
/
Macros for Quintus Prolog

Peter Schachte

There are two things that are typically needed from a macro system: compile-time computation, and
substitution of code at compile time. I propose separating these two concepts. Therefore this spec is
actually two specs: one for compile-time computation, and one for substitution macros.

The aim of this design is for macros to be powerful and efficient, but most of all, for them to be as
consistent as possible with the current Prolog system. A macro definition is meant to look just like a
clause, and more importantly, to have the same denotation as a clause. It should always be possible to
turn a macro definition into a procedure without changing the behavior of the system. Similarly for
compile-time computation. Modulo differences between what procedures are available at compile-time
vs. runtime, compile-time code should have the same denotation as if it were normal runtime code. This
should make it easy to learn and use the macro system.

1. Substitution Macros
A substitution macro clause looks just like any other clause, except that instead of ":-" separating the
head and body, it has":->." The sole restriction on substitution macros is that they must not contain cuts.
1 For example, to code nl/0 as a macro, one might write:

n1 :-> put(lO).

Then, if one writes
he11o :- print('he11o'), n1.

this will generate code exactly as if one had written

he11o :- print('he11o'), put(lO).
~

1.1. Multiple Macro Clauses
It is also permitted to have more than one clause defining a macro. For example, we might define

(9 (target_os (unix) : - ,- . ____ _:.:.--------'---''-----t=---

n1 : -> target_os (xerox), put (13) . : -- :> s-·+-:f--1 ,
n1 :-> target_os(unix), put(lO).

This will produce exactly the same code as in the hello/0 example above. This is because the macro call ► ,
target_os(xerox) fails, while target_os(unix) succeeds, so only the second of the macro clauses applie~ ~~ -rt,...\

fj) Notice that the unit macro clause for target_os ends with ':-> .' This is essential to distinguish it from a - ,-l'-' 7
\.. normal unit clause. .r

b -'~-
'\ ~.,.. In cases where it is not possible to choose a single macro clause at compile time, all applicable clauses

must be represented. For example

character_code(a,97) :->
character_code(b,98) :->

putchar(Char) ·- character_code(Char, Code), put(Code).

1Allowing cuts in macros would greatly complicate the macro expander. Perhaps a later version of the macro system should
allow cuts by turning several macro clauses with cuts into a single macro clause with an if-then-else. For now, users can get the
same effect with if-then-else, so they shouldn't complain too much.

--~------------------------- - -

would generate the following code:

putchar(a) ·- put(97).
putchar(b) :- put(98).

Macros for Quintus Prolog 2

This code will be more efficient than a single clause with a disjunction, because this code can take
advantage of clause indexing.

1.2. When Macros Fail
One important use of macros is to provide conditional compilation. For example, a routine to skip
characters up to and including the next end of line might be written:

target_os(unix) :->.

to_eo1 :- target_os(xerox), repeat, get(C), C=l3.
to_eo1 :- target_os(unix), repeat, get(C), C=lO.

This would generate the following code:

to_eo1 :- repeat, get(C), C=lO.

Since it can be determined at compile-time that target_os(xerox) will fail, so the first clause of to_eol/0
will fail, so it can simply be dropped from the compiled code.

1.3. Restrictions
It was mentioned earlier that the only restriction on the content of a macro is that it must not contain cut~
There is, however, one restriction on the use of macros: it is not permitted to have a macro and a normal 11 ,
predicate by the same name. That is, one cannot write macro clauses for the same predicate one has --n"' t-
normal clauses for. This is because the semantics of such a hybrid would be rather baroque. -

If this were to be allowed, the semantics of macros could not be maintained without loosing much of the
efficiency they provide, since then every macro would be implicitly disjoined by any clauses that might
later be defined for that predicate. This would mean that all macro expansions would have to add another
disjunct or another clause to call the macro predicate at runtime.

Another way to try to make sense out of mixing macros and normal procedures with the same name and
arity would be to change the semantics of macro failure. We could say that if a macro call fails at compile
time, then the call is simply left as is in the source clause, and is not expanded at all. There are two
problems with this approach, however. Firstly, we could no longer use macros to effect conditional
compilation, since a clause that begins with a failing macro call could not be dropped from the source
code. Secondly, and more importantly, the semantics of a macro clause would change radically. The
new semantics would be that macro clauses would implicitly end with a baroque sort of cut that cuts all
non-macro clauses for the procedure, but not any macro clauses.

1.4. When To Use Macros
After writing a bit of code using this sort of macro it suddenly becomes unclear what code should be
written as macros and what should be written normally. Any procedure that can be written without cuts
can be coded as a macro. That is to say, any procedure can be written as a macro, since any procedure
with cuts can be written without cuts by using \+/1 or ->/2. So which things do you write as macros?

The trade-offs to be considered are speed vs. code size. Macros will never make code run slower, and
can sometimes make code run much faster. Macros can sometimes even make for smaller code.
However, macros can make code much larger_without giving much of a speed-up. Following are a few
instances when it would be a good idea to use a macro:

• When a predicate is defined by a single clause with at most one goal in the body.

24 July 1986

Macros for Quintus Prolog

• When a predicate is defined by a single clause, and is not called from very many places in
the program.

• When a predicate is called in some time-critical section of code.

• When conditional compilation is needed.

• When it will frequently be possible to select a single clause of many for a predicate at
compile-time.

3

This list is by no means exhaustive. After gaining more experience using macros to write real code, I'm
sure we could draft a better set of heuristics.

firstS(X, L) :- {length(L, 5), append(L, _, X) }.

would compile into the more efficient clause

first5 ([Xl, X2, X3, X4, XS I_], [Xl, X2, X3, X4, XS]) .

2.1. Nondeterministic compile-time code
Compile-time computations may be nondeterministic, just like any Prolog code. The behavior of the code
will be just as if the code were evaluated at runtime. For example,

vowel (L) : - {member (L, [a, e, i, o, u])} .

would compile into

vowel (a).
vowel(e).
vowel(i).
vowel(o).
vowel (u) .

3. Optimization Restrictions
There are three classes of restrictions on optimizations for both substitution macros and compile-time
computations: variable binding restrictions, multiple clause restrictions, and dropped clause restrictions.
These restrictions become important when extra-logical features of Prolog clash with logical
optimizations. Each of these classes of restrictions is described below.

2For concreteness, I'll use "{" and "}" to delimit compile-time code, but if anybody has a better pair in ~ind, I'm ope_n to
substitutions. {) are already used in grammar rules, and the semantics here are different, so we should probably pick another pair.

24 July 1986

Macros for Quintus Prolog 4

3.1. Variable Binding Restrictions
There are times when it is not permissible to propagate a variable binding leftward in a clause. This
occurs when a macro (or compile-time code) appears to the right of some non-logical goal in the clause,
and the macro tries to bind a variable that can be "seen" by the non-logical goal. A variable can be
"seen" by a goal if it appears in that goal, or if it appears in any other goal that mentions any variable that
can be "seen" by the goal. For these purposes, the head of the clause is included in the set of goals to
the left of the macro.

An example would better illustrate the problem. If we wrote, for example,

one(l) :-> .
foo (X) : - var (X) , one (X) .

then we would expect foo(A) to succeed only when A is not bound, and would then bind A to 1. If we
performed the usual expansion of this compile-time code, however, we would get

foo (1) :- var (1) .

This code, of course, makes no sense; foo can never succeed. Therefore, we must forgo the usual
optimization of propagating the binding of X, and place a call to =12 in the resulting code :

foo (X) : - var (X) , X=l.

Unfortunately, the Prolog system cannot determine which goals are non-logical, so it must assume t at all
user-defined predicates are non-logical.3 The macro system includes a table of all logical bu -in
predicates, and assumes that any predicate not mentioned there is non-logical. This table will -------....
described in greater detail below. This means that in order to be most effective, macros that try to bind
previously-appearing variables should usually appear at the front of a clause, right after the :-. ~

0
__ ,"'

(,-...
.t.~~;--._,... ~,,..,

3.2. Multiple Clause Restrictions
£..,..L-r<.. ,,

In the vowel/1 example above, we saw how more than one clause could be produced when only one
clause appeared in the input file. This optimization must not be done when the macro (or compile-time
code) appears after any code that can have siqe-effects. This is because if backtracking should occu~r

u:
e side-effects could h re than once. ~y the same token, if the macro (or compile-time code)

~-\ ppears afte eclarative oals at may take some time to compute~ t would not make sense to
I.,) ? enerate mult1p ~ince the work might be done more than once-:-) .J

7
7 ?

?1 ._/J L-- v ~ L .

' ' ' In these cases, the macro system must generate a disjunction. For example, if the vowel/1 example had
been written:

vowe1(L) :- write(L), {member(L, [a,e,i,o,u]) }.

then it would have to be com iled as:---

vowel (L) write(L) (L=a; L=e; L=i; L=o; L=u) .

' \.__-- ~-+ ti-,,) u,..,\ cl !.c.. <(r..-u-n. \-f r r~ <-'I I\) ~ '"-- I

3.3. Dropped Clause Restrictions ~.!J -t1-... ""s,~,..... ---~ k.. ~
In the to_eol/0 example above, the macro system was able to drop one clause from the input program.
Whenever a macro call that fails follows any goal that will have a side-effect, the clause cannot be
dropped, since if it were, the side-effect would not happen. Instead, the macro system must generate an
explicit fail. Note that clauses may be dropped if the failing macro call is after a metalogical goal or a
time-consuming declarative goal ; only a true side-effect goal invalidates this optimization. Of course, in
the absence of explicit declarations to the contrary, we must assume that any user-defined predicates will
have side-effects. · /

~.,_ I ·-· •1
If, for example, we defined a runtime predicate ""kr-'"'"-'\

.,..--.v,s7 v . e\er<--5
A "7 • '°" £_.~/) ..

.,.,-- I,. e, rQ I f ..r<
3We will discuss the option of allowing users to declare their code to be declarative below. .+ - ,,-. ~.1,..-...k~

"'o •~- '~ fl.'f-~"--t
.~ -\ '/"'" I >~

24 July 1986 -;, -.

Macros for Quintus Prolog

target_os(unix) :->.

non_unix :- !, target_os(xerox) .
non unix.

then we could not simply drop the first clause for non_unix. We would have to generate the code

non unix :- !, fail.
non unix.

4. Declarations

5

There are two metapredicates needed by the macro system to contain declarations about predicates:
one for higher-order predicates, and one to indicate degree of declarativeness of predicates.

4.1. Hi"gher-Order Predicates
The macro system must know of the existence of any higher-order predicates, in order that subgoals be
macro expanded. This declaration is necessary to the correct operation of the macro system. Since the
module system will need similar information for similar reasons, the two requirements should be folded
together.

For each higher-order goal, we must be able to get the arguments that are to be called, process them,
and rebuild the goal with the processed arguments. One way to do this is with a 4-ary predicate that has
as arguments

1. The form of the higher-order goal;

2. The name/arity of the predicate;

3. A list of the arguments to be called;

4. A list of the arguments not to be called.
This might look like:

higher_order_J>red(bagof(X,Y,Z), bagof/3, [Y] , [X,Z]).
higher_order_J>red(call(X), call/1, [X], []).

4.2. Declarativeness of Predicates
Each of the three types of optimizations described in the last section rely upon information about the
goals occurring before a macro or compile-time code. The macro system distinguishes four classes of
predicates: trivial, declarative, metalogical, and procedural.

Procedural predicates may do anything. Cut and all lnpuUOutput predicates are procedural. User
predicates are assumed to be procedural (see the discussion below about user declarations).

Metalogical predicates do not have side-effects, but calls to them may be effected by whether their args
are bound or not. Metalogical predicates include var/1 , number/1, etc.

Declarative predicates do not have side-effects, and calls to them cannot be made incorrect by binding
previously unbound variables. The may, however, take some time to evaluate. : . ./2, length/2, arg/3,
and many more are declarative.

Trivial predicates are declarative and take eff ec ·
true/0, fail/0 , and otherwise/0.

y no time to compute. This class of predicate include~

- ~ ~ .,..5 ~ ~:>
v--•'\,e'l .._ ..,........... . ~

....-i,' - ,; --t~:-"\ ~ \ <;~~
_,..k ~ .. .,,,...~-

t--

24 July 1986

Macros for Quintus Prolog 6

4.3. User Declarations
Should users be permitted to make these kinds of declarations about their code? If they are to be
permitted to write their own higher-order predicates, an important capability, they must be allowed
(required) to declare them, both for the macro system, and for modules. But should they be permitted to
make declarations about the degree of declarativeness of predicates?

The argument against allowing such declarations is that this will complicate user's code, and, if users
make incorrect declarations, create the possibility of erroneous code. The argument in favor of allowing
users to make declarations is that they are an optional way for users to increase the quality of their
compiled code, and that the information users supply for macro optimization may be useful for general
source-level optimizations.

On balance, I think the advantages of allowing user declarations outweigh the disadvantages. Perhaps
more thought should be given to the nature of the declarations allowed, so the release of this capability to
users should be held back until a later Prolog release, but I think the capability should be provided
eventually. We should probably make some policy decision about this.

5. User Interface Issues
There are several questions about the user interface for macros. What should macros, and compile-time
code, look like to the debugger? How can we make sure that macros are defined before they are used?
How can we handle multifile macros? What happens when all the clauses for a predicate get dropped
due to macro failure? What do we do when the user changes a macro without recompiling all the
procedures that use it? How do we insure the consistency of the code available at compile-time versus
what's around at runtime?

~ .o•. C.o..,.l! .--.:,+ ~f"'-"'>-- c\.1"'-- '- -

5.1. Macros and the Debugger c.., ,\11.- J.. .L~-.-.\. -.\l .e.\µ
j ' It's not really clear what is the right way to debug code that uses macros. -;-+-- ~-t l.~~---..._°T'O"'- __, , q

. ':>-h\\ \...c._

One appealing option would be to make use of the fact that macros are "just like" normal predicates, and __.._ kL _ ~
not expand them at all for interpreted code. That is, we could treat macro definition clauses as any other
clause when consulting files.

This would be a very natural way to debug code that uses macros. But its advantage of distancing the
user from the macro-expansion mechanism has the disadvantage for sophisticated users of not allowing
them to see what kind of code the system generates. This will hinder them from using macros to do what
they are meant for: optimize code without sacrificing clarity. we.. c. """""\ ..\

1
-. ...r- " ~ ks~ a."+-f •v"\<,.,.o .,.,_"

I propose modifying expand_term/2 to also do macro expansion, giving the sophisticated user the ability ~p-h ~"
to experiment with macros in order to produce the best possible ct. Additionally, we should make
macro definitions be valid clauses, so macro expansion would not e done at consult-time, only at
compile-time. A definition such as 1

{A} : - call (A) . '-f V} 1

should handle compile-time evaluation reasonably. Maintaining the consistency of code available at
compile-time and runtime is discussed below.

5.2. Ensuring Macros are Defined Before Use
A problem occurs with macros that doesn't occur with normal procedures: macros must be defined
before they are used (where "used" means compiled, or invoked by interpreted code). And since a macro
call looks just like a normal goal , a call to an undefined macro will compile into a call to a predicate of the
same name and arity. (We made use of this fact in the previous subsection.) So how do we make sure

\

24 July 1986

']:S ~ ~~\,l~- r-=(?- ...,-(_ ~

~-- <+...+-L/ J.."1.,....._~,"'t._ .-,..

,t\.cH---. l /+....sh:, J.c

Macros for Quintus Prolog 7

that all the definitions happen in the right order?4

There are two levels at which we must ensure that macros are defined before their use: intra-file and
inter-file. Intra-file consistency is relatively easy to maintain. It is permissible for a macro call to appear in
a macro before the called macro is defined, however all macros called, directly or indirectly, by a clause
must be defined before that clause is compiled. Therefore it is sufficient to insure that all macros used in
a given file appear before any clauses in that file

Unfortunately, things are often not so simple. How can we maintain consistency across multiple files, or
multiple modules? The only safe and simple policy is to insure that all macros are defined before any
clauses are read. This can be guaranteed by fixing the order of the various parts of a module in the file
as follows:

1. Module heading stuff,

2. Macro definitions,

3. Imports,

4. Clauses.

This is not really satisfactory, though, because it puts unnatural constraints on programmers, and may
force them to separate related parts of a program. It also does not cover cases where macros may be
generated by other code. Many such problems arise when the model of the programming environment is
file-based . If the mode of use of the system were such that all files were loaded before any compiled~
code could be generated, these problems would all disappear. (This would also allow many classes of \ liJk'< (
global optimization that are not possible using our one-clause-at-a-time mod~eof ompilation) In the long t-f '
run, I think we should move toward this type of system; in the mean time, puttin macros first will have to
suffice.

. r-1 :> • Pro L~ c.,\J -t ,\.'-+:-,"
5.3. Multifile Macros ce ... u .. , .. ~ t-ki'\ ...:, IO L.o .::) •'1

Using the order of parts of a module recommended above, multifile macros present no problems at all. In +:- l,.._.J .J ..
fact, since macros are not permitted to contain cuts, the order of clauses defining a macro is immaterial, - 1
so the loading order of the files containing multifile macros is immaterial, too. The only provision we must .,. -h.-t,, ,
make is to extend the multifile declaration to work for macros, too .

5.4. Completely Dropped Procedures
Since under Quintus Prolog calling an undefined predicate does not simply fail, we must be careful about
dropping al/the clauses for a procedure. The simple solution to this problem is to make a small exten:bion
to the undefined procedure trapping code so that it checks to make sure that it is not a procedure all of
whose clauses were dropped before it starts tracing. This should be easy to implement.

~---t-~ ~-;-5.5. When a Macro Is Changed
But what happens when the user changes a macro? What must then be done in order to make the
environment reflect the change? The first thing to notice is that only compiled code will be affected, since
macros are treated as regular procedures by interpreted code. But what can be done for compiled code?

One thing is clear: the macro system must maintain a list of all predicates that call each macro, at least
for compiled predicates. This is easily done when the macros are being expanded. But what do you do
when the user changes one of these macros?

411 is worth noting that Lisp systems face the same problem, and none of them are able to handle it properly.

24 July 1986

Macros for Quintus Prolog 8

One complete but time-consuming solution would be to use source_file/2 to find the files that contain the
predicates needing to be recompiled, and then go through the files recompiling all cla1.1&ie that need to be
recompiled due to the macro redefinitions. This is probably the best solution. r/ r-c cc! ... rt..J

This is another case where loading files, and then compiling the incore version, would make a problem
easier to handle. In this case, we could just recompile the predicates that had changed from the incore
source code. , .-<1 \

t-'v~..:J, '

5.6. Consistency of Compile-time vs. Runtime Code
Here, once more, we see the advantage of separating compilation from loading. If all predicates were
loaded and interpretable before any attempt was made to compile them, then compile-time would be the
same as runtime.

Since our compiler doesn't work that way, all we can really do is provide users with a few rules that will
keep them out of trouble. The simplest rule is that any built-in predicate, or any predicate defined in a
loaded module can be used freely in compile-time code. The second rule is that if the user does get the
order wrong and calls an undefined predicate at compile time, the Prolog system will tell him he is calling
an undefined predicate; he won 't wind up compiling erroneous code without knowing it. Beyond that,
things get tricky.

When compile-time code appears in a normal clause, it is pretty easy to verify that the called predicate is
defined earlier in the file. The interesting case is when compile-time code appears in a macro. If the
macro is not used in the module it is defined in (it is only exported), and all the predicates used as
compile-time code in the macro are defined in the module, or one it imports, everything is alright. If the
module is used in the module, however, the user will just have to be careful.

6. A Few Larger Examples

6.1. Repeat a goal
repeat(Goal, N) will repeat Goal N times. Note that N must be bound to a positive integer at compile
time.

repeat(_, 0) : -> .
repeat(Goal, N) :-> {N>O, Nl is N-1}, Goal, repeat(Goal, Nl).

So, the code produced by

test ·- repeat(nl, 5).

would be

test ·- nl, nl, nl, nl, nl.

·;
6.2. Conditional Compile-time Code Expansion I
expand_if(Test, Goal) is equivalent to call(Goal), except that if call(Test} succeeds at compile-time, then
Goal will be evaluated at compile-time, else it is evaluated at runtime.

expand_if_bound(Term, Goal) is equivalent to call(Goal), except that if Term is bound at compile-time,
then Goal will be evaluated at compile-time, else it is evaluated at runtime.

expand_if_ground(Term, Goal) is equivalent to call(Goal), except that if Term is bound to a ground term
at compile-time, then Goal will be evaluated at compile-time, else it is evaluated at runtime.

X est Y is equivalent to Xis Y, except that if Y is bound to a ground term at compile-time, the calculation

24 July 1986

J,

Macros for Quintus Prolog

will take place at compile-time.

expand_if(Test, Goal) :-> {Test, Goal}.
expand_if(Test, Goal) :->{\+Test}, Goal.

expand_if_bound(Term, Goal) :-> expand_if(nonvar(Term), Goal).

expand_if_ground(Term, Goal) :-> expand_if(ground(Term), Goal).

: - op(700, xfx, est).

X est Y : -> expand_if_ground(Y, (Xis Y)).

ground(X) ·- numbervars(X, 0, 0).

So if you wrote

foo(X, Y) :- zest 256*256, Yest X*Z.

the macro expander would produce

foo (X, Y) : - Y is X*65536.

correctly determining that the first est could be evaluated at compile-time, while the second could not.

6.3. Abstract Datatypes

9

This kind of macro will support the efficient compilation of a simple abstract datatype paradigm. The
following geometric example gives the idea, albeit without the syntactic sugar that would make the
paradigm usable. Such a syntactic sugar could presumably be found; in the mean time, this gives the
rough idea.

24 July 1986

Macros for Quintus Prolog

/* Type predicates*/
polygon(X) :-> quadrilateral(X).
polygon(X) :-> triangle(X).

quadrilateral(quad(, , , , , , ,)) :->.
quadrilateral(X) :-> ;ectangle(X)~

rectangle(rect(_,_)) :->.
rectangle(X) :-> square(X).

square(sq(_)) :->

triangle(tri(_,_,_,_,_,_)) :->.

/* Selector predicates*/
side 1 (quad (S , , , , , , ,) , S) : - >
side2(quad(_,S,=,='='='='=), S) :->
side3(quad(_,_,s,_,_,_,_,_), S) :->
side4(quad(_,_,_,s,_,_,_,_), S) :->

sidel (rect (S,_), S) :->
side2(rect(_, S)' S) :->
side3 (rect (S,_), S) :->
side4 (rect (_, S)' S) :->

sidel(square(S), S) :->
side2(square(S), S) :->
side3 (square (S), S) : ->
side4 (square (S), S) : ->

sidel(tri(S,_,_,_,_,_), S) :->
side2 (tri(_,S,_,_,_,_), S) :->
side3(tri(_,_,s,_,_,_), S) :->

/* compute perimeter*/
perimeter(X, P) :->

quadrilateral(X),
sidel(X, Sl),
side2(X, S2),
side3(X, S3),
side4(X, S4),
Pest Sl+S2+S3+S4.

perimeter(X, P) :->
triangle (X) ,
sidel(X, Sl),
side2(X, S2),
side3(X, S3),
Pest Sl+S2+S3.

Given this code,

testl(P) ·- square(X), sidel(X, 7), perimeter(X, P) .

would produce

testl(28).

and

test2(S, P) ·- square(X), sidel(X, S), perimeter(X, P) .

24 July 1986

10

Macros for Quintus Prolog

would produce

test2 (S, P) :- P is S+S+S+S.

More realistically,

quad_perim(Q, P) :- quadrilateral(Q), perimeter(Q, P) .

would produce

quad_perim(quad(Sl,S2,S3,S4,_,_,_,_), P) :-
pis Sl+S2+S3+S4.

quad_perim(rect(W,H), P) :-
Pis W+H+W+H.

quad_perim(sq(S), P) :- Pis s+s+s+s.

And the final test case:

poly_perim(X, P) :- polygon(X), perimeter(X, P).

would produce

poly_perim(quad(Sl,S2,S3,S4,_,_,_,_), P) :
Pis Sl+S2+S3+S4.

poly_perim(rect(W,H), P) :-
Pis W+H+W+H.

poly_perim(sq(S), P) :- Pis s+s+s+s.
poly_perim(tri(S1,S2,S3,_,_,_), P) :-

pis Sl+S2+S3.

24 July 1986

11

