
A STRATEGY FOR INFORMATION HANDLING IN PROLOG

Fernando Pereira

[**DRAFT**]

29 December 1984

1. Prolog for Information Processing

Logic programming has the potential of supporting the storage,
combination and presentation of a wider variety of information in
a wider variety of ways than has been possible with any other
computer technology so far developed. The reason for this
revolutionary new potential is simple: logic programming deals
directly with statements of the information on outside world
relevant to an application rather than with encodings of that
information into bits in a computer's memory and programs that
shuffle those bits.

The first step to realize the potential of logic programming is
the development of a logic programming system competitive in
terms of computation speed with more conventional ways of
handling information. Quintus has so far been working on this
first step. However, this is Just what I said, a first step. What
should follow?

The answer to this question is implicit in the opening sentence
of this note:' · ..• supporting the storage, combination and
presentation •.. of information ••• ''· Our Prolog system gives us
mainly the means to combine information effectively. We have now
to deal with storage and presentation of information.

Before we look at those areas, though, we should examine a bit
more closely what we have already achieved, and would be foolish
to lose.

By its very nature, any usable Prolog system must include means
of storing substantial amounts of information in the form of
facts and rules. Note that this is rather different from other
systems that fall under the · 'programming system'' label. With
conventional programming systems, storage of data is seen as a
separate matter under the responsibility of the programmer that
organizes data structures in memory or in external disk files.
The Prolog system, on the other hand, from the information

2

storage point of view looks rather like a relational database:
the user specifies what information he wants stored, but very
little (or even nothing at all) of ho1t-J it is to be stored. The
· 'how'' is the business of the Prolog system and most users will
be glad not to have to bother with such irrelevant (in terms
information content) details as to how many bits are used by this
table or what data structure is used to access the elements of a
t.;:-1ble.

Thus, the current Prolog system can already be used not only as
an information processing tool but also as an informations
5.torage tool. In the secoY-,d role, it suffers from limitations
that I will discuss in detail below. Nevertheless, it is a very
reasonable tool to store databases of the order of a few
megabytes, and experience shows that for such databases, in
particular when the information stored is anywhere complex (many
relatioY-1s and attributes), it is far more effective thar, existiY-1g
relational database systems.

In using the Prolog systemas a tool to store and combine
information, we are benefitting from an uniformity which is
absent in more conventional tools. Information is stored in
Prolog as facts and rules and is processed by the application of
other rules and facts. In fact, there is no distinction between
what ''is processed'' and what ''processes'': what we have are
facts and rules that describe the relevant aspects of our
application. Thus, a table of employees, which would
conventionally be thought of as· 'data'' and a table of compound
interest, which would be conventionally part of the ''program'',
are conceptually the same kind of obJect -- predicates -- and
exist in the same way within the Prolog system. In contrast, in
using a database system such as INGRES, we need to deal with
three totally different languages and data representations: the
one used to keep the actual information in the database, the
query language used in retrieving data, and an external
programming language such as C used to write information
combining applications <not to mention a report genration
language for data presentation, which I will discuss later in the
section on information presentation).

It is hard to exaggerate the importance of the above point:
most of the tools of information storage, usually implemented in
database systems, are already present in the Prolog system, if
only in a somewhat limited form. It is on this auspicious start
that we have to build.

3

2. Information Storage

As I argued above, the Prolog system already provides many of
the facilities normally thought as part of a database system.
What is it missing, then?

1. Ability to store huge amounts of information: The
storage capacity of the current Prolog system is
limited by the virtual address space of the host
machine (16MB under Berkeley Unix on the SUN or VAX).
Larger storage capacity requires the use of the file
system provided by the host operating system.

2. Better indexing: Reasonably efficient access to large
amounts of information requires special tables to
guide the system more directly to the relevant
information. These tables are called indexes and are
best maintained automatically by the information
storage subsystem.

3. Better data persistency: For relatively small
databases (a few megabytes) it is reasonable to keep
the information between use sessions as a disk file
that records the internal state of the Prolog system,
what is called a saved state. This is not practical
for much larger databases, which must be seen as
persistent entities independent of a particular
activation of the Prolog system.

4. Multiple access: Very often large databases must be
accessed simultaneously by several users. This
requires special techniques to guarantee that the
information seen by each user is always in a
consistent state regardless of changes effected by
other users.

5. Reliability: Databases must be protected from software
or hardware failure. Simple copies of older versions
of the database is practical for databases of a few
megabytes, but more sophisticated methods are needed
when size makes frequent copies impractical.

I will call Prolog storage module to the component of the
Prolog system satisfying the above requirements. A Prolog storage
module would allow the Prolog user and the user of applications
embedded in Prolog to keep large stores of information and access
and process it with the full power of Prolog and of Prolog-based
applications such as natural-language front ends. The Prolog
storage module would appear simply as an extension of
capabilities already present in Prolog and not as detached system

4

alien to the spirit and techniques of logic programming.

One might argue that all the above requirements have already
been solved in one or other of the many existing database
systems, so it would be easier to take advantage of an external
database system by interfacing it to Prolog. This approach would
have the further advantage of making data already kept by the
database system accessible from Prolog.

Unfortunately, things are not so simple. No existing commercial
database system was designed to be interfaced to Prolog.
Commercial database systems have all sorts of limitations, which
are reasor1able wher, the database system is in ci:,r1tr,::,l ,::,f the
application but which would make a Prolog interface complicated,
slow and detrimental to our understanding of Prolog as a medium
in which all data is handled uniformly. This is not the place to
discuss the limitations in those respects of specific database
systems, but the conclusion is that interfaces to external
database systems are for the benefit of specific applications
with a large investment in those database systems, not for the
benefit of logic programming as an overall solution to
information processing problems.

Therefore, although in the short term it might seem attractive
to build an interface between Prolog and an existing database
system, such an effort could only be Justified by specific
applications, and not as a means of building up the capabilities
of logic programming systems. Ultimately, an interfacing effort
would be at the mercy of the whims of database system suppliers
and their clients, whereas a storage module properly designed for
Prolog would be under full technological and business control of
Quintus and would be a maJor step in moving logic programming
from the AI · 'ghetto'' into a much wider area of information
pror:essi rig.

As with other developments of logic programming, the
development of a Prolog storage module should be organized so
that intermediate stages can be made available to users. Features
(1.), (2) ar,d (3) are closely tied to the use ,::,f the hi:,st
operating system's file system and, with some minimal reliability
mechanism, would be present in a first module usable for personal
(that is, not shared) information storage. Features (4) and (5)
would come later in a full-fledged Prolog storage module.

In parallel, a limited interface between Prolog and an external
database system might be developed as a demonstration of concept
to attract users with very large specific requirements. It is

5

practically impossible to antecipate what features of the
external database system should be made accessible from Prolog
for specific applications and therefore the status of the
database interface should be the same as that of other
demonstration programs, such as those being written to exemplify
to users the possibilities of the C interface.

3. Information Presentation

Very much the same arguments can be made in the area of
information presentation as I made above with respect to
information storage.

It is of course possible to interface Prolog to various
graphics and screen packages available on host computer systems.
Our C interface is the means to put together quickly such
interfaces, and users should be encouraged and educated to use
the C interface to reach out into relevant facilities of host
systems.

Nevertheless, logic programming offers a unique opportunity to
rethink information presentation problems and create solutions
that are much more general and flexible.

The main idea here is that an information display is no more
than a pictorial representation of information already available,
either directly or through computation, in the information store
of an application. The display is build from four kinds of
i 'r"'rformat ion

The information to be presented, for example the annual
earnings of a corporation over tha last 10 years.

Rules that describe the pictorial appearance of various
classes of information. For example, there might be a
group of rules that build histograms for measure/time
period tables (such as earnings/year).

A description of the overall layout of the display, for
example, where various windows are in relation to each
other.

A description of the features of the display device,
for example size or color capabilities.

Again, it might be argued that some of these issues have
already been addressed by the designers of graphics systems,
report generators and the like. As before, this argument leaves
aside what is most promising about logic programming: the ability
to store and manipulate all sorts of information in a uniform,
user-accessible way. For example, from a logic programming
perspective, the differences between graphical displays, forms
and reports are circumscribed to a relatively small area of
appearence rules and device details, and it should be possible to
change the presentation entirely without having to touch the
information to be presented.

We will still be able to use many presentation concepts, such
as device independence and windows, that were developed in more
conventional settings, and it also clear that in a first system
one will have to rely substantially on whatever facilities for
information display are provided by host systems.

However, it is very important that the development of
information presentation facilities for Prolog benefit be in
support of, rather than instead of, the development of logic
programming technology as an unified answer to application
problems. This means that information presentation should not be
seen as an easily dettachable Prolog application, but rather an
organic growth of the capabilities of logic programming.

4. A Strategy for Growth

In presenting these views on information storage and
presentation, I have started from a guiding conception: that
logic programming is not a single specific tool for a particular
class of problems, but rather a developing technology capable of
providing successively more encompassing solutions to
successively wider classes of problems. In this, logic
programming technology differs radically from specific classes of
tools such as database systems, expert system shells or graphical
interfaces.

Logic programming technology should be seen ask the same kind
of thing as computer technology in general, deriving its
spetacular growth from the ability to be molded to serve both
existing and newly created needs at constantly lowering costs.
Put in another way, logic programming, logic programming, as
computing in general, gives us a new, much simpler and more
flexible way of storing and processing information, not only
tables as in personnel records, or matrixes of numbers as in
structural analysis, or geometric models as in CAD/CAM, or rules

7

of thumb as i t·1 ex pert systems, but arw kind of precise
information. This unique ability stems from a close match between
the conceptual basis of logic programming and the way in which we
ourselves organize our knowledge about the world.

The growing applicability of logic programming will mean that
more and more complex problems will be attacked using its tools.
It is then clear that the only way to sustain this growth is to
provide logic programming systems that are not only more
comprehensive, but also faster. In fact, much of the current
Quintus Prolog and certainly even more of its future extensions
will be written in Prolog itself, for the very same reasons that
support the use of Prolog in applications. As with computing in
general, increased functionality requires even more increased raw
computing power. It is an open question whether general-purpose
computers, not tailored for Prolog, will be able to satisfy those
increasing demands. Furthermore, the natural progression of logic
programming technology will impel us to use the technology to
organize th whole computing environment in logic programming
terms, bypassing entirely the much more primitive tools provided
today by operating systems. Going in this direction will clearly
mean the introduction of computer systems specifically tailored
for logic programming.

