
Sequent Users' Resource Forum

Newport Beach, CA

September 1988

Parallel Programming
■ 1n

Prolog

Robert M. Keller

Quintus Computer Systems, Inc
Mountain View

California

~---------

What Prelog is:

A major landmark in language design, comparable
in scope ta the invention of Fortan, Algol, Lisp,
Cobol.

An language usually implemented with an
interactive environment.

A language in which complete applications can be
programmed.

A language within several built-in features not
found in other languages, including:

Pattern-matching via unification

Backtracking

lntegral database

Comprehensive meta-facilities

A language which strongly relates ta certain
aspects of logic.

A language in which relational or entity-relation
database concepts are naturally expressed.

A language with only a very modular syntax and
only 2-levels of lexical scoping.

What kinds of applications are suitable for
Prolog?

Database applications

Compilers

Rapid Prototyping of all kinds (including Al)

Expert systems, and other applications requiring
meta facilities

Program-transforming programs

Prelog Users

• Universities

• Research institutions

• Government agencies

• Corporate

• Al groups

• Research and development

• MIS

• System integrators / application developers

Prolog Application Areas

• Knowledge based systems

• Fault analysis

• Diagnosis

• Configuration

• Monitoring complex
situations

• Components of traditional applications

• Design • Compilers, generators

• Intelligent front ends • Translators

Some Prelog Application Markets

• Manufacturing (aerospace, automobile, electronics)

• CAO (electronic, mechanical, architectural)

• Database, decision support (financial)

• CASE (software engineering)

Sorne History of Prolog

1965 J.A. Robinson Syracuse Development of Resolution principle

1973 R. Kowalski Edinburgh Predicate Logic as a Programming Language

1975 A. Colmerauer Marseille Metamorphosis-Grammar Language

1975 P. Roussel Marseille First Prolog lmplementation

1977 D.H.D. Warren Edinburgh First compiler (DEC-10 Prolog)

1980? K. Clark London MicroProlog developed

1981 K. Fuchi Tokyo Fifth-generation project announced

1982 Marseille First International Conference on Logic Pgmg.

1982 F. Pereira Edinburgh C-Prolog distributed

1984 Atlantic City First U.S. Symposium on Logic Programming

1985 J.A. Robinson Syracuse Journal of Logic Programming started

1984 D.H.D. Warren Palo Alto Ouintus founded

1986 London Association for Logic Programming started

What is the syntax of a Prolog program?

There are two parts:

A set of clauses (relatively static)

A query or goal (which starts things off)

The primitive syntactic construct of the above is the Prolog
term.

A term is either:

A numeral, e.g. 5, -99, 6.23E-14

An atom, designated by a string of characters beginning
with a lower case character, e.g. foo, b1234, x, aFAR, or
enclosed in single quotas, e.g. 'Abraham Lincoln', 'X'.

A variable, designated by a string of characters beginning
with an upper case character, e.g. X, Foo, A21, or
beginning with the special character _.

A composite term, which has the form

constructor(term1, term2, , termn)

where each termi is a term and constructor is an atom,
e.g.

a(1)

baz(c, x23)

foo(bar(a), hiss)

are all composite terms.

Operator syntax:

Sorne functors can be alternatively expressed as operators,
which in Prolog rneans that they rnay have infix, prefix, or postfix
representations.

An exarnple is the + functor: We can write a terrn as either

+(X, Y)

or as

X+Y

Sorne functors have a built-in operator syntax.

For others, operator syntax rnay be declared by the user.

lnterpretation of Prelog terms:

Prelog terms are abstract, their meaning depends on context.

For example, they may mean:

Record construction and component selection.

employee(Name, Address, SSNo)

Expression to be evaluated (as in an arithmetic
expression)

3*X + 5

(such an expression is actually evaluated only when
the context so indicates)

Goals directing Prolog execution:

brother(john, X)

Prolog program fragments:

son(X, Y) :- parent(Y, X), male(X).

(ln the above term, :- is the constructor with operator
syntax.)

Il (

There are many options for

Representation of Knowledge in Prolog

Several types of representation are possible.

Example: Suppose we wish to represent the following bits of
information :

A certain animal, x, is a rabbit.

xis white.

x has red eyes.

We could do this with various of the following terms:

rabbit(x)

x(rabbit)

is(rabbit, x)

is(x, rabbit)

white(x)

x(white)

has_color(x, whilte)

eye_color(x, red)

has_color(eyes(x), red)

red(x(eyes))

celer(eyes, x, red)

etc.

The choice of representation will depend on the rules for using the
knowledge.

Prolog clauses

The bulk of a Prelog program is usually a set of clauses. These
are the counterpart of statements in most languages, but
depending on their form, take meaning as:

Procedure definitions

Declarations of logical relationships

Data definitions

•

Facts

The simplest form of Prelog clause is called a tact (or unit
clause). lt has the form: .

Prolog term.

The period following the term identifies this as a tact. Here is an
example of several tacts:

male(john).

parent(john, caroline).

parent(jackie, caroline).

female(jackie).

female(caroline).

Here we may interpret the atoms john, jackie, and caroline as
individuals, and the tacts assert relationships among the
individuals.

Rules

The general form of Prolog clause is called a rule. A rule has the
form

term :- term1, ter1112., , termn.

The term on the left of:- is called the head of the rule. The other
terms comprise the body of the rule.

The symbol :- can be read if, or provided. The meaning of the
rule is that the term on the left hand side is solvable as a Prolog
goal provided that the terms on the right hand side are all
solvable, in the sequence indicated.

Example:

father(X, Y) :- parent(X, Y), male(X).

This asserts that a goal father(X, Y) is solvable if parent(X, Y) is
solvable and male(X) is solvable.

We see that the commas separating the body terms can be
interpreted as a logical and, while the symbol :- can be
interpreted as logical if (in other words, the conjunction of the
right-hand side terms logically implies the left-hand side).

Keep in mind that X and Y above are Prolog Variables, which
means that they represent arbitrary entities. Furthermore,
these variables are regarded as being distinct from variables of
the same name in any other clauses.

Building Prelog Applications

End-User
Interface

Prelog Application
Code

1 1
Prototyping

Console

•Laye~

Query Interface

Prelog Kernel

Processor

"Foreign Code"

(C, Fortran, etc.)

Operating System

Prolog Database: The collection of all clauses for a program (facts
and rules) is referred to as the database.

Example: Suppose that the database is:

male(john).
parent(john, caroline).
parent(jackie, caroline).
female{jackie).
female(caroline).

mother(X, Y) :- female(X), parent(X, Y).

Ground terms: A term is called ground if it contains no variables.
When a goal is a ground term, it is either solvable, or not, i.e. there is a
yes or no answer. Prolog can determine solvability of the goal
relative to the current database. This is done by entering the goal
following the prompt?-.

Consider Prolog's response to some typical ground goals:

?- female(jackie).
yes

?- parent(john, jackie).
no

?- mother(jackie, caroline).
yes

ln the first two queries, Prolog simply only used facts in the database.
ln the third query, it had to use the rule for mother, which translates
into the two goals

female(jackie), parent(jackie, caroline).

ln this instance, the two goals are solvable by facts. ln general, long
chains of rules might be necessary to establish a goal.

..

a

Non-ground goals:

When a Prelog goal is non-ground, Prelog tries to find a way of solving it
by substituting a value for the variables, if necessary. Such a substitution
also called an instantiation or binding.

Examples: Assume again the database

maleUohn).
parentUohn, caroline).
parentUackie, caroline).
femaleUackie) ..
female(caroline).

mother(X, Y) :- female(X), parent(X, Y).

Here are Prolog's responses (in bold-face) to some non-ground goals:

?- male(X).
X= John

?- female(X).
X = Jackie

?- parentUohn, X).
X = caroline

?- parentUackie, X).
X = caroline

?- parent(X, Y).
X = john,
Y = caroline

?- parent(X, X).
no

?- mother(X, Y).
X = Jackie.
Y = caroline.

Multiple Solutions to a Goal:

ln certain of the goals in the preceding example, we see that
there are multiple ways in which the goal could be true in
principle. For example,

?- female(X).

Here either X = jackie or X= caroline would satisfy the property.

When Pro log presents its answer to a query, if we follow by
return, that is the only answer we shall see.

If we follow by semicolon, then we may see another answer (if
there is one). We may repeat this response as often as desired.

?- female(X).

X = jackie ;

X = caroline

no

Builtin Predicates taking Predicate Arguments

Often we need to find a// solutions to a goal query and collect
them into a list. A special builtin predicate does this for us:

bagof(term, goal, answer)

computes all terms of the form term which satisfy goal and
collects them into the list answer.

Example:

bagof(X, father(john, X), Y)

collects into list Y the set of john's children.

bagof([X, Y], father(X, Y), Z)

collects into list Z the set of list of pairs [X, Y]
such that father(X, Y) is solvable

A similar predicate which sorts the result list according to the
universal order is called setof.

Ergonomie uses of operators:

:- dynamic manages/2.
:- op(500, xfx, manages}.
:- op(500, xfx, reports_to}.
:- op(500, xfx, responsible_for}.
:- op(400, fx, discharge).

john manages joe.
john manages jack.
john manages tim.
tim manages sally.
tim manages fred.
jack manages sue.
jack manages chartes.

X reports_to Y :- Y manages X.

X responsible_for Y :- X manages Y.
X responsible_for Y :- X manages Z,

Z responsible_for Y.

discharge X :-
retractall (X manages_},
retractallL manages X).

Record construction and Extraction

The unification process is useful for building records and
extracting their components. For example, we might have a
rule:

overpaid(employee(Name, Salary, Level)) :­

Salary > 1 0000 * Level.

When we try to solve a goal such as

overpaid(employee(smith, 100000, 9))

the match which takes place instantiates the Name, Salary, and
Level components of the record to smith, 100000, and 9
respectively.

A Prolog "procedure" is a collection of all clauses with a
given head predicate.

The two interpretations of a Prolog procedure:

The logical interpretation: Each clause represents a logical
implication. The collection of clauses, the heads of which match
a given goal, define the only ways in which the goal may be true.
For example, if the clauses for brother_in_law are:

brother_in_law(X, Y) :- brother(X, Z), spouse(Z, Y).

brother_in_law(X, Y) :- husband(X, Z), sister(Z, Y).

brother_in_law(X, Y) :- husband(X, Z), sister(Z, W), spouse(W, Y).

we mean

for arbitrary entities X, Y, Z, and W

and

and

If (brother(X, Z) and spouse(Z, Y)) then brother_in_law(X, Y)

If (husband(X, Z) and sister(Z, Y)) then brother_in_law(X, Y)

if (husband(X, Z), sister(Z, W), and spouse(W, Y))
then brother_in_law(X, Y)

,,

The procedural interpretation:

To salve for a goal, try the first of the clauses having a head
which matches the goal. Solve each of the corresponding body
terms in turn. If this attempted solution fails, try the next
relevant clause similarly, etc. If none of the clauses works, then
the goal is unsolvable.

There are two ways in which information flows from a Prolog
procedure:

Through the argument values

Through the success or failure of the procedure. Each
time a procedure is called, it either succeeds or fails.

If it succeeds, then contrai proceeds as normal.

If it fails, then it causes Prelog ta abandon the
current calling sequence and seek an alternative
within the next clause of the procedure. If there is no
next clause, then the calling procedure also fails,
etc.

A compiler for an Expression Language

to a Stack Machine

Uses "Definite-Clause Grammar" notation

:- op(550, xfx, ':=').

comp((S;T)) -->
{comp(S, CS, □), comp(T, CT, 0)},
CS, CT.

comp{A:=B) --> {atom(A)}, 1,
[addr(A)], comp(B}, [store].

comp(A+B) --> 1,
{comp{A, CA, □), comp(B, CB, [])},
CA, CB, add_inst.

comp(A *B) --> !,
{comp(A, CA, □), comp(B, CB, [])},
CA, CB, mult inst.

comp(A) --> {atomic(A)}, !,
[A], load_inst.

load_inst --> [load].
add_inst --> [add].
mult_inst --> [mult].

An Emulator for the Stack Machine

0/o calc(lnstruction_List, Stack) ·

cale([],). a a

calc([X,load I Y], Stack) :­
integer(X), !,
calc(Y, [X I Stack]).

calc([X,load I Y], Stack) :­
calc(Y, [value_of(X) 1 Stack]).

calc([mult I X], [Y, Z I More]) :­
compute(Y*Z, W),

•
•

calc(X, [W I More]).

calc([add I X], [Y, Z I More]) :-
compute(Y +Z, W),
calc(X, [W I More]).

calc([addr(V) 1 X], Stack) :-
calc(X, [addr(V) 1 Stack]).

calc([store I X], [Value, Addr I More]) :-
write('store '), write(Value), write(' into '), write(Addr), ni,
calc(X, More).

The AND-OR Tree View of Prolog Execution

Matching of a Goal with a Clause

head :- BT1, BT2, , BTn.

ATTEMPTED MATCH

CLAUSE

Body terms
producing
new goals to be
satisfied

----- sequentially

ln general, several clauses may match a given goal

head :- BT11, BT12, , BT1 n-
head :- BT21, BT22, •.•. , BT2n.

head :- BTm1, BT m2, , BTmn-

,, .

C

ln general, several clauses may match a given goal

head :- BT11, BT12, •... , BT1 n.
head :- BT21, BT22, , BT2n.

head :- BTm1, BT m2, •... , BTmn-

CLAUSE 1

Backtracking

Backtracking occurs in any query where we ask to see multiP.le
answers. ln effect, we cause the answer just seen to act as 1f it
were failure, and Prelog picks up its search where it left off.

To further see the power of backtracking, consider the following
map problem:

lt is desired to color the regions from a set of
colors on a map so that no two adjacent
regions have the same color. Find a solution
if one exists, or report that none exists.

The simplest way to selve this problem is just to try various
colorings until one is found to work, or until all have been tried.
This is a complicated bookkeeping problem in a language without
backtracking. ln Prelog, it is simple and elegant.

"I

Solving the map problem:

We express the map by using the regions as variables and a list of
terms representing adjacencies. For example, the following map is
expressed as shown:

R4 R1 R3

R2

map(R1, R2, R3, R4) :- adj(R1, R2), adj(R1, R3), adj(R1, R4),
· adj(R2, R3), adj(R2, R4), adj(R3, R4).

We express the tact that each pair of adjacent regions must be
colored, and must be colored by distinct colors, by:

adj(R, S) :- color(R), color(S), distinct(R, S).

The predicate distinct is true exactly when its arguments are not
the same. ln Prolo9, we could define it using the built-in predicate
\== which tests that Its arguments are not identical:

distinct(R, S) :- R \== S.

We need to give a the list of colors, e.g.

color(C) :- member(C, [red, blue, yellow]).

Then we need only present the goal

?- map(R1, R2, R3, R4).

and Prolog does the rest. How? Backtracking is the key.

Prolog-in-Prolog Meta lnterpreter

solve(true) :- !.

solve((Goal, Goals)) :- !, solve(Goal), solve(Goals).

solve(Goal) :- clause(Goal, Body), solve(Body).

Remember here that clause will in general return a Body with some
substitutions already made, as occur in the matching of Goal.

Caution: The above does not work if an interpreted clause contains eut.
lt is difficult to handle this case with the tools in standard Prolog.

Meta lnterpreter which gives Reasons

solve(true, □) :- !.
needed

solve((Goal, Goals), [Reason I Reasons]) :­

' ., solve(Goal, Reason),
solve(Goals, Resons).

solve(Goal, [(Goal :- Body) 1 Reasons]) :­
clause(Goal, Body),
solve(Body, Reasons).

% no reason

% conjunction

%rule

General Problems in running "dusty" Prolog code in Parallel

As with many languages,

Prolog code is typically written with sequentiality in mind;

The Prolog programmer often optimizes his code by ordering

subgoals. A prime example is in the

"generate and test"

problem solving method

generate(lnput, Candidate), test(Candidate).

Logically, the two subgoals can be reversed or done in parallel,
but in the Prolog execution model, there can be a variety of disasters:

Arithmetic variables must be bound in Candidate
before testing.

test(Candidate) may be divergent if Candidate does
not have a certain binding state, due to depth-first
assumption.

test(Candidate) may have an infinite number of
solutions for Candidate

AND parallelism

1 Clause
p(X) : q(X), r(X). 1

Modes (generally dynamic)

! X ground I

p(X)
/ ~ SOive both

q(X) r(X)

Speculative, since if q(X) fails,

sequential execution would have been better

•

Wholesale AND Parallelism through Recursion

forall(Predicate, List) means the Predicate is true on each element of List

Clauses forai!(_, []).

forall(Predicate, [A I X]) call(Predicate, A),
forall(Predicate, X).

Usage
forall(p, [x1, x2, x3, , xn])

can spawn parallel executions of
p(x1), p(x2), p(x3), , p(xn).

Similar possibilties hold for predicates such as map:

map(Predicate, List1, List2) means that Predicate is called
pairwise on elements of List1 and List2 (usually the predicate
is functional).

AND parallelism (cont'd)

1 Clause
p(X) : q(X), r(X).

1 X not ground

p(X)

/ '
q(X)-~► r(X)

on success,
binding can "flow" forward

If multiple solutions for p(X) are desired,
this flow yields "pipelining".

ln principle, q(X) and r(X) could go in parallel above,
but then there would be the problem of

reconciling bindings

AND parallelism (conclusion)

Knowledge (by the compiler or execution system)
of two aspects of the data are essential:

Knowing whether terms are ground

Knowing whether there are any logical variables shared
between terms.

Without these, the overhead to get correct execution may be too high.

OR parallelism

Clauses

p(X) : body1.

p(X) : body2.

Cases of lnterest:

1 Find all solutions to p(X): 1

selve both //' '-.. ~ ~indin~s aggregated "'"ma 11st

body1 body2

OR parallelism (cont'd)

Clauses

p(X) : body1.

p(X) : body2.

Cases of I nterest:

Find the first solution to p(X) :!

selve both

body1 body2
As above, but must synchronize bindings.

Each body may itself have multiple solutions, so the
overall parallelism is an unlimited "tree" of execution.

Additional parallelism possible in Anticipation of
need for additional solutions.

-----~-~------- ------- -- ---

OR parallelism (cont'd)

Clauses

p(X) : body1 .

p(X) : body2.

Cases of lnterest:

Find a solution to p(X): 1

SOive both // ~

body1

Truly non-deterministic result.

Speculative

body2

Super-linear speedup possibilities

Proper Prelog semantics will have uses for the first two
modes, but not the third, which would require a special
directive to avoid incorrectness.

7 •

..

lmplementation Problems for OR parallelism:

Maintaining large numbers of separate variables
(for binding in parallel) while sharing bindings wherever
possible (to economize space).

Synchronization in parallel OR branches,
when side-effects are involved

Aurora

Aurora - a prototype Prolog system exploiting

OR-parallelism

"Workers" explore the Prelog search tree in OR-parallel

• the "engine"

• the "scheduler"

The Aurora implementation environment:

• Engine-scheduler interface

• Scheduler test harness

• Instrumentation

,

..

Conclusions from Aurora

Engine overhead due to SRI model and scheduler hooks:

15-35%

This overhead defines breakeven with sequential systems

Speedups Measured under Aurora:

1
IExample

lparseS
18-queens2
lsalt&must
lparse3*20
lfarmer*l00

1 speedup for N workers 1
1 3 1 5 1

(2. 83)
(2. 97)
(2. 87)
(2.09)
(1. 63)

(4. 08)
(4. 88)
(4.82)
(2. 30)
(1.69)

Speedups measured on a six processor
Sequent Balance

' ' ' ' . .

' ' ??

??

Selected References on Parallelism in Prelog

A. Ciepielewski and S. Haridi. A formai mode/ for the OR­
parallel execution of logic programs,. IFIP '83, North-Holland.
keywords: OR-parallellsm

J. S. Conery. Parai/el execution of logic programs, Kluwer
Academic Publishers (1987).
keywords: AND-parallelism, OR-parallelism

T. Disz, E. Lusk, and R. Overbeek. Experiments with OR­
parallel logic programs. Proc. Fourth International Conference
on Logic Programming, 576-600, J.-L. Lassez (ed)., M.I.T. Press
(1987).
keywords: OR-parallelism

M.V. Hermenegildo. An abstract machine based execution
mode/ for computer architecture design and efficient
implementation of logic programs in parai/el. Ph D Thesis,
University of Texas at Austin (August 1986).
keywords: AND-parallelism

Y -J. Lin. A parai/el implementation of logic programs. Ph D
Thesis, University of Texas at Austin (May 1988).
keywords: AND-parallelism

D.H.D. Warren. OR-Parai/el execution Models of Prolog.
Tapsoft '87, Volume 2, 243-259, LNCS 250,. Springer-Verlag.
keywords: OR-parallelism

, ..

Knowledge-Server Viewpoint

?- ancestor(X, john) __ _

X = mary ; __ _

X= tom;

X= susan

Schematic View

Query input
Prolog ..

Knowledge Base

Query input

Stream of answers

Stream of answers
--

Simplified "Bus-Oriented "Representation

Prolog

Exploiting the "Knowledge Net"

Application #1 Application #2

••••
Prolog

Application #1 Application #2

••••
Knowledge Knowledge Knowledge
Server A Server B Server C

