
/

Slcalchdesl!,lforaPrologm-•lly

Fernando Perera
10/5/86

1. Qigins

This design, which I will be working on for a while (ie., the CUTent version is almost
certainly not complete) is based on ideas from CSP, Delta-Prolog and Luca Cardelli's
rendezvous facility for Amber. In the proposed design, interprocess communication
(IPC) is synchronous.

Back1racking is a 1ricky issue when designing an IPC scheme for Prolog. In this design,
IPC like [nonback1rackable] input/output, that, is, there is no way to undo a rendezvous.

Status

This version (5/10) has a first (incomplete) sketch of the external channel mechanism
and a fairly detailed dscussion of a timeout mechanism. I still need to complete the
external channel specification and work out aitical regions and error handing.

2. Cancepls

(For more details see Luca's paper).

Process

An independent Prolog inS1rUction S1ream and associated state. Processes are
dynamically aeated by other processes and communicate by channels (q.v.). A
process is charaderized by its state (progam counter, registers, stacks). In the design
below, processes are manipulated (by manipulating thei' state) but processes are not
first-class data obieds, that is, there are no Prolog-accessible process obieds.

In this document, the term "process" always means a Prolog process within a ~ven
executing Prolog image. Operating-system processes will be called "OS processes".
An alternative convention very common in the Unix world is to call ii~twei~t
process" to what we call "process" here and "process" to Unix processes.

Channels are dynamically-aeated obieds that can be passed around as Prolog data
obieds. Channels 1ransfer Prolog data obieds between processes (see details below).

Channels come in two ma;or types, internal channels that allow communication _
between Prolog processes and exttrnal channels that allow communication with the
rest of the operating environment (operating system, 1/0 system, other

1

operating-system processes). External channels are ft.rther subdivided into stream
channels, which are associated to a Prolog 1/0 stream and fTO!Tllmmed channels,
which .-e associated to some specialized communication code supplied by the user.

A request corresponds to an attempt of a process to communicate. A request has an
associated process, a resumption progam counter f« the process, and, when the
request is f« output, an output value. Requests are dassified, acca'dng to the type of
channel they belong to, into internal and external, and external requests into stream
and progammed. An input and an output request on the same channel .-e said to be
complementary. The operation of matching complementary requests with the
appropriate data transfer is called rendezvous.

Pool

A pool is a set of requests, channels « processes with some common property. eg.
waiting f« input on a given channel. Luca (and I) use the term "pool" rather than
"queue" to avoid the «dering connotations of the latter. Pools may be represented in
the machine in any convenient way, eg. doubly-linked lists. In the desaiptions below,
I use several operations on pools, insert (Elem, Pool) that inserts an element into a
pool, remove (Pool) that removes an arbi1r'a-y element from a nonempty pool and
returns it, remove (Elem, Pool) that removes Elem from Pool, and also a constant
empty f« the empty pool.

3. Basic dala stuc.ln8

Channel
channel. Type The channel type, one of Internal, Stream«

Programmed.

channel. State The channel state, one of Open, Draining CJ" Closed.

channe 1 . Inpu tPool Pool of input requests f« this channel.

channel. OutputPool Pool of output requests f« this channel.

channel. Rendezvous The channel rendezvous function. Called to do the
actual data transfer f« each rendezvous operation on
the channel.

channe 1 . Private A private value f« external channels, passed in calls to
the rendezvous function. It is irrelevant f« internal
channels; f« stream channels, it is the associated
stream; f« progammed channels it is specified by the
user.

2

····--··- ·------

Request
request.Process

request.Channel
request.Resumption

request.Mutex

request.Value

Global Obiects
ActivePool

Ready Pool

CurrentProc

PreemptFlag

NullProc

4. Slate Tra :slims

The process that aeated this request.

Backpointer to this request's channel.
Where to resume request. Process if the request is
satisfied.

Pool of mutually-exdusive requests (see the discussion
of selection below).

The output value f« this request, « the adctess in
which to st«e an input value. Output values are
skeletal Prolog terms, that is, they are in the f«m of
input terms.

Pool of all those channels with nonempty input «
output pools.

Pool of all the processes that are neither running n«
waiting on a request.

Which process is CtJTently running.

This is used to request the emulat« to deactivate (q. v.)
the running process so that an external request can be
satisfied.

A c:kJmmy process that never runs but has all the
process data slructures. When CurrentProc ==
NullProc, the schec:kJler is intered. Conceptually, the
schec:kJler is NullProc (maybe this can be used to
dean up some of the clspatch code).

As Luca, I will desaibe the operational details of this desigl by specifying state
1ransitions. Some of the state 1ransitions correspond to specific emulat« instructions,
others to internal schec:kJler actions.

Kills CurrentProc. Cle•ly, CurrentProc cannot be in any pool, so no pool tidying is
requred. However, this mi~t be a good time to get rid of the process' state (eg. stack
group). After a stop, the schec:kJler takes over.

3

Effect
CurrentProc = NullProc;

Start

Takes a Prolog goal G and aeates a new process with that initial goal. The process is
placed in the ready pool. The et.rrent process continues executing.

Effect

insert(NewProcess(G), ReadyPool);

Language

fork(+Goal)

lmple/1181/tation

I'm not sure how this should be implemented. It could be a new emulatcr instuction:

<put argument into Ai>
fork Ai

but it would probably be a rather complicated instruction. Alternatively, it could be
implemented in pseudo-Prolog or C with some emulator assist.

Channel

Creates a new channel.

Effect

chan = NewChannel();
chan.InputPool = chan.OutputPool = empty;
return chan;

make_channel(-Channel)
stream_to_channel(+Stream,-Channel)

For make_channel/1 the resulting channel is internal, for stream_to_channel/2 it is
external. The details of external streams a-e dscussed below.

lmp/ementabiJn

To Prolog, channels should be "magic cookies" like streams and database references
are now. It would be more efficient to have a reserved basic datatype for these
beasties. I think that the original decision not to have a primitive datatype (and tag) for
such magic aeatt.res was a bad one. is it too late to change?

Close

Oesaiption

Closes down a channel. All subsequent attempts to output to the channel fail. When all
the outstandng requests on the channel a-e satisfied, the channel is marked as closed
and all requests on the channel fail.

Effect

channel->State = Draining;

Language

close_channel(+Channel)

Implementation

Channel-acess operators and the schec.lller must check for channels being closed
down. In particula-. the schec.lller must notice when the input and output pools a-e
craned so that the channel structt.re may be freed and its desaiptor invalidated (in the
same way as old s1ream desaiptors or database references a-e).

Select

Request communication on a set of channels simultaneously. The first request to be
satisfied is honored, and all the others a-e clscarded. The requests to be aeated a-e
given by a set R of tuples <C,D,V,N> where C is the channel, D the drection (input or
output), V the value for output requests and N the continuation (adctess of next
instruction to execute).

Effect

mutex = NewPool();
for (<C,D,V,N> in R) {

req = NewRequest{);
req->Process = CurrentProc;
req->Resumption = N;
if (D == Input) {

5

------------------------··

req->Value = V; ~/reference to unbound var~,
insert(req, C->InputPool};

}
else {

req->Value = copy(V);
insert(req, C->OutputPool);

}
insert(req, mutex);

}
CurrentProc = NullProc;
I* This activates the scheduler*/

where each B 1 is an arbitrary Prolog goal and each G 1 is a communication goal of one
of the two fams

Channel?Term
Channel!Term

input request
output request

At the time a communication goal is executed, the Channe 1 ergument must be
instantiated to a valid channel. The Term ergument can be any term. The decision on
whether to hona a request is independent of the fam of Term, that is, an input (output)
on a channel is pared with an output (input) on the same channel and the
caresponcing branch of the selection is taken independently of whether the terms
given as arguments to the input/output par unify. Thus, a selection branch of the fam

Channnel?Term => Goal

behaves exactly as

Channel?X => X = Term, Goal

where xis a new variable.

Implementation

We need fOII' ins1ructions

mutex Ai
read Ai, Aj, Ak., C
write Ai, Aj, Ak, C
wait

The mu t ex ins1ruction establishes a mutual exdusion pool and returns a pointer to it on
Ai. The read instruction establishes an input request fa the (unbound) vaiable in Aj

6

on the channel in Ai with the mutual exdusion pool ~ven in Ak and continuation at the
ins1ruction at offset c. The write instruction establishes an output request for the value
in A j on the channel in Ai, with the mutual exdusion given in Ak and continuation at
instruction at offset c. The argument checking for these instructions, including the
conversion of channel constants from Prolog terms to pointers to channel obiects
should be done by previous goals and instructions. Finally, the wait instruction
suspends the execution of the ctJTent process and hands over to the schedJler.

Deactivate

Moves the ctJTent process to the ready pool and hands over to the scheduler.

£Hect

temp= CurrentProc;
CurrentProc = NullProc;
insert(temp, ReadyPool);

Language

suspend

The suspend/0 predicate can be used by any busy process to make ue that it does
not lock out other activity. However, for external requests there is a suplementary
mechanism that deactivates the ct.rrent process at procec.u-e calls a in the general
unification main loop whenever PreemptFlag is 1rUe. This flag is set by the
interrupt-diven part of the scheciller ciscussed below.

/npemt!lltalion

A single instruction

deactivate

5. The SchecUer

Apart from the mess with external events ciscussed below, the scheduler is very
simple. There are only two state 1ransitions, activate that chooses a process from the
ready pool to be the ct.rrent process and rendezvous that matches an input request to
an output request. If both activate and rendezvous are possible, the choice of which to
do is arbi1rary wrt. correctness, but it matters in terms of scheduling. I propose that
rendezvous be always preferred to activate (eager communication), at least when
PreemptFlag is 1rUe.

The scheduler always resets the preemption flag, so that a p-eemption request is not
acted upon more than once.

1

Activate

Oesaiplion

Removes a process from the ready pool and makes it the Cll'fent process.

Effect

assert(ReadyPool != empty).
CurrentProc = remove(ReadyPool);
/* Continue from here executing CurrentProc */

RendezVous

OeS01ption

If the active pool is nonempty and contains a channel c with nonempty input and output
pools, requests I and o are removed from C->InputPool and C->OutputPool
respectively, the unbound variable pointed to by I . Value is bound to 0-> Value (« a
heap copy of 0->Value f« nong-ound values), all requests in the mutex pools of I and
o are removed from the respective pools and <iscarded. Channels without rec:,.aests
after this are removed from the active pool. !->Process is made Cll'fent process and
0->Process is placed in the ready pool. Note that I->Value does not need to
be 11"ailed because the compiler enues that this is the first occtrrence of that variable.

£Hect

assert(ActivePool != empty);
assert(exists C in ActivePool

with C->InputPool != empty
and C->OutputPool != empty);

for (C in ActivePool)
if (C->InputPool != empty && C->OutputPool != empty) {

remove(C, ActivePool);
I= remove(C->InputPool);
0 = remove(C->OutputPool);
(*C->RendezVous)(&val, 0->Value, C->Private);
if (atomic(val))

*I->Value = val;
else

*I->Value = heapcopy(val, input->Process);
PI= I->Process;
PO= 0->Process;
PI->program_counter = I->Resumption;
PO->program_counter = 0->Resumption;

8

}

for (E in I->Mutex) discard(E);
for (E in 0->Mutex) discard(E);
for (Din ActivePool)

if (D->InputPool == empty
&& D->OutputPool == empty)

remove(D, ActivePool);
if (PO != NullProc)

insert(PO, ReadyPool);
CurrentProc = PI;
break;

/* Resume CurrentProc */
if (CurrentProc != NullProc)

resume CurrentProo;
else

loop back to scheduler entry point;

For internal channels, the rendezvous function is simply defined by

(void) internal_rendezvous(input, output)
caddr_t *input, output;
{

*input = output;
}

In practice the calling code for the rendezvous function need sto be somewhat more
complicated to enSll"e datatype safety between Prolog and forei~ code. The output
value passed to the rendezvous function of a prog-ammed channel must be converted
to a forei~ datatype and the value rettmed throu!il the input pointer must be
converted back to Prolog representation. Rendezvous functions for external channels
are discussed in the next section.

The heapcopy builds a copy of its frst argument (a skeletal term) on the heap of its
second argument (a process). The discard function cancels a request, removing it
from all the pools it belongs to. Fll'thermore, dscarding the last remaining request on a
channel also removes the channel from the active pool.

External channels provide the communication between Prolog processes and the
operating environment outside the running Prolog image, eg. the Unix operating
system. For conceptual uniformity, we may think of external channels as connecting
with a collection of permanently-running exttmal processes supplied by the Prolog
environment.

Typical operating systems do not use rendezvous as their primary means of
communication between progams and the operating environment, so we need an
adlp/tr layer between the redezvous mechanism and the external facilities. For
simplicity, the adaptor layer should avoid dealing with rendezvous drectly, but only

9

----·-------

post apr.,roprlate requests into channel pools. Nevertheless, the code fer the
rendezvous operation will need to recogtize certain special cases and deal with them
appropiately.

In the remainder of this section, I will discuss how to implement external channels
mainly fer Berkeley Unix. At appropiate points I will ~ve suggestions on how to adapt
the desig-i to System V .2. As fer other operating systems (VAX/VMS, MVS), I don't
know enou{jl about them at this point to enue that the desig-i fits thei' peculiries.

Types of External Channels

A stream channel is created from a Prolog stream by a call to stream_to_channel/2.
I don't see a good way of associating channels to prog-ammed er biderectional
streams, so stream_to_channel should only succeed fer "slrai{jlt" streams
associated to operating-system input er output s1reams. A s1ream channel associated
to an input (output) stream is an input (output) channel.

Input and output streams ciffer from internal streams only in the possible events the
s1reams. An input request on an input channel may rendezvous with a complemenwy
request by the 1/0 system, and an output request on an output channel may
rendezvous with a complement!r'y request posted by the 1/0 system. Nevertheless, it is
also possible fer requests on s1ream channels to rendezvous with internally generated
complementa-y requests.

ft"OfTIIITJmed Channels

(I to be redone]]
Prog-ammed channels are to channels what OP prog-ammed s1reams are to streams.
Thei' main JUPOS8 is to allow users to write foreig-i code that posts event requests, eg.
to report Unix sig-ials or window-system events.

The library function OP _make_channel, with declaration

typedef Bool (*BoolFn)();

Bool QP_make_channel(handle,chanfn, chan)
caddr_t handle; BoolFn chanfn; Int *chan;

attempts to build a channel with descriptor * chan with channel function chanf n.
The channel descriptor is an integer that can be converted to a Prolog channel name
with the precicate channel_code/2 (analogous to stream_code/2). The channel
function is called by the scheduler to check for available requests and to Jrep.-e for a
scheduler wait.

Implementation

10

The basic implementation question is how to decouple process scheckJling and
rendezvous from operating-system vagaies. To this effect, I define the following
scheduler predcates and pools

Ready The ready pool is not emtpy.

Active

ExternalPool

At least one rendezvous operation is possible.

Pool of unsatisfied external requests

Waiting The external pool is nonempty
With these, we can define several classes of scheduler states

stuck ~Ready & ~Active
blocked stuck & Waiting
deadocked stuck& ~Waiting
running ~stuck & ~Waiting
inlt!1171plible ~stuck & Waiting

Blocked states

• I

When bloclced, the schedulers only alternative is to satisfy some request in the wait
pool. No Prolog-generated rendezvous can take us out of this state, only external
intervention can. The available interventions s-e 1/0 operations on slreams associated
to slream channels and calls to the channel functions of progammed channels. /J-i< . _
Tlj.; UM~ ~f6tL111l rut(~(g_cf ?:;tAY1'~cl iQ ,11,.v,J;t • · a,t(~Nt'tf
Oeadoded States <1lt. xc~fir'd(Ch~ { &:iii\ r h l)?'\l

s, y,tttls)
In a deadoclced state, there s-e no external requests whose satisfaction would cause
the execution to proceed. This is an errer, and Prolog should aba1 back to a
well-defined sts-t state with all requests canceled and all processes stopped.

Running States

In a running state, the scheduler only needs to take the appropriate (rendezvous er
activate) action.

An interruptible state should proceed like a running state with a rendezvous er activate
action. However, there s-e pendng external requests that may be satisfied. In erder not
to block out the satisfaction of these requests, is must be possible fer external activity to
set the preemption flag PreemptFlag. Fer requests on progammed channel&,
preemption is achieved by calling the OP _post_event function ciscussed above. Fer
requests on slream channels, it is necessary to install an appropriate SIGIO hander
on the Unix slream attached to the channel. This hander just raises the preemption
flag to allow the scheduler to collect pending 1/0 requests.

11

7. TlllleOUIB

DeS01ption

A process facility needs a timeout mechanism fa various ptl'poses, fa instance to
break out of selections after some period has elapsed. The timeout mechanism I
propose here uses as much as possible of the machinery aready developed. A
timeout is implemented as a rendezvous on a special predefined lime channel.

EHect

Timer re(I.Jest

wakeup= Now+ interval;
if (wakeup < NextWakeUp) {

NextWakeUp = wakeup;
set interval timer to signal at NextWakeUp;

}
enter an output request for TimeChannel with V = wakeup;

Wakeup call

for (0 in TimeChannel->OutputPool)
if (0->Value <= Now) {

}

req = NewRequest();
req->Process = NullProc;
req->Mutex = empty;
req->Value = &dummy;
insert(req, TimeChannel->InputPool);

NextWakeUp = Omega; /* the end of time*/
for (0 in TimeChannel->OutputPool)

if (0->Value > Now && 0->Value < NextWakeUp)
NextWakeUp = 0->Value;

if (NextWakeUp < Omega)
set timer call for NextWakeUp;

PreemptFlag = true;

Lan!}llage

(... time(+Interval) => ...)

Implementation

A timer request is simulated by an output request on the timer channel with the
absolute time of the request as value. Unix timer wakeup calls are used to interrupt
Prolog at the time of the closest request(s). When a wakeup OCCll'S, matching input
requests fa all the timer channel output requests fa earlier than the CllTent time are
aeated, a new wakeup call is established fa the next timer request and preemption is
initiated.

12

