Sketch design for a Prolog multiple-process facility

Fernando Pereira
10/5/86

1. Origins

This design, which | will be working on for a while (ie., the current version is almost
certainly not complete) is based on ideas from CSP, Delta-Prolog and Luca Cardelli's
rendezvous facility for Amber. In the proposed design, interprocess communication
(IPC) is synchronous.

Backtracking is a tricky issue when designing an IPC scheme for Prolog. In this design,
IPC like {ncnbackn'ackablg] input/output, that, is, there is no way to undo a rendezvous.

Status

This version (5/10) has a first (incomplete) sketch of the external channel mechanism
and a fairly detailed discussion of a timeout mechanism. | still need to complete the
external channel specification and work out critical regions and error handiing.

2. Concepts
{For more details see Luca's paper).

Process

An independent Prolog instruction stream and associated state. Processes are
dynamically created by other processes and communicate by channels (q.v.). A
process is characterized by its state (program counter, registers, stacks). In the design
below, processes are manipulated (by manipulating their state) but processes are not
first-class data objects, that is, there are no Prolog-accessible process objects.

in this document, the term “process” always means a Prolog process within a given
executing Prolog image. Operating-system processes will be called “OS processes”.
An alternative convention very common in the Unix world is to call “fightweight
process” to what we call “process” here and “process” to Unix processes.

Channe/

Channels are dynamically-created objects that can be passed around as Prolog data
objects. Channels transfer Prolog data objects between processes (see details below).

Channels come in two major types, #m%ena/ channels that allow communication
between Prolog processes and exferna/ channels that allow communication with the
rest of the operating environment (operating system, l/O system, other

1

operating-system processes). External channels are further subdivided into szeam
channels, which are associated to a Prolog /O stream and programmed channels,
which are associated to some specialized communication code supplied by the user.

Regquest

A request corresponds to an attempt of a process to communicate. A request has an
associated process, a resumption program counter for the process, and, when the
request is for output, an output value. Requests are classified, according to the type of
channel they belong to, into internal and external, and external requests into stream
and programmed. An input and an output request on the same channel are said to be
complementary. The operation of matching complementary requests with the
appropriate data transfer is called rendezvous.

Poof

A pool is a set of requests, channels or processes with some common property, eg.
waiting for input on a given channel. Luca (and I) use the term “pool” rather than
“queue” to avoid the ordering connotations of the latter. Pools may be represented in
the machine in any convenient way, eg. doubly-linked lists. In the descriptions below,
| use several operations on pools, insert(Elem, Pool) that inserts an element into a
pool, remove (Pool) that removes an arbitrary element from a nonempty pool and
returns it, remove (Elem, Pool} that removes Elemfrom Pool, and also a constant
empty for the empty pool.

3. Basic data sktuchres

Channme/
channel.Type The channel type, one of Internal, Streamor
Programmed.
channel.State The channel state, one of Open, Draining of Closed.

channel.InputPool Pool of input requests for this channel.
channel.OutputPool Pool of output requests for this channel.

channel.RendezVous The channel rendezvous function. Called to do the

actual data transfer for each rendezvous operation on
the channel.

channel.Private A private value for external channels, passed in calls to
the rendezvous function. It is irelevant for internal
channels; for stream channels, it is the associated
stream; for programmed channels it is specified by the
user.

Request

request.Process

request.Channel

request.Resumption

request.Mutex

request.Value
Global Objects

ActivePool

ReadyPool

CurrentProc

PreemptFlag

NullProc

4. State Transitions

The process that created this request.

Backpointer to this request's channel.
Where to resume request.Process if the request is
satisfied.

Pool of mutually-exclusive requests (see the discussion
of selection below).

The output value for this request, or the address in
which to store an input value. Output values are
skeletal Prolog terms, that is, they are in the form of
input terms.

Pool of all those channels with nonempty input or
output pools.

Pool of all the processes that are neither running nor
waiting on a request.

Which process is currently running.

This is used to request the emulator to deactivate (q.v.)
the running process so that an external request can be
satisfied.

A dummy process that never runs but has all the
process data structures. When CurrentProc ==
NullProc, the scheduler is intered. Conceptually, the
scheduler is Nul1lProc (maybe this can be used to
clean up some of the dispatch code).

As Luca, | will describe the operational details of this design by specifying state
fransitions. Some of the state fransitions corespond to specific emulator instructions,
others to internal scheduler actions.

Stop

Description

Kills CurrentProc. Clearly, CurrentProc cannot be in any pool, so no pool tidying is
required. However, this might be a good time to get rid of the process’ state (eg. stack
group). After a stop, the scheduler takes over.

Effect

CurrentProc = NullProc;
Start
7 ..

Takes a Prolog goal G and creates a new process with that initial goal. The process is
placed in the ready pool. The current process continues executing.

Effect
insert (NewProcess(G), ReadyPool};
Language
fork({+Goal)
Implementalion
I'm not sure how this should be implemented. It could be a new emulator instruction:

<put argument into Ai>
fork Ai

but it would probably be a rather complicated instruction. Alternatively, it could be
implemented in pseudo-Prolog or C with some emulator assist.

Channel
) .
Creates a new channel.

Effect

chan = NewChannel(});
chan.InputPool = chan.OutputPool = empty;
return chan;

Language

make_channel({-Channel)
stream_to_channel(+Stream, -Channel)

For make_channel/1 the resulting channel is internal, for stream_to_channel/2 itis
external. The details of external streams are discussed below.

/mplementation

To Prolog, channels should be “magic cookies” like streams and database references
are now. It would be more efficient to have a reserved basic datatype for these
beasties. | think that the original decision not to have a primitive datatype (and tag) for
such magic creatures was a bad one. is it too late to change?

Cleose

Description

Closes down a channel. All subsequent attempts to output to the channel fail. When all
the outstanding requests on the channel are satisfied, the channel is marked as closed
and all requests on the channel fail.

Effect

channel->State = Draining;
Language

close_channel{+Channel)
Implementation

Channel-acess operators and the scheduler must check for channels being closed
down. In particular, the scheduler must notice when the input and output pools are
drained so that the channel structure may be freed and its descriptor invalidated (in the
same way as old stream descriptors or database references are).

Select
N ..

Request communication on a set of channels simultaneously. The first request to be
satisfied is honored, and all the others are discarded. The requests to be created are
given by a set R of tuples <C,D,V,N> where C is the channel, D the direction (input or
output), V the value for output requests and N the continuation (address of next
instruction to execute).

Effect

mutex = NewPool();

for (<C,D,V,N> in R} {
req = NewRequest();
req->Process = CurrentProc,;
reg->Resumption = N;
if (D == Input) {

req->Value = V,; */reference to unbound var */
insert{req, C->InputPool});

else |
reg->Value = copy(V),
insert(req, C->OutputPool);

}

insert(req, mutex);

}

CurrentProc = NullProc;
/* This activates the scheduler */

Language
(G, => B, | ... | G, => B)

where each B, is an arbitrary Prolog goal and each G, is a communication goal of one
of the two forms

Channel?Term input request
Channel !Term output request

At the time a communication goal is executed, the Channel argument must be
instantiated to a valid channel. The Term argument can be any term. The decision on
whether to honor a request is independent of the form of Term, that is, an input (output)
on a channel is paired with an output (input) on the same channel and the
coresponding branch of the selection is taken independently of whether the terms
given as arguments to the input/output pair unify. Thus, a selection branch of the form

Channnel?Term => Goal
behaves exactly as

Channel?X => X = Term, Goal
where X is a new variable.
/mplementation
We need four instructions

mutex Al

read Ai, Aj, Ak, C
write Ai, Aj, Ak, C
wvait

The mutex instruction establishes a mutual exclusion pool and returns a pointer to it on
Ai. The read instruction establishes an input request for the [unbound] variable in Aj

on the channel in Ai with the mutual exclusion pool given in Ak and continuation at the
instruction at offset C. The write instruction establishes an output request for the value
in Aj on the channel in A1, with the mutual exclusion given in Ak and continuation at
instruction at offset C. The argument checking for these instructions, including the
conversion of channel constants from Prolog terms to pointers to channel objects
should be done by previous goals and instructions. Finally, the wait instruction
suspends the execution of the current process and hands over to the scheduler.

Deactivate
Desaption
Moves the current process to the ready pool and hands over to the scheduler.
Effect
temp = CurrentProc;
CurrentProc = NullProc;
insert(temp, ReadyPool);
Language

suspend

The suspend/0 predicate can be used by any busy process to make sure that it does
not lock out other activity. However, for external requests there is a suplementary
mechanism that deactivates the current process at procedure calls or in the general
unification main loop whenever PreemptFlag is frue. This flag is set by the
interrupt-criven part of the scheduler discussed below.

Implementation
A single instruction
deactivate

5. The Scheduler

Apart from the mess with external events discussed below, the scheduler is very
simple. There are only two state transitions, activate that chooses a process from the
ready pool to be the current process and rendezvous that matches an input request to
an output request. If both activate and rendezvous are possible, the choice of which to
do is arbitrary wrt. corectness, but it matters in terms of scheduling. | propose that
rendezvous be always preferred to activate (eager communication), at least when
PreemptFlag is true.

The scheduler always resets the preemption flag, so that a preemption request is not
acted upon more than once.

Activate
Description

Removes a process from the ready pool and makes it the current process.

Effect

assert (ReadyPool != empty).
CurrentProc = remove(ReadyPool);
{* Continue from here executing CurrentProc */

RendezVous

Description

If the active pool is nonempty and contains a channel C with nonempty input and output
pools, requests I and O are removed from C->InputPool and C->OutputPool
respectively, the unbound variable pointed to by I.Value is bound to O->Value (or a
heap copy of 0->Value for nonground values), all requests in the mutex pools of I and
0 are removed from the respective pools and discarded. Channels without requests
after this are removed from the active pool. I->Process is made current process and
O->Process is placed in the ready pool. Note that I->Value does not need to

be trailed because the compiler ensures that this is the first occurrence of that variable.

Effect

assert {ActivePool != empty);
assert(exists C in ActivePool
with C->InputPool != empty ,
and C->OutputPool '= empty),
for (C in ActivePool)
if (C->InputPool != empty && C->OutputPool != empty) |
remove(C, ActivePool);
I = remove{C->InputPool};
0 = remove(C->0OutputPool);
(*C->RendezVous) (&val, O->Value, C->Private);
if (atomic(val))
*I->Value = val;
else
*I->Value = heapcopy(val, input->Process);
PI = I->Process;
PO = O->Process;
PI->program_counter
PO->program_counter

I->Resumption;
O->Resumption;

for (E in I->Mutex) discard(E),
for (E in O->Mutex) discard(E);
for (D in ActivePool)
if (D->InputPool == empty
&& D->OutputPool == empty)
remove(D, ActivePool),
if (PO != NullProc)
insert (PO, ReadyPool);
CurrentProc = PI;
break;

/* Resume CurrentProc */

if (CurrentProc != NullProc)
resume CurrentProc;

else

loop back to scheduler entry point;

For internal channels, the rendezvous function is simply defined by

(void) internal_rendezvous({input, output)
caddr_t *input, output;
{

}

in practice the calling code for the rendezvous function need sto be somewhat more
complicated to ensure datatype safety between Prolog and foreign code. The output
value passed to the rendezvous function of a programmed channel must be converted
to a foreign datatype and the value returned through the input pointer must be
converted back to Prolog representation. Rendezvous functions for external channels
are discussed in the next section.

*input = output;

The heapcopy builds a copy of its first argument (a skeletal term) on the heap of its
second argument (a process). The discard function cancels a request, removing it
from all the pools it belongs to. Furthermore, discarding the last remaining request on a
channel also removes the channel from the active pool.

6. External Channels

External channels provide the communication between Prolog processes and the
operating environment outside the running Prolog image, eg. the Unix operating
system. For conceptual uniformity, we may think of external channels as connecting
with a collection of permanently-running externa/ processes supplied by the Prolog
environment.

Typical operating systems do not use rendezvous as their primary means of
communication between programs and the operating environment, so we need an
adqptor layer between the redezvous mechanism and the external facilities. For
simplicity, the adaptor layer should avoid dealing with rendezvous directly, but only

post appropriate requests into channel pools. Nevertheless, the code for the
rendezvous operation will need to recognize certain special cases and deal with them

appropriately.

in the remainder of this section, | will discuss how to implement external channels
mainly for Berkeley Unix. At appropriate points | will give suggestions on how to adapt
the design to System V.2. As for other operating systems (VAX/VMS, MVS), | don't
know enough about them at this point to ensure that the design fits their peculiarities.

Types of External Channels
Sream Channels

A stream channel is created from a Prolog stream by a call to stream_to_channel/2.
| don't see a good way of associating channels to programmed or biderectional
streams, s0 stream_to_channel should only succeed for “straight” streams
associated to operating-system input or output streams. A stream channel associated

to an input (output) stream is an #pw’ (owjpirt) channel.

input and output streams differ from internal streams only in the possible events the
streams. An input request on an input channel may rendezvous with a complementary
request by the I/O system, and an output request on an output channel may
rendezvous with a complementary request posted by the I/O system. Nevertheless, it is
also possible for requests on stream channels to rendezvous with internally generated
complementary requests.

Programmed Channefs

{[to be redone]]

Programmed channels are to channels what QP programmed streams are to streams.
Their main purpose is to allow users to write foreign code that posts event requests, eg.
to report Unix signals or window-system events.

The library function QP_make_channel, with declaration

typedef Bool (*BoolFn)();

Bool QP_make_channel(handle, chanfn, chan)
caddr_t handle; BoolFn chanfn; Int *chan;

attempts to build a channel with descriptor *chan with channel function chanfn.

The channel descriptor is an integer that can be converted to a Prolog channel name
with the predicate channel_codel2 (analogous t0 stream_code/2). The channel
function is called by the scheduler to check for available requests and to prepare for a
scheduler wait.

Implementation

10

The basic implementation question is how to decouple process scheduling and
rendezvous from operating-system vagaries. To this effect, | define the following
scheduler predicates and pools

Ready The ready pool is not emtpy.
Active At least one rendezvous operation is possible.
ExternalPool Pool of unsatisfied external requests
Waiting The external pool is nonempty

With these, we can define several classes of scheduler states -
stuck —-Ready & —Active
Dlocked stuck & Waiting
deadlocked stuck & —Waiting
running —-stuck & —-Waiting
interryptible -Stuck & Waiting

Blocked states

When blocked, the scheduler's only alternative is to satisfy some request in the wait
pool. No Prolog-generated rendezvous can take us out of this state, only external
intervention can. The available interventions are I/O operations on streams associated
to stream channels and calls to the channel functions of progammed channels.

TH Unic 50m cull selet &™Miga, o ’WMTﬁM'f w
Deadocked States on e chommels (both I b am&

In a deadlocked state, there are no external requests whose satisfaction would cause o t}/M‘S)
the execution to proceed. This is an error, and Prolog should abort back to a
well-defined start state with all requests canceled and all processes stopped.

Running States

In a running state, the scheduler only needs to take the appropriate (rendezvous or
activate) action.

Interryptible Stales

An interruptible state should proceed like a running state with a rendezvous or activate
action. However, there are pending external requests that may be satisfied. In order not
to block out the satisfaction of these requests, is must be possible for external activity to
set the preemption flag PreemptFlag. For requests on programmed channels,
preemption is achieved by calling the OP_post_event function discussed above. For
requests on stream channels, it is necessary to install an appropriate SIGIO handler
on the Unix stream attached to the channel. This handler just raises the preemption
flag to allow the scheduler to collect pending I/O requests.

11

7. Timeouts
Description

A process facility needs a timeout mechanism for various purposes, for instance to
break out of selections after some period has elapsed. The timeout mechanism |
propose here uses as much as possible of the machinery already developed. A
timeout is implemented as a rendezvous on a special predefined Zme channel.

Effect
Timer request

wakeup = Now + interval;
if (wakeup < NextWakeUp) {
NextWakeUp = wakeup;
set interval timer to signal at NextWakeUp;

}

enter an output request for TimeChannel with V = wakeup;

Wakeup call

for (O in TimeChannel->OutputPool)
if (O->Value <= Now) {
req = NewRequest(),
reg->Process = NullProc;
reg->Mutex = empty;
reg->Value = &dummy;
insert(req, TimeChannel->InputPool);

}
NextWakeUp = Omega, /* the end of time */
for (O in TimeChannel->QOutputPool)
if (O->Value > Now && O->Value < NextWakeUp)
NextWakeUp = O->Value;
if (NextWakeUp < Omega)
set timer call for NextWakeUp;
PreemptFlag = true;

Language
(... time(+Interval) => ...)
Implemeniation

A timer request is simulated by an output request on the timer channel with the
absolute time of the request as value. Unix timer wakeup calls are used to interrupt
Prolog at the time of the closest request(s). When a wakeup occurs, matching input
requests for all the timer channel output requests for earlier than the current time are
created, a new wakeup call is established for the next timer request and preemption is
initiated.

12

