
I

Quintus Proprietary and Confidential

Proposai for Par ail el Quintus Pro log

Drafl2_

(1 June 1988 ')

Fo~Comments

Table of Contents
1. Introduction 1

1.1. Background 1
2. Broad Characteristics of MultiThreading Primitives 2
3. Multiprocess Primitives 2
4. Canonical Examples 4
5. Detached Goal Solving 6
6. Higher-Level Primitives 7

6.1. A Term Server 8
6.2. Doall and map 9

I. Commercial Impact of lmplicit Parallel Implementations 11
1.1. Types of lmplicit Parallelism 11
1.2. The Status of Work in OR-parallel Prolog 11
1.3. Moving from Aurora Prolog to a Commercial OR-parallel Prolog 12

II. Resource Estimates and Tnne-Table 15
11.1. New Memory Management 15
11.2. Multithreading State Handling 15
11.3. Scheduler and Sequent Operating System Calls 15
11.4. Beta Test 15

1

1. Introduction
Quintus has carefully considered a number of approaches to a parallel version of Quintus Prolog
for the Sequent SymmetryTM series of machines, under the Dynix™ version of Unix™. The
present proposa! indicates intent for a specific direction, among two principal alternatives. After
briefly reviewing these alternatives, we indicate why the chosen direction seems to be the most
compelling at this time. W e then proceed to give details of our approach, from a language
viewpoint.

1.1. Background
The extension of a sequential language to one which provides for parallel processing is a much­
studied topic. There are two main types of approach:

Explicit Parallelism Extend the language with new primitives which set up
parallel activities during execution, and which provide for
communication and synchronization among these activities.

Implicit Parallelism Do not change the language, but extract, through
compilation and dynamic analysis of execution states,
opportunities for converting parallel activities to sequential
ones.

Implicit parallelism works best in languages with a strongly declarative component. Prolog is
normally thought to be such a language, and indeed, Prolog does facilitate the declarative
expression of knowledge. However; Prolog is still, at its roots, procedural rather than
declarative. Consequently, it is unreasonable to expect that ail Prolog code will permit the type
of analysis needed for implicit parallelism. Although significant advances have been made in the
area of implicitly parallel implementations of Prolog which handle reasonably declarative
programs, by admission of researchers working closely in this area, the ideas are not quite ready
for commercialization. W e elaborate on this view in Appendix I.

Explicit parallelism can be used in virtually any language. What is sometimes not recognized is
that explicit parallelism can bring additional strengths to a language in certain application
domains. For example, implicit parallelism is easiest to manage with "compute-bound"
applications, but may be more awkward with "transaction-processing" type applications, where
direct interaction with the scheduler can be important.

In the case of Prolog, there is a definite benefit in an explicitly parallel extension based on
lightweight processes (called "threads", with the overall scheme being called "multithreading")
which we propose below: it enables the implementation of multiple "knowledge servers", which
can fonction as coroutines, each server maintaining its own state of a Prolog query in process1

The knowledge server concept is similar to the multiple "cursor" facility in SQL. In fact, this
benefit is sufficiently great that we intend to incorporate it eventually into the sequential version
of the product

The last rationale off ered for the election of multithreading is that it does not, in any way,

1Here we assume that the reader is familiar with Prolog's capability of retuming multiple responses to a query in
sequence.

2

preclude the ultimate introduction of implicit parallelism within individual threads; in fact, we
are in the process of investigating how this can be staged. The next section proceeds to elaborate
on the multithreading concept.

2. Broad Characteristics of MultiThreading Primitives
The following are salient aspects of a proposed multithreading extension to Quintus Prolog.

• Processes ("threads") are lightweight, in the sense of carrying with them the state of
the Prolog engine, rather than an entire Unix process.

• Processes can be created dynamically. There is no a priori lirnit to their number,
nor is their any pre-imposed assignment of processes to processors.

• Prolog terms are considered atomic. That is, no attempt is made to have processes
bind different variables in a common goal. Rather, a process can be passed one or
more parametric terms at creation, but other forms of communication must be donc
by using either the database, or by explicit channel communication, as discussed
below. If the terms con tain variables, then a copy of th ose variables is made; the
variables are not shared across processes.

• Processes can create communication channels dynamically. Two or more processes
can communicate terms across these channels. If the terms contain variables, then a
copy of those variables is made; the variables are not shared across processes.

• Processes share a common Prolog database. This means that they can share
compiled code as well as dynamically-asserted rules. Assert, retract, retractall, and
abolish are atomic actions on the database. A mutual exclusion mechanism on a
predicate prevents overlapping. [At some future time, we will want to add a "test­
and-set" style of database modification command, which will permit conditional
modification based on current database contents, as well as a transaction facility.]

• Processes can, at the programmer's option, isolate segments of their database. This
is through a mutually-agreed discipline, such as making certain modules private to a
given process, rather than through an enf orcement mechanism.

3. Multiprocess Primitives
The following primitives are supported at the language level. We describe the primitives in the
manner of the Quintus Prolog language manual: a + before an argument means the argument is
input to the command, a - means that the argument is output, and a ? means that it can be either.

fork(+Goal, -Handle)

fork(+Goal, +Priority, -Handle)

fork(+Goal)

make _ channel(-Channel)

Creates a Prolog process with Goal as input
Han.die is a reference to the process, which
may be used to set the latter' s relative
priority.

Like the preceding, except that Priority is an
integer which specifies the relative priority
of the process thus created.

Like the preceding, except there is no handle
nor priority.

Creates a channel object which permits

recv(+Channel, ?Tenn)

send(+Channel, + Term)

blocking_ send(+Channel, + Term)

3

communication between two or more
processes.

Offers to receive a Term îom Channel, and
waits for one to be sent. I several processes
are awaiting to receive a erm on the same
channel, then a FIFO quere of processes is
formed, the next term sent being given to the
first process on the queue Other processes
await to receive future terms.

Sends a Term on Channel. If no process is
waiting to receive, then trtenn is left in a
queue in the channel d the process
continues.

Sends a Term on Cha nel, waiting for
acceptance by a process]oing recv. If no
process is waiting to eceive, then the
sending process waits in a queue until the
term is received.

For a given channel, if either the queue of terms to be sent is non-empty or if there is a waiting
blocking_send, then we say that the channel has a send pending.

await_send(+List_of_Channels, -Channel) Waits until one of the channels in
List_of_Channels has a send pending.
When one does, that channel 's identification
is returned as Channel. If tnore than one has
a send pending, the first sl!lch channel in the
list at the time of call will be returned. If
more than one channel become pending after
a wait is initiated, then the system will
choose arbitrarily among those which
become pending first. [Note: Coding styles
which permit an await send to "race"
against another primitiver such as a recv
which could nullify the condition satisfying
the await_send, should be avoided due to the

close channel(+Channel)

get_status(+Channel, -Status)

stop _process

get _procid(-Handle)

indeterminacy thus create~.

Terminates input to the delignated Channel.

Returns the current status P,f the channel, as
an integer. If Status = 0, lthen the queue of
terms is empty and there are no waiting
sends or recvs. If Statu~ > 0, then Status
indicates the sum of the number of terms in
the queue plus the number of waiting sends.
If Status < 0, then Status indicates the
number of waiting recvs.

Terminates the current profess.

Gets the handle of the current process.

4

set_priority(+Handle, +Priority) Set relative priority of process identified by
Handle to Priority. Priorities range over
integer values with a maximum and
minimum to be determined. Setting a
priority to the minimum value is equivalent
to suspending the process.

get_priority(+ProcSpec, -PQspec) Gets process priority. ProcSpec is either
?? f one Handle or a list of Handles. In the first

..::i'vv\ e:: ',-a;-t' · case, Handle:Priority is returned in PQspec.
--- In the second case, a list of Handle:Priority

pairs is returned.
Above, "current process" means the one executing the goal being mentioned.

The usage modes of a channel have some things in common with Ada [4] and Occam [5],
however the current Prolog-based model is more dynamic in its means of instantiating processes,
and more disciplined in its form of communicatiôn. We have simplified channel communication
so as not to incur unnecessary inefficiencies in dealing with problems of canceling
rendezvous [4] requests when a channel has more than one send or more than one recv request
pending. At the sa.me time, it is conjectured that we can perform the most useful types of
synchronization and communication using our mechanism.

4. Canonical Examples
Here is a simple example of communication using a channel:

producer(+Channel)

filter(+In Channel, +OutChannel)

will be a process which produces successive
terms on Channel,

will be a process which reads successive
terms on InChannel and either passes them
to OutChannel or absorbs them,

consumer(+Channel) will be a process which reads and uses the
successive terms on Channel.

Note that the modes of these channels are all +, meaning that the channel is supplied to the
process from the outside. The mode says nothing about whether terms are sent or received on
the channel.

To establish communication in the prescribed way, we might use the following:

run :-
make _ channel(Chl),
make channel(Ch2),
fork(producer(Chl)),
fork(filter(Chl, Ch2)),
fork consumer u.---------

For example, suppose red/ i a predicate which generates numbers, filte~assed only those
numbers within a given range, and consumet1/.i>rinted out the numbers. Tuen we might add pred
and range as arguments of producer and filter Îespectively, the overall code appearing as:

run(Pred, Lo, Hi) :-

5

make_channel(Chl),
make channel(Ch2),
fork(producer(Chl, Pred)),
fork(filter(Chl, Ch2, Lo, Hi)),
fork(consumer(Ch2)).

producer(Channel, Pred) :­
call(Pred, X), _.:_---
send(Channel, X),
fail.

filter(In, Out, Lo, Hi) :-
repeat,

recv(In, X),
X >= Lo, X =< Hi,
send(Out, X),
fail.

consumer(Channel) :-
repeat,

recv(Channel, X),
write(X), nl,
fail.

The reason for the repeat sub-goals is to insure looping behavior. This type of construct is
probably a bit foreign to the non-Prolog programmer. The repeat construct, which is standard to
Prolog, provides a "barrier" for backtracking. That is, when a repeat is hit during backtracking,
there is always success, so that the goals following repeat will again execute in sequence. The
sequence of goals can either be terminated by fail, which causes infinite repetition, or by a test
which will permit the entire sequence to succeed, thus terminating the iteration achieved by
backtracking. The advantage of using tat any storage allocated on the run-time stack
during the loop body is immediately reclai ed. t _ . +-(.:rr

1
h ~ '\. -r "'"? ~"""j,-rv C, '"J

The following expresses the equivalent procedures filter and consumer using tail-recursion
instead~ ..t,;1.,.,(_ ...Jr-,~l'"I 1~ ps?

filter(ln, Out, Lo, Hi) :-
recv(In, X),
((X>= Lo, X=< Hi)-> send(Out, X) h I" ,-1\-~~

1 true
),
filter(ln, Out, Lo, Hi).

consumer(Channel) :­
recv(Channel, X),
write(X), nl,
consumer(Channel).

The producer process cannot be expressed using tail-recursion, since it relies on backtracking to

'Î 1
L (

6

get the solutions of pred/1.

Using similar examples, it is easy to see that various fonns of merging and choice service can be
achieved by more than one process sending to, or receiving from, a single channel.

5. Detached Goal Solving
In our specification, the fork primitive does not permit the transfer of results from the forked
process back to the forking process. In fact, some thought reveals that there is no sensible way
to do this, since the fork always succeeds, and we have no synchronized access to the variables
in the forked goal. However, such a transfer is easily and naturally achieved through the added
use of the channel construct. The idea is that we create a channel at the time of forking, for the
purpose of receiving the result bindings. Then, by doing recv on this channel, we can cause
waiting until the goal has been solved.

For greatest overlapped processing on a multiprocessor system, we do this recv as late as
possible. If, on the other hand, the goal f ails, we would like to pass something on the channel to
so indicate this information, otherwise the recv would wait forever. We adopt the convention
that the term fail will be sent.

The predicate being described is

detach(?Goal, ?ResultForm, -Channel)

Here Goal is the Goal to be solved in parallel, ResultForm is a term which has as its variables a
subset of those in Goal, and Channel is a channel that will be created by detach. The definition
is:

detach(Goal, ResultForm, Channel) :­
make channel(Channel),
fork(-((Goal, send(Channel, ResultForm))

1 send(Channel, fail))).

The I denotes disjunction, so that the first argument of fork reads: if Goal is solved, then send
ResultForm (where variable values are filled automatically by virtue of the fact that they are
shared between Goal and ResultForm). That is, the definition of forked processes here always
makes a copy of the goal, and such copying preseives sharing (see the discussion of structure
sharing in [1]). Thus, the process which solves the conjunction

(Goal, send(Channel, ResultForm))

passes the values of any variables which become bound during solving out by appropriate
embedding in ResultForm.

The detach procedure will usually be followed by a recv primitive on the channel thus created.
So the typical use is

detach(Goal, ResultForm, Channel)

recv(Channel, Result).

7

U sing detach we can create a more symmetric looking procedure, par, whlch runs its two
arguments as goals in parallel.

par(Goall, Goal2) :­
detach(Goall, Goall, Cl),
Goal2,
recv(Cl, Goall).

The result of par(Goall, Goal2) will be to instantiate the variables in Goall and Goal2, to the
extent that the goals are mutually solvable. Note that if there is a conflict in the binding of the
variables, then the par goal will fail.

As an example, if we wished to sum in parallel the leaves of a tree, where a tree is either a single
number, or a list of trees, we could write

sum([], 0) :- !.

7~
par(sum(Y, Ysum), sum(X, Xsum)),
Sum is Xsum + Y sum.

/ sum(X,X).

% the sum of an empty tree is 0

% the sum of a non-empty tree

% is done recursively by
% summing the sub-trees in parallel

% the sum of a leaf is the leaf' s value

Similarly, we mimic this technique in a tree search, looking for leaves which are tenns satisfying
a given predicate:

search([X I Y], Pred, Result) :- !,
par(search(X, Pred, XResult),

search(Y, Pred, YResult)),
or(XResult, YResult, Result).

7
search(X, Pred, Y):-

Term = .. [Pred, X],
((call(Term), Y= X) 1 Y= fail).

or(A, B, C) :-
A = fail -> (C = B) \

1 otherwise -> (C = A). } ~v--«i..y

6. Higher-Level Primitives
Even in a single processor environment, having multiple processes provides a means for clean
separation of tasks that work together as co-routines. It also provides an easy way to respond to
user input when it occurs, while continuing to process ready tasks during "think rime". Each
process tends to its own task, and its state is preserved when it is suspended.

In a multiple processor, shared memory environment, different processes can be executed
simultaneously. If they share the same database of clauses, updates to the database must be
serialized. However, because process state persists when the process is suspended, process
structuring reduces the need to update the database temporarily during a computation to
"remember" facts; instead a process can be assigned to remember them. Each process' state is

8

private (the state is contained, for example, in the arguments of a tail-recursive procedure, not
the database), so updates toits state need noi be serialized with updates to other process' state or
the global database.

As a tutorial example, in Prolog, a global counter is frequently used to ensure unique ids (i.e. we
have an implementation of the equivalent of gensym in Lisp. When an id is needed, an "id
server" procedure is called. Its code might be

~~;(lastld(M)),
NisM+l,
asserta(lastld(N)).

This code contains two updates of predicate last1<1{~~ the global database. In contrast, a process
(instead of procedure) would have code something like

~. IdChannel) :-
~--=-i>I~cking_ send(IdChannel, M),

NisM+l,
genld(N, IdChannel).

which does not touch the global database at ail. Whenever a process wants an id it does a recv
on the channel.

The ability of the language to express computations naturaily in a way that reduces the
bottleneck of global updating is important in achieving substantial performance gains with
multiple processors, and can lead to cleaner programs even with a single processor.

6.1. A Term Server
An example of a higher-level primitive implementable using the low-level primitives above is a
generic "term-server" facility. A special case was the id-server mentioned earlier. We design
this primitive to be similar to Prolog's findall:

findall(ResultForm, Goal, Result)

generates as Result the list of terms of the form ResultForm which are instantiated results of
Goal. A process-oriented analog is

serve(ResultForm, Goal, Channel)

Instead of generating the solution tenns ail at once in a list, this creates a process which serves
them one-at-a-time via a channel. The programmer does not need know that there is parallelism,
and could make use of this primitive even if there were none, since the state of the serving
computation can be kept inside of the process. Unlike findall, this goal makes sense even if the
bag of solutions is infinite. It is therefore similar to "lazy-evaluation" in parallel functional
languages [6].

As an example, suppose we have the following rules and facts in the database:

ancestor(X, Y) :- parent(X, Y).
ancestor(X, Y):- parent(X, Z), ancestor(Z, Y).

parent(fred, carol).

parent(tom, sam).
parent(fred, mary).
parent(john, fred).
parent(john, tom).
parent(tom, judy).

If we created the process

9

fork(serve(X, ancestor(john, X), Channel), _)

then on each recv from Channel, we would get successive ancestors of john:

fred, tom, carol, mary, sam, judy

To see how the tenn-server is implemented using the proposed extension, we need only exhibit
the coding:

serve(Form, Goal, Channel):­
call(Goal),
blocking_send(Channel, Fonn),
fail. .

'?.erve(Form, Goal, Channel ·­
send(Channel, en _of_fi e ,
stop_process.

This works by means of a fail-loop. The Goal is called repeatedly, and each time it succeeds, the
current instantiation of Form is sent on Channel. When there are no more instantiations,
end_of_file is sent by virtue of the second clause.

7
/t-''· '! 1

6.2.f Doall and map
The \ts'redicate doall attempts to solve a list of goals in parallel, where each Goal is accompanied
by a ResultForm for packaging the resulting bindings.

doall([]).
doall([Goal I More]):­

detach(Goal, Goal, Chan),
doall(More),
recv(Chan, Goal).

The idea here is that a process is created for each goal in the argument list. The recursive clause
creates a detached process for the first goal in the list, which can run in parallel with the
recursive call of doall on the rest of the list. Only after that call is done wil1 waiting for the first
goal occur. In this way, thé maximal amount of parallel execution is generated.

doall thus provides a limited form of AND-parallelism [2], but one capable of generating large
speedups due to solving each element of a large list of goals in parallel. The technique can
similarly be applied to other useful forms, such as map, in an obvious way.

map(Pred, D, □).
map(Pred, [AIX], [BIY]) :­

Term = .. [Pred, A, B],
detach(Term, Term, Chan),
map(Pred, X, Y),

10

recv(Chan, Tenn).

For example,

map(parent, [fred, tom, john], X)

gives the result [carol,sam,fred] when run with the parent database in the previous section.

Note that we are not providing for backtracking within AND-parallelism; this is up to the user to
arrange. Although more conservative in tem1s of compiler technology. we conjecture that this
method of intentional wholesale parallelism will often be more fruitful than that provided by
smaller scale automatic detection, which is known to still be fraught with problems [3].

Although the primitives developed can also achieve OR-parallelism by having multiple
processes feed a single channel, in order to get OR-parallel execution of Prolog clauses, we
would have to build a meta-interpreter around the user program. This is the means by which one
would build a parallel findall procedure. We do not show the details here.

!I

11

I. Commercial Impact of Implicit Parallel lmplementations

1.1. Types of Implicit Parallelism
Many designs enabling Prolog systems to exploit global shared memory hosts have been

G
roposed by the Logic Programming community. In choosing to implement an industrial-quality
parallel Prolog" within a limited rime-frame, to the required standard (i.e. that of Quintus

Prolog), it is important to pick a design that meshes well with other related products and tools.

Implicit parallelism in Prolog implementations is coarsely divisible into "AND-parallel" and
"OR-parallel". The first refers to attempting to solve several sub-goals within a given goal
simultaneously (corresponding to an "AND" node of a search tree), while the second refers to
attempting to solve a given goal in several different ways simultaneously (corresponding to an
"OR" node of the tree).2

This appendix discusses the status of research on OR-parallel Prolog systems and tries to
determine whether a commercial OR-parallel Prolog for a global shared memory machine is a
viable short-term option. (We take "short-term" to mean a beta-test within 1 to 1.5 years.) A] ~i->.b-•t-h~~
similar discussion can be developed for AND-parallel Prolog, and we have similarly thought this e;f'C. , ""

through, but do not present a comparable argument here.
_.. .. r,sL

The discussion is based on close acquaintance with current relevant research, as well as the
opinions expressed by key researchers. Ail designs considered will be assumed equally
appropriate for the hosts in question, so hardware and 0/S issues can be ignored.

1.2. The Status of Work in OR-parallel Prolog
The body of research into OR-parallel Prologs owes much to the efforts of the Gigalips
Consortium, a cooperation between a group at Manchester University headed by David
H. D. Warren, the Swedish Institute of Computer Science (SICS), and researchers at Argonne
National Laboratory (ANL). One of the projects of the Gigalips group is Aurora Prolog, a high­
quality testbed for OR-parallel Prolog systems based on SICStus Prolog. Because Aurora
Prolog, in our opinion, is the most advanced OR-parallel Prolog research environment in
existence, we will take it as the state of the art and discuss its implications for a commercial
OR-parallel Prolog.

To make clear the differences between Aurora Prolog and a commercial OR-parallel Prolog a
technical summary of the former is needed. Aurora Prolog consists, notionally and
implementationally, of two main modules. One module, known as a worker, constitutes an
emulator for the Warren Abstract Machine (W AM) that has been modified to operate some of its
runtime areas in global memory, and maintain additional structure necessary to avoid binding
conflicts for shared variables. A worker traverses the Prolog search tree in OR-parallel under
direction of a scheduler, the second module. When a Prolog program is to be run in OR-parallel,
multiple WAM/scheduler pairs are initialized and set running on stacks in shared memory.

2We mention that "searching" is a metaphor often used in describing Prolog systems, but that such systems are
~ally computational; the implied tree is usually never constructed explicitly, except perhaps in debugging via .
L/ _reter.

s lt\.-.p,c- ...

12

Scheduling decisions are made by individual workers on the basis of local information in the
shared memory. There is no global coordination of workers. Behavior and performance of the
workers can be monitored using a suite of tools.

The interface between a WAM and its scheduler is well-defined and documented, which should
greatly ease future research (it has already proved valuable to the Gigalips participants). The
interface has the advantage that W AM modifications or scheduler changes can be made
independently of the other module. It also makes possible debugging tools like a test harness for
schedulers conforming to the interface, making it possible to extensively test a scheduler without
a working W AM module.

As of the March, 1988 meeting of the Gigalips group in Manchester, a single version of the
modified SICStus WAM was being used in all investigations. Variable bindings are handled
using the SRI mode/ first proposed by David H. D. Warren in 1983. The three main Gigalips
participants are, at least for the time being, committed to the SRI model, although some work is
being done by associated groups on alternatives. The Gigalips group's satisfaction with the SRI
model represents a significant development for commercial prospects, as will be discussed later.

Two schedulers, one done at ANL and one done at Manchester, were being tested in Manchester,
and a third, very promising, scheduler design was proposed by a researcher from SICS. While
the existing schedulers handled pure (e.g. cut-free and side-effect-free) Prolog acceptably, they

~emain a long way from running arbitrary Prolog programs. Most of the research spent on
~+ Aurora Prolog this March went into scheduler issues.

r'"~ ~¼<1 r-;o.r- c;i O >
-0'-"-; 1.3. Moving from Aurora Prolog to a Commercial OR-parallel Prolog

~ ~-:l< Commercialization of each of the two modules of Aurora Prolog will be discussed separately.
,~\1,..; ~ The major issues involved in the design and implementation of the WAM module of a

.,., c; \. c... commercial OR-parallel Prolog can be split into the areas of emulator support and memory
~ management Gigalips research has demonstrated that degradation of sequential Prolog
,.,,.._rtf · performance due to the SRI model can be made acceptably low. Sequential performance of an
'(, OR-parallel Prolog system is important as it defines the amount of parallelism that MUST be

~ ~J ~h:i:c; ed to corne out ahead in the race with fast sequential Prologs. Preliminary studies at
~ • Quintus also indicate that a modified Quintus Prolog emulator should yield reasonable sequential

performance.

The Aurora system does not adequately address memory management issues. It has not been
designed to be very careful with memory (e.g. implementing stack expansion using UNIX's
realloc(3)). However, independent of the "parallel Prolog" paradigm chosen, the memory
management rewrite undertaken for the next major release of Quintus Prolog would go a long
way toward efficiently managing multiple scheduler-WAM invocations in a single address
space.

The real remaining issue for the W AM module is the dependence of an OR-parallel Prolog using
the SRI model on scheduling technology. The main drawback of the SRI model, which has not
yet been adequately assessed, is that the cost of a worker switching tasks is proportional to the
distance of the new task from the old. ("Distance" can roughly be measured in terms of the
amount of W AM trail not shared between the old and new positions of the worker on the search

13

tree.) Thus, when using the SRI model, it may be essential to good performance that the
scheduler be smart enough to find the best available work. If this cannot be done, or if progran1s
require long-distance relocation of workers, variable binding models may have to be
reconsidered.

Scheduler issues point to the maturation still needed by Aurora Prolog. One of the motivations
for investigations of OR-parallel logic programming languages rather than, say, committed
choice languages like GHC or FCP, is the prospect of retaining the Prolog language. The only
difference (we might hope!) would be that applications would run faster. Unfonunately,
efficiently executing arbitrary Prolog programs in OR-parallel means having to deal with
problems that are often not encountered when demonstrating a design concept. The problems, in
general, have to do with suspending and restarting workers either as desired by the semantics of
the language (in the case of eut/commit and predicates with side-eff ects, or when retaining the
Prolog order of solutions) or for better efficiency (e.g. if a branch suspends, its worker might
detach itself and search for work elsewhere).

Scheduling issues also find their way into the language. At least three forms of eut (the standard
Prolog eut and two forms of commit) are being considered. The three have different scheduling
demands, with the normal Prolog eut giving the most difficulty. Various proposais have been
aired as to how cuts can be implemented, however, all complicate scheduling significantly. One
Gigalips group (ANL) has proposed not even attempting to handle arbitrary Prolog programs yet,
but instead to try to efficiently execute programs in which parallel sections are circumscribed
and contain only a subset of Prolog. Under this view, a parallel section of a program must not
cause side-effects (e.g. do I/O or assert/retract), cannot care about solution order, and make do
with a restricted notion of eut. The point is that such restrictions on the language make it
possible to implement a usable system with scheduler technology that is understood today.

Other proposals include a first attempt at using annotations to classify procedures into, for
instance, those not needing Prolog's solution ordering. Sorne techniques as this might eYentually
help to ease the scheduling burden.

It is Quintus' view that better performance at the cost of significant departures from the Prolog
language is not in the application developer' s best interest. Our experience shows that
compatibility across platf orms is very important - our product line reflects our appreciation of
this fact. It is probably not in the host machine vendor's interest either, as it will make
applications difficult to pon to or from other machines. The implementation would be more
likely used for experimentation than application delivery, making it less attractive in terms of
sales. In addition, because research into more general solutions is active, such a system would
quickly become obsolete. Thus, we would not find a strategy like ANL's acceptable in a
commercial product.

The alternative is to implement a system now that runs arbitrary Prolog programs ~ Ç)R;:pârânel -;~
As we have seen, however, research into scheduling in the context of sid ects, cuts and UV\

frequent worker interruptions, even only to be correct, i~ egi:îiru~stimates of
finally achievable performance should also be looked atwith th~hedlilerin mind. If it is
important that schedulers choose work intelligently to avoid task switching overheads, especially
in an execution environment in which interrupts are frequent due to side-effects and solution
ordering, the scheduler becomes grossly more complicated.

14

~
It appears that man-years are being committedVby the Gigalips groups to scheduler problems.
(While Quintus could also undertake scheduler research, there is no reason to believe that we
would be able to achieve results faster than the Gigalips participants.) When we take into
consideration that good scheduling may be essential to efficient execution of programs on OR­
parallel, we must conclude that, at least in the short term, a commercial OR-parallel Prolog is not
viable.

15

II. Resource Estimates and Time-Table
The following is a resource estimate for the development of the multithreading version of Prolog
on the Sequent. Except as noted, the numbers are not yet firm, although every effort will be
made to meet this schedule, at a minimum.

11.1. New Memory Management
In order to make multithreading possible, a re-design of the current memory management system
is necessary. Following are the principal tasks involved, the resource estimates, and target dates.

1. Block server and initialization of code-space and stacks from environment
variables working (but not integrated into system). [3 man-months, done]

2. Elevate the above into a working Prolog W AM system. No stack shifter or
garbage collector. Runs test programs. [l man-month, done]

3. Add stack shifter. [0.5 man-month, 15 June, 1988]

4. Garbage collector working. [2 man-months, 15 September, 1988 (gap due to
Vacation and staffing changes)]

5. Interim testing and debugging. [0.5 man-month, 30 September, 1988]

6. Porting memory-management concepts to Sequent. [2 man-months, 28 November,
1988]

11.2. Multithreading State Handling
Approximately 12 man-months are estimated to fully design implement the needed state­
switching mechanisms and multithreading primitives. A detailed plan has not been developed as
yet. With anticipated loading, this phase will be complete mid-May, 1989.

11.3. Scheduler and Sequent Operating System Calls
Approximately 7 man-months are estimated to provide operating-system support to the
multithreading primitives and scheduler under the Sequent operating system. Documentation
will be done during this period. A detailed plan has not been developed as yet. With anticipated
loading, this phase will be complete by the end of July, 1989.

11.4. Beta Test
Assuming a two-month beta-test period, this phase will be completed by the end of September,
1989.

• r

16

References

[1] R.S. Boyer and J.S. Moore.
The sharing of structure in theorem proving programs.
Machine Intelligence 7:101-116, 1972.
Edinburgh University Press, Scotland.

[2] J.S. Conery.
The AND/OR process mode/for para/le/ interpretation of logic programs.
Technical Report 204, U.C. Irvine, June, 1983.

[3] D. DeGroot.
Restricted and-parallelism.
In International Conference on Fifth generation computer systems, pages 471-478.

ICOT, 1984.

[4] U.S. Department ofDefense.
Reference manual for the Ada programming language
ANSI/MIL-SID 1815 A edition, 1983.

[5] Inmos.
Transputer reference manual
Inmos Limited, Bristol, England, 1985.

[6] R.M. Keller and F. C.H. Lin.
Simulated performance of a reduction-based multiprocessor.
Computer 17(7):70-82, July, 1984.

