depth(X)
Xis the number of ancestors of the current call,

arg(X,Y,Z)
The Xth argument of term Y is Z (delays if X or Y are variables).

functor(X, Y,Z)
Xis a term whose functor is Y and arity z. Delays if X and either Y or Z
are variables.

name(X,Y)
Y is the list of characters in the name of atom X. If X and Y are
variables, it delays.

atom(X)
Xis an atom (non-logical). If Xis currently a variable it fails.

a tomic(X)
Xis an atom or integer (non-logical).

int(X)
Xis an integer. If Xis currently a variable it delays .

integer(X)
Xis an integer (non-logical). If Xis currently a variable it fails .

var(X)
Xis currently a variable (non-logical) .

nonvar(X)
Xis not currently a variable (non-logical).

not X
If X succeeds then not X fails and if X fails then not X succeeds. The
result is suspect if X succeeds and binds any variables (use~ instead).

~x
Sound implementation of negation as failure. If X contains variables then
it delays, otherwise if X succeeds then ~x fails and if X fails then ~x
succeeds.

occurs(X,Y)
Term Y contains a subterm X. X must be a variable, an atom
(non-logical).

error(X)
Called when an error occurs (see section 5 of this manual).

I

or an . ~ in,.eger

9

errhandler(X)
Called by "error" if the user-defined procedure "traperror(X,Y,Z)" fails
(see section 5).

repeat
Always succeeds, even on backtracking.

true
Succeeds. On backtracking it fails.

fail
Al ways fails .

wait X
X is a procedure head with all its argument either or O. The
corresponding wait declaration is added to the procedure. See section 4 of
this manual.

call(X)
The goal represented by the term X.

X
The goal given by the binding of the variable X (meta-variables).

X, y
X and Y (the bodies of clauses are in this form).

X y
X or Y (use sparingly - use an extra clause instead).

X = .. y
Y is a list made up of the functor of X followed by the arguments of X. The
call delays if X and Y are insufficiently instantiated. If Xis an integer
it fails.

X == y
Terms X and Y are identical. That is, they :::an be unified without binding
any variables (non-logical).

X \== y
X and Y are not identical (non-logical).

X = y
X equals Y (X and Y are unified).

X \= y
The same as not(X = Y). ie. unsound implementation of not equals.

X ~,.. y

Sound implementation of inequality. If X and Y do not unify it succeeds. If
X and Y unify without binding any variables then it fails. If X and Y unify
but variables need to be bound then it delays. Underscores in the call are
not treated as other variables are. It is assumed that they are universally
quantified. For example, X ~= f() means for all possible values of X
does not equal f(_) (so it fails-if X equals f(Y), whatever Y is).

/

10

if X then Y
If X contains variables then it delays, otherwise if X succeeds then Y is
called. If X fails the goal succeeds.

if X then Y else Z
If X contains variables then it delays, otherwise if X succeeds then Y is
called and if X fails then Z is called.

X -> y
Unsound implementation of "if X then Y". It does not delay if X contains
variables (non-logical).

X -> Y ; Z
Unsound implementation of "if X then Y else Z". It does not delay if X
contains variables (non-logical).

The cut operation. It succeeds, but on backtracking everything fails up to
and including the most recent ancestor which is not";", "call" or",". No
atoms to the left of the cut are retried and no more clauses in that
procedure are tried. It can be used to implement many of the unsafe
features of PROLOG (for example, not,\~, var and==). It should be used
as sparingly as possible.

3.6. UNIX-related Predicates

These predicates provide an alternative interface to the file system and
other facilities provided by UNIX. The number of predicates in this section is
likely to grow with demand.

open(X, Y,Z)
Opens file X (an atom) on channel Yin mode Z. There are currently twenty
file channels available. Numbers zero to four are reserved for standard
input, standard output, standard error output, current input and current
output, respectively. If Y is a variable, then it is bound to the highest
free channel. The mode must be 'r' (read), 'w' (write) or 'a' (append).

getc(X,Y)
Y is bound to the value of the next character read on file channel X.

putc(X,Y)
Character Y is written on file channel X.

read(X,Y)
A term Y is read from file channel X.

write(X,Y)
Y is written on file channel X.

wri te(X, Y,Z)
Y is written on channel X using flags z.

writeln(X,Y)
Equivalent to "write(X,Y), putc(X,10)".

I

11

fprintf(X,Y,Z)
Print list Z on file channel X using format Y.

pipe(X)
Creates a pipe named X. X must be an atom. X may then be used with
"tell" and "next".

If " see,

pipe(X,Y)
Creates
channel
highest

a pipe using file channel X for the input from the pipe and file
Y for output to it. If X or Y are variables they are bound to the

free channels.

fork
Creates another prolog process, with the
difference is that the call to fork in the
call in the child process fails. Care must
processes do not compete for input from the

same core image. The only
parent process succeeds but the
be taken to ensure the two
terminal or other open files.

sys tem(X, Y)
Command line X (an atom) is passed to UNIX to execute and Y is then bound
to the exit code returned.

argv(X)

csh

sh

Xis a list of atoms which were the command line arguments typed by the
user. The first element of the list will be the name of the save file.

Invokes a new copy of the UNIX shell (csh). The prolog process is suspended
until the shell process terminates.

Invokes a new copy of the UNIX shell (sh).

shell(X)
Calls the UNIX shell with the string X as a command line.

more(X)
Lis ts file X using the "more" command.

edi t(X)
The editor "ed" is used to edit file X. When the editing is completed, the
file is reconsulted.

exit(X)
The pro log process terminates with exit code X (an integer).

getuid(X)
Binds X to the uid of the user running prolog.

isus er(X)
Checks the password file for user-name X (X must be a string).

sig(X, Y)
Used to trap,
number of a
signal to the
signal. The

ignore or set to default, the various UNIX signals. X is the
signal as defined in <signal.h). Y must be zero, to set the

default, one, to ignore the signal, or two, to trap the
most common use is "sig(2,2)" which traps interrupts. The

I

12

library file "signal" gives a more high level interface.

4. Wait Declarations

Procedures without wait declarations behave as normal PROLOG procedures
calls to them succeed or fail. If wait declarations are added, calls may also
delay. This happens when the call unifies with the head of some clause but in
doing so, certain of variables in the call are bound. Wait declarations can be
used to prevent infinite loops and to enable coroutining between sub-goals,
which often increases efficiency.

Wait declarations are most easily added by putting goals in the files
containing programs. A typical predicate definition would have a couple of goals
to add wait declarations ("?-wait •••• ") to the clauses for the procedure. The
argument to the call to wait should look like the head of one of the clauses
with each argument being a one or a zero. A one signifies that the corresponding
argument in a call to the procedure may be constructed and a zero means that it
may not.

As each argument of a call is being unified with the corresponding argument
in a procedure head we check if it is constructed. An argument is constructed if
a variable in it is unified with a non-variable or another variable in the call.
If the unification succeeds, the result is a mask of ones and zeros,
representing which arguments were and were not constructed. This is then
compared with the wait declarations. If there is a wait declaration with ones
corresponding to all ones in the mask then we succeed; otherwise we delay.

When a call is delayed the bindings are removed. Thus from a logical point
of view nothing has happened. However, the variables that were bound are marked
and when any of them are bound by some other call, the delayed call is woken. A
call may bind several marked variables and each one may have been marked several
times so any number of delayed calls may be woken at the same time. The order
of subsequent calls is as if the woken calls were all at the start of the clause
that just matched, in the order that they were delayed. For further d.is cuss ion
of the use of wait declarations, see "An Introduction to MU-PROLOG". There is
also a library program, called genwait, which can produce reasonable wait
declarations for most procedures.

5- Errors

Whenever an error occurs, procedure error is called with
the call that caused the error as arguments. The call
replaces the call that caused the error. This allows you to
success and replacing the call with another call. When error
prints a message (on standard error) and depending on the
various things.

the error code and
to error in effect
simulate failure,

is called it always
error it will do

If the program is almost out of memory then an error is generated, the last
ancestors are written and abort is called. If you hit the interrupt key an error
is generated. If you hit it again it will get you back to the top level of the
interpreter (abort is called). It is an error to call a predicate for which no
clauses or wait declarations have ever been added. In such cases, a warning is
printed and (in effect) the call fails.

/

13

Other errors will cause the error code (and/or some explanation) and the
call to be printed, followed by a question mark prompt. The simplest thing to do
is to hit interrupt, which generates an abort. If you type a goal it will be
executed in place of the call (eg "fail." will cause a failure). If you type a
clause then the call is unified with its head and then the body is executed.
This can save some typing and allows you to change the call but still use the
same variables.

MU-PROLOG also allows users to write their own error handlers, rather than
rely on the default one outlined so far. Procedure error is defined in
(something like) the following way:

error(Ecode, Call) :- traperror(Ecode, Call, X), !, call(X).
error(Ecode, Call) :- errhandler(Ecode, Call).

User programs may contain definitions of traperror
trap and handle errors, respectively. For example, if
it encounters any errors and you want to query the
predicate is called, then the following code would do.

traperror(, is , fail).
traperror(enoproc,-Call, askabout(Call)).

askabout(Call) :-

The following error codes are currently used:

eelis t
eeconst
eeint
eefunct
eestring
eeO~
eevar
eerwa
euint
eufunct
euvar
enoproc
eprotect
eopen
efile

list expected
constant expected
integer expected
functor expected
string expected
one or zero expected
variable expected
r, w or a expected
unexpected integer
unexpected functor
unexpected variable
undefined procedure called
protection violation
cant open file
invalid file specification

I

and other predicates to
you want "is" to fail if

user if an undefined

14

6. Standard Operator Declarations

?- op(1200, fx, (?-)). ?- op(700, xfx, ==) . .
?- op(1200, fx, (:-)). ?- op(700, xfx, \==.).
?- op(1200, xfx, (:-)). ?- op(700, xfx, =·=) ' . .
?- op(1200, xfx, (-->)). ?- op(700, xfx, '!"\':!').
?- op(1170, fx, (if)). ?- op(680, xfy, or).
?- op(1160, xfx, (else)). ?- op(660, xfy, and).
?- op(1150, xfx, (then)). ?- op(630, xfx, <).
?- op(1100, xfy, (->)). ?- op(630, xfx, >).
?- op(1050, xfy, (;)) . ?- op(630, xfx, =;::<).
?- op(1000, xfy, t t) ' . ?- op(630, xfx,)':").
?- op(900, fy, ls). ?- op(600, xfy, t t) . .
?- op(900, fy, listing). ?- op(500, yfx, +).
?- op(900, fy, . +) Wal.., • ?- op(500, yfx, -) .
?- op(900, fy, ~). ?- op(500, yfx, /\).
?- op(900, fy, not). ?- op(500, yfx, \/).
?- op(900, fy, \ +). ?- op(500, fx, (+)).
?- op(900, fy, nospy). ?- op(500, fx, (-)).
?_ op(900, fy, spy). ?- op(500, fx, \).
?- op(900, fy, lib). ?- op(400, yfx, *).
?- op(700, xfx, :;.:). ?- op(400, yfx, /) .
?- op(700, xfx, ~=). ?- op(400, yfx, «).
?- op(700, xfx, \=). ?- op(400, yfx, »).
?- op(700, xfx, is). ?- op(300, xfx, mod).
?- op(700, xfx, = •.) • ?- op(200, xfy, I A I) •

I

