
,
An lmproved Prolog Debugger

Peter Schachte
4 October 1989

This note outlines the planned changes to the Quintus Prolog debugger. The changes are needed for
several reasons:

• to make the debugger easier to use

• to make the debugger support a windowing interface

• to make mixed compiled/consulted code more debuggable

• to make compiled (efficient) code debuggable

• to make the debugger more memory-efficient

• to make the debugger better reflect Prolog procedural semantics

• to make choicepoints and indexing more understandable

• to make the debugger more flexible

The following sections discuss the major parts of the project: dividing the debugger into two pieces,
allowing the debugging of compiled code, source linkage, and the head port, and we finish with a brief
discussion of the interaction between the tasks and initial estimates of the effort required to complete the
parts of this project.

1. Dividing the Debugger lnto Two Pieces
Currently, there is no programatic interface to the Prolog debugger. This makes it difficult for us to
provide two interfaces: the usual one and a source-linked, window-oriented one. ln order to make these
interfaces as easy as possible, and to make it convenient for us to supply more interfaces in the future
(e.g., ProWINDOWS, ProXL), we will divide the debugger into two pieces. The first. and largest, piece is
the debugger proper. This is the part that is responsible for deciding when to interact with the user, and
executing most user commands. The second part of the debugger is the interface, which will be
replaceable. The interface is responsible for showing users the state of computation, and determining the
user's wishes.

2. Debugging Compiled Code

2.1. premises
This scheme is based on the ide a that consulted c éle will be almost as fast as compiled when debugging
is turned off, so users will usually consult everythi g they might want to debug.

Consult means come!le and make all procedur ss in the file debuggable. When the consulted code is
assembledlnfo memory, a different instruction able is used, substituting special debug_ versions of the
call instructions (debug_ versions-oflhe in exing instruction and linkops will be needed for the new
HEAD port described below). These will be explained below.

Note that interpreted static code is necessary for runtime systems, though it is not necessary to make
interpreted static code debuggable. r-- .tf . -

\ ---- .._ ,~re..-vit-, ! l'c:;.i\,,.,,; tw •
\. r}t:..ce. ~W.r<. '+

c;,,._ \ l ?
__;. \ \ \,e, vÇ.<. J .

'

An lmproved Prolog Debugger Page2

2.2. The DONE port
e introduce the DONE port in order to achieve greater memory efficiency. The DONE port is a

eterminate EXIT port. Firstly, this provides a very useful bit of information: it makes it easy to see when
hoicepoints are being left around, better reflecting Prolog's actual procedural semantics.

Secondly, it allows us to remove the choicepoints usually left behind by the debugger. This will lead to
substantial memory savings on largely determinate programs.

The cost of this is that it will be impossible to retry into determinate goals that have exited, that is, not a
current ancestor. For consistency, we should probably not allow users to retry into non-determinate
non-ancestors, either. Since few customers understand that they can retry to a non-ancestor, this seems
an acceptable loss in exchange for much better memory usage.

2.3. procedure record
First, we change the way procedure records are used when a trap is installed. Currently procedure
records for compiled procedures look like this:

+---------------+
1 hash link I

+---------------+
1 module 1

+---------------+
1 functor 1 -+----------_:---~
1 arit~ 1
+---------------+
1 first clause 1

+---------------+
1 last clause 1

+-------+-------+
1 flags I file 1

+-------+-------+
1 dead chain 1

+---------------+
When we trace a procedure, we will change it to this:

+---------------+
1 hash link 1

+---------------+
1 module 1
+---------------+
l functor 1

+---------------+
1 first clause 1

+---------------+
l ptr to trap 1

+---------------+
1 last clause 1
+-------+-------+
1 flags I file 1

+-------+-------+
1 dead chain 1

+---------------+
where "ptr to trap" points to a suitable trap instruction. This is actually quite a bit simpler than our current

QUINTUS PROPRIETARY 4 October 1989

.., An lmproved Prolog Debugger

scheme of copying the procedure record of trapped procedures.

2.4. trap instruction
The trap instruction would change a ~it. lt would work like this:

load its argument (where to trap to) into a temp
if temp == 0 then

else

get pointer to first clause from proc record
go there

create term and trap as usual
endif

Page3

This will allow us to switch debugging mode on and off by just smashing the argument to the trap
instruction in the (unique) debug and spy trap pseudo-procedures.

2.5. debug_apply_compiled instruction
ln order to return from the debugger to the traced procedure, we need to be able to execute a goal,
knowing that the procedure is trapped, and actually get to the procedure, ignoring the tact that the usual
first clause pointer points to a trap. The debug_apply_compiled instruction does exactly as
apply_compiled does, except that it finds a pointer to the real first clause for the procedure where the
arity is usually stored.

2.6. debugger
The trap instruction would trap to a procedure that looks like this:

compiled_trace_trap(Goal, Proc /*, State */) :
FailChoice is '$Quintus: choice_point',
'$debugger_repeat' (Goal/* & more stuff */),
RetryChoice is '$Quintus: choice_point',
% do user interaction at 'CALL' or 'REDO' port
debug_apply_compiled(Proc, Goal),
(determinate ->

) .

% user interaction at 'DONE' port,
'$Quintus: eut' (FailChoice)

RedoChoice is '$Quintus: choice_point',
repeat,
% user interaction at 'EXIT' or 'REDO' port

details about depth and invocation counts have been left out.

Note that '$debugger_repeat' is just like repeat, except that it keeps arguments in the choicepoint. We
scan backwards to find choicepoints for '$debugger_repeat' (call these "debugger choicepoints") when we
want to show ancestors or retry back (debugger choicepoints actually keep invocation number and maybe
depth, as well as goal).

Also note that on determinate exit from our goal, we don 't push a choicepoint. For now, let's calf that a
DONE port. This means that we won't be able to retry non-ancestors, since they won't leave their
choicepoints. But it also means that determinate exit won't leave any cholcepoints around to waste
space.

We check for determinate exit by checking

RetryChoice -.- '$Quintus: choice_point'.

QUINTUS PROPRIETARY 4 October 1989

An lmproved Prolog Debugger Page4

Following are descriptions of how we handle the various debugger actions:

creep Set debug trap to compiled_debug_trap/2 and succeed.

leap Set debugger to leap mode, succeed.

skip Set debug trap to 0, succeed. On return or failure, reset debug trap to what it
was before.

nodebug Set debug trap to 0, succeed.

backup

ancestors

retry

retry 1

fail

fail i

quasi-skip

fast-leap

Temporarily turn off fail and redo leashing, eut to RetryÇhoice, and fail.

Scan choicepoints and environments backwards, printing the goal and invocation
arguments from all of the ancestral debugger choicepoints.

Cut to RetryChoice and fail

Scan choicepoints back to the one for invocation i, then eut back to it and f ail.

Cut to FailChoice and f ail

Scan choicepoints back to the one for invocation i, then eut back to the previous
choicepoint and f ail.

(Skip, but stop at spypoints and keep debugging information.) Set debugger to
leap mode, succeed. On return or failure, reset debL.ig mode to what it was
before.

(Skip, but stop at spypoints and don't keep debugging information. This might be
useful in expert mode.) Set debug trap to 0, succeed. On return or failure, reset
debug mode to what it was before.

all other actions work just the way they do now. The last two items are not currently supported, but
wouldn't be hard to add, and seem useful.

..,

2.7. Making Compiled Code Debuggable and Vice Versa ~ .._c,1...,
lt should be possible to make a compiled procedure debuggable. This will be necessary if we are to allow ~re.:"""'""":__i. 1

creeping into compiied code, and will also be a useful feature for experts. A similar approach can be ~-5 ~" ")

used when consulting files: compile them as usual, and turn the call instructions into debug_call '::l,.. ,..Ho.A. ,,
instructions as that code is assembied into memory. (By call instructions, 1 mean all instructions that can -t,. ''~t<""
call another procedure.) Then put the appropriate trap on all the procedures. _) s

Note that there is a side issue here: should save_qof translate debug_ versions of instructions to their
non-debug_ versions? 1 beiieve it should not, or at least not always, as to do so would mean that
save_qof wouid loose the compiied/consulted ~inction of saved code. it wouid not be possible to
compile several files, consult several more, and save_qof a quickly loadabie file that is partially
debuggabie. it might be useful ta have an option to save_qof that wouid do the consulted ⇒ compiied
translation.

Another issue is allowing qofs to be "consulted." This would be trivial, and wouid go no slower than
regular qof loading, since it would only require that the instruction table be modified slightly to coerce the
above-iisted instructions into their debug_ counterparts. lt would be similarly possible to force a qof with
some "consulted" procedures to be compiled. Of course;n these will still require that traps be installed on
each debuggable procedure.

2.8. The lnterpreter
Given the changes listed above, it will be possible to simplify the interpreter, speeding it up (and making it
consume much less memory) in the process. The interpreter will no longer need to pass around terms to
keep track of other goals.

QUINTUS PROPRIETARY 4 October 1989

r'9'

1
ie.5,

., An lmproved Prolog Debugger Page 5

There wlll, however, have to be a different version of the debugger for debugging dynamic code. lt will be
much like the current interpreter-based debugger, only it will get information by stack scanning, instead of
as arguments.

3. Source Linkage

3.1. debug_call Instructions
in order to effect source linkage, we need to know which procedure called a debugged procedure. Since
the call instructions don't keep this information (at least not always), we need to introduce a new version
of the call instructions, call them debug_call instructions. These behave the same as the call
instructions, except that they set a CALLER pseudo-register to the value of the P register at the time o~
the call. They could even be implemented by having them do the move, and then jump in the emulator to ~~
the code for the corresponding non-debug instruction. · (in fact, if not for the write-mode hack, they could
be placed immediately bef ore the corresponding instruction, and Just flow into lt.)

3.2. code scanning to find caller
Given that the CALLER register points to the last debug_call instruction (or ther~abouts), we need to be
able to show where in the source we are. So first we must figure out which procedure and clause we are
in. The method that incurs the least time and space overhead when you're not debugging is to scan the
source when you need ta figure out where you are. The first problem we run into is that the CALLER
register will point into the middle of a clause somewhere, it's impossible to scan backwards, and currently
there is no way to find the end of a clause.

Therefore, we introduce a new end instruction which always cornes at the end of every clause, and never
is executed (because the previous instruction will always jump or return). Since it is never executed,
there need be no implementation of this instruction. lt could be some odd number, or zero, as long as it's
diff erent from all existing instructions. lmmediately following the end instruction would corne an offset
back to the linkop that begins the clause. This offset could be viewed as an argument to this instruction
or net, whichever is more convenient.

Since there is a relatively small set of instructions that could be the last instruction in a clause, it would be
possible to portmanteau the end instruction with many, or even all, of these. And since the end
instruction doesn't actually do anything, the portmanteau is trivial: it need only be at a different address
than the base instruction. lt may be possible to make these instructions start immediately before the base
instruction, begin with a no-op, and then flow into the base instruction (assuming write mode is not a
problem). Actually, if this is done, it may be best to make the base instruction flow into the
portmanteaued one, on the theory that these instructions are more often than not last.

This would have some performance penalty in some cases, and might render it undesirable. ln that case,
it is sufficient to just use the end instruction and pay the extra 2 bytes per clause. ln fact, it might not cost
this anyway, due to alignment restrictions. ln fact, if alignment seems to force 4 bytes to be used in most
cases, portmanteauing would be undesirable.

Note that where instructions that have debug_ versions are portmanteaued, the debug_ version must
also be portmanteaued.

Given this, we cou Id find out which clause of which proc we are in as follows, where Addr0 is the contents
of the CALLER register and Calleeproc is the proc we're just entering, as returned by the trap instr:

QUINTUS PROPRIETARY 4 October 1989

An lmproved Prolog Debugger

whare_am_i(AddrO, Callaaproc, Proc, Clause) :
chack_callee(AddrO, Calleeproc), -

% make sure CALLEE calls me
find_clause_start(AddrO, Clause_start),
findyroc(Clause_start, Proc),

% find this proc
scan_for_clause(Proc, Clause_start, 0, Clause).

% figure out which clause this is

This could be written in C, if that is easier.

4

Page6

Given that you know which clause of which proc you're in, now how do you point to the goal in the ?
source? Flrst, we modify compile and consult to remember the character position in the file where each)..- ~o...> •

procedure begins. Starting from there, we find the appropriate clause by skipping over as many clauses
as necessary.

Then we read this clause using a special read that returns not only the term, but an isomorphic term
containing the starting and ending positions for each subterm in this term. Although this level of detail is
not strictly necessary, it would be more difficult to collect only the needed information. Also, this
information would be useful for a more sophisticated editor interface later.

Next, we scan the compiled code for the clause as we scan the source code term and positions term in
parallel. When we find the call we're trying to show, we check to make sure that the source term
corresponds to this, and, if so, we have the position of goal in the source. If this operation proves to be
too time consuming, we cou Id cache this information and only compute it when needed.

4. The HEAD Port
One innovation that we feel will make it easier to understand the behavior of a Prolog program is the
HEAD port. This is a new port in the debugger which cornes right after the CALL and REDO ports, but
after any indexing instructions. lt also appears in backtracking, regardless of whether or not the
procedure has reached the exit port. This should make backtracking and unification somewhat less
mysterious.

To implement this port, we need to have debug_ versions of the linkops and indexing instructions. These
instructions trap into the debugger, allowing us to show the HEAD port. The debugger then goes back to
the same instruction that trapped to it, only this time, the instruction does its usujal job. We also want to
have a way to disable the trapping altogether, in order to have consulted code run as quickly as possible
when we're not debugging.

4.1. The Trapping Mechanism
The way the se instructions trap is somewhat diff erent than the trap instruction. When the se instructions
trap, they want to be able to get back, with the engine in the same state. This is achieved by pushing a
choicepoint before trapping. Therefore, the debugger faits in order to restart the instruction and continue
execution.

When these debug_ instructions trap, they do the following:

QUINTUS PROPRIETARY 4 October 1989

• An lmproved Prolog Debugger Page 7

maybe_trap:

Notes:

if (!HEAD_TRAP_RESTART && HEAD_TRAP) then
Al := build_goal_term
A2 := P
A3 := 0
push choicepoint core
push Al into choicepoint
push any extra regs into choicepoint (BO, PR)
call proc stored in HEAD_TRAP reg

endif
HEAD_TRAP_RESTART := 0

1. We don't want to trap if we're restarting this instruction, or if debugging is switched off.

2. The address of the procedure record for head_trap_debugger/3 can be found in the
HEAD_TRAP register. If thi~register is zero, then we don't want ta trap.

3. ln order to construct the goal term, these instructions must have the name and arity of the
procedure, which are stored in the procedure record. To find this, these instructions must
follow the chain of linkops to find the tagged backpointer to the procedure record.

4. The backtrack pointer in the constructed choicepoint should point to the instruction that is
trapping, so that failure will re-execute the instruction. When this happens, the emulator will
be in a different state, so that trapping will not happen the second time the instruction is
executed.

5. ln the place where A 1 would be stored in the choicepoint, we store a pointer ta the goal
term. This holds ail the arguments, so we can restore them from there.

6. lt's not clear which extra registers will need to be saved. What is unusual here is that the
next instruction executed after this choicepoint is failed into might be a try_me_else
instruction, so we'II need to preserve whatever registers it might need.

7. Each choicepoint will be built by the same instruction that will use it to restore state;
therefore, if it becomes necessary, different instructions can build different choicepoints.

8. The index_on_A1 instruction will actually put a pointer to the next instruction to be
executed in A3. The debugger can tell this is the case by the f act that the instruction
pointed to by A2 is index_on_A 1. lt can tell whether this is a list case or key hash by the
first arg of the goal term in A 1.

4.2. Restarting an Instruction After a Trap
Ali the debug_ instructions begin with the same code:

maybe restart:
if (HEAD_TRAP_RESTART) then

restore A regs from goal term
restore extra registers
pop choicepoint

endif

Notes:
1. The instruction can tell whether it's restarting by the state of the HEAD_TRAP _RESTART

register. If this is non-zero, then this instruction is being restarted. This register is set by
the debugger just before it f ails, restarting the instruction. The register is reset by the
debug_ instructions before dispatching to the next instruction. This is not necessary if they
are trapping to the debugger, because the debugger is not expected it be debuggabie itself.

QUINTUS PROPRIETARY 4 October 1989

An lmproved Prolog Debugger

2. The choicepoint must always be popped.

4.3. debug_Just/try _me_else Instructions
debug_just_me_else:

maybe_restart
maybe_trap
goto just_me_else

debug_try_me_else:
:maybe_restart
:maybe_trap
goto try_me_else

4.4. debug_retry/trust_me_else instructions
debug_retry_me_else:

maybe_restart
restore_args_from_chpt
maybe trap
continue

debug_trust_me_else:
maybe_restart
restore_args_from_chpt
maybe_trap
pop choicepoint
continue

4.5. debug_lndex_on_A1 and debug_Just_lndex_on_A1 instructions

Page8

Note that the debug_just_index_on_A 1 is only needed because just_index_on_A 1 does not look at the
following instruction, and so would not notice whether it was index_on_A 1 or debug_index_on_A 1.

debug_index_on_Al:
fudge_P
goto debug_just_index_on_Al

debug_just_index_on_Al:
maybe_restart
Pl := do_indexing
if (! HEAD_TRAP_RESTART && HEAD TRAP) then

Al := build_goal_term
A2 := P
A3 := Pl % different from maybe_trap
push choicepoint core
push Al into choicepoint
push any extra regs into choicepoint (BO, PR)
call proc stored in HEAD_TRAP reg

endif
HEAD_TRAP_RESTART .- 0
continue_to (Pl)

4.6. debug_try/retry/trust_subitem_else instructions

OUINTUS PROPRIETARY 4 October 1989

, An lmproved Prolog Debugger

debug_try_subitem_else:
mayba_restart
maybe_trap
goto try_subitem_else

debug_retry_subitem_else:
maybe_restart
restore_args_from_chpt
maybe_trap
continue_to_right_place

debug_trust_subitem_else:
maybe_restart .
restore_args_from_chpt
maybe trap
pop choicepoint
continue_to_right_place

4.7. The head_port_debug Procedure

Page9

When debugging (and HEAD port interactions are desired), the HEAD_TRAP register will hold a pointer
to the head_port_debug/3 procedure. This procedure is responsible for determining which clause is
about to be tried, and which would be tried next if this clause should fail. lt determines this from its
arguments, and any existing choicepoint.

head_port_debug(Goal, P, Case) :-
get_instr(P, This_instr),
find_next(This_instr, P, Case, Continue,
get instr(Continue, Next instr),
(-\+ debug_instr(Next_Instr) ->

head_port_user_interaction(Goal,
true

> I
set_restart,
fail.

This,

This, Next)

Find_next/6 determines which instruction will be executed next, which clause is being tried now, and
which clause will be tried next. lt does not worry

QUINTUS PROPRIETARY 4 October 1989

An lmproved Prelog Debugger

find_next(debug_just_me_else, P, 0, Continue, P, 0) :
Continue is P + ???.

find_next(debug_try_me_elee, P, 0, Continue, P, Naxt) :
linkop_next(P, Next),
Continue is P + ???.

find_next(debug_retry_me_else, P, 0, Continue, P, Next) :
linkop_next(P, Next),
Continue is P + ???.

find_next(debug_trust_me_else, P, 0, Continue, P, 0) :-
Continue is P + ???.

find_next(debug_try_subitem_else, P, 0, Continue, This, Next) ·
linkop_next(P, Next_subitem),
subitem item(P, Continue),
This is-Continue - ???,
subitem_item(Next_subitem, Next_continue),
Next is Next continue - ???.

find_next(debug_retry_subitem_else, P, 0, Continue, This, Next) ·
linkop_next(P, Next_subitem),
subitem_item(P, Continue),
This is Continue - ???,
subitem_item(Next_subitem, Next continue),
Next is Next continue - ???.

find_next(debug_trust_subitem_else, P, 0, Continue, This, Next) ·
linkop_next(P, Next_subitem),
subitem_item(P, Continue),
This is Continue - ???,
Chpt is '$Quintus: choicepoint',
(\+ debugger_choicepoint(Chpt) ->

get_chpt_bp(Chpt, Next)
; Next = 0
) .

find_next(debug_index_on_Al, P, Continue, Continue, This, Next) ·
This is Continue - ???,
Chpt is '$Quintus: choicepoint',
(\+ debugger_choicepoint(Chpt) ->

get_chpt_bp{Chpt, Next)
Next = 0

) .

Page 10

Note there is no find_next clause for debug_just_index_on_A 1. This should be okay if
debug_just_lndex_on_A1 is implemented properly, since it should update P to point to the
debug_lndex_on_A1 instruction before trapping.

4.8. Converting Compiled Code to Consulted and Vice Versa
This would only change slightly from what was done for debugging compiled code. The same procedure
would apply, only now there are more instructions that need to be transposed to their debug_
counterparts:

Just_me_else
try_me_else
retry _me_else
trust_me_else

Just_index_on_A 1
try_subitem_else
retry _subitem_else
trust_subitem_else

index_on_A 1
call
depart
execute

(and all the variants of these). This change should involve only updating a few tables.

QUINTUS PROPRIETARY 4 October 1989

•

• ~
• An lmproved Pro log Debugger Page 11

5. Interaction
Note that the designs of these features do interact. ln particular, doing the source linkage or HEAD port
debugging without debugging compiled code would require a different design. Also, source linkage
requires first dividing the debugger into two pieces (since Prolog might not be running under emacs when
the user wants to debug).

6. Sizing Estlmates

6.1. Split Debugger into Two Parts (10 days)
divide code into kernel and interface parts
def ine bidirectional debugger interface
documentation

6.2. Debugging Compiled Code (34 days)
change to procedure record for traps
change to trap instruction
consult, install trap
debug_apply _compiled instruction
converting compiled <=> consulted in core
ancestor scanning
debugger mods
simplifying the interpreter
documentation

6.3. Source Linkage (68 days)
install debug_call instrs (assemble time)
install debug_call instrs (load_qof time)
write debug_call & f ri ends
end instruction & offset in every clause
code scanning to find caller proc & clause
store char positions per procedure
implement new read that returns char positions
code scanning to find place in source
arrange to show place & port in source
implement breakpoints on goals
debugger commands from emacs
documentation

6.4. The HEAD Port {31 days}
debug_ versions of linkops and index instrs
install debug_ instrs (much done above)
HEAD port debugger
documentation

QUINTUS PROPRIETARY

4days
6days
(omitted for 3.0)

3 days
1 day
1 day
1 day'
(omitted for 3.0)

3 days
10 days
5 days

10 days

3 days
1 day
3 days
5 days
5 days
3 days
5 days
5 days

15 days
5 days
8 days

10 days

15 days
1 day

10 days
5 days

4 October 1989

