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1. Introduction 
Quintus has carefully considered a number of approaches to a parallel version of Quintus Prolog 
for the Sequent SymmetryTM series of machines, under the Dynix™ version of Unix™. The 
present proposa! indicates intent for a specific direction, among two principal alternatives. After 
briefly reviewing these alternatives, we indicate why the chosen direction seems to be the most 
compelling at this time. W e then proceed to give details of our approach, from a language 
viewpoint. 

1.1. Background 
The extension of a sequential language to one which provides for parallel processing is a much­
studied topic. There are two main types of approach: 

Explicit Parallelism Extend the language with new primitives which set up 
parallel activities during execution, and which provide for 
communication and synchronization among these activities. 

Implicit Parallelism Do not change the language, but extract, through 
compilation and dynamic analysis of execution states, 
opportunities for converting parallel activities to sequential 
ones. 

Implicit parallelism works best in languages with a strongly declarative component. Prolog is 
normally thought to be such a language, and indeed, Prolog does facilitate the declarative 
expression of knowledge. However; Prolog is still, at its roots, procedural rather than 
declarative. Consequently, it is unreasonable to expect that ail Prolog code will permit the type 
of analysis needed for implicit parallelism. Although significant advances have been made in the 
area of implicitly parallel implementations of Prolog which handle reasonably declarative 
programs, by admission of researchers working closely in this area, the ideas are not quite ready 
for commercialization. W e elaborate on this view in Appendix I. 

Explicit parallelism can be used in virtually any language. What is sometimes not recognized is 
that explicit parallelism can bring additional strengths to a language in certain application 
domains. For example, implicit parallelism is easiest to manage with "compute-bound" 
applications, but may be more awkward with "transaction-processing" type applications, where 
direct interaction with the scheduler can be important. 

In the case of Prolog, there is a definite benefit in an explicitly parallel extension based on 
lightweight processes (called "threads", with the overall scheme being called "multithreading") 
which we propose below: it enables the implementation of multiple "knowledge servers", which 
can fonction as coroutines, each server maintaining its own state of a Prolog query in process1 

The knowledge server concept is similar to the multiple "cursor" facility in SQL. In fact, this 
benefit is sufficiently great that we intend to incorporate it eventually into the sequential version 
of the product 

The last rationale off ered for the election of multithreading is that it does not, in any way, 

1Here we assume that the reader is familiar with Prolog's capability of retuming multiple responses to a query in 
sequence. 
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preclude the ultimate introduction of implicit parallelism within individual threads; in fact, we 
are in the process of investigating how this can be staged. The next section proceeds to elaborate 
on the multithreading concept. 

2. Broad Characteristics of MultiThreading Primitives 
The following are salient aspects of a proposed multithreading extension to Quintus Prolog. 

• Processes ("threads") are lightweight, in the sense of carrying with them the state of 
the Prolog engine, rather than an entire Unix process. 

• Processes can be created dynamically. There is no a priori lirnit to their number, 
nor is their any pre-imposed assignment of processes to processors. 

• Prolog terms are considered atomic. That is, no attempt is made to have processes 
bind different variables in a common goal. Rather, a process can be passed one or 
more parametric terms at creation, but other forms of communication must be donc 
by using either the database, or by explicit channel communication, as discussed 
below. If the terms con tain variables, then a copy of th ose variables is made; the 
variables are not shared across processes. 

• Processes can create communication channels dynamically. Two or more processes 
can communicate terms across these channels. If the terms contain variables, then a 
copy of those variables is made; the variables are not shared across processes. 

• Processes share a common Prolog database. This means that they can share 
compiled code as well as dynamically-asserted rules. Assert, retract, retractall, and 
abolish are atomic actions on the database. A mutual exclusion mechanism on a 
predicate prevents overlapping. [At some future time, we will want to add a "test­
and-set" style of database modification command, which will permit conditional 
modification based on current database contents, as well as a transaction facility.] 

• Processes can, at the programmer's option, isolate segments of their database. This 
is through a mutually-agreed discipline, such as making certain modules private to a 
given process, rather than through an enf orcement mechanism. 

3. Multiprocess Primitives 
The following primitives are supported at the language level. We describe the primitives in the 
manner of the Quintus Prolog language manual: a + before an argument means the argument is 
input to the command, a - means that the argument is output, and a ? means that it can be either. 

fork(+Goal, -Handle) 

fork(+Goal, +Priority, -Handle) 

fork( +Goal) 

make _ channel(-Channel) 

Creates a Prolog process with Goal as input 
Han.die is a reference to the process, which 
may be used to set the latter' s relative 
priority. 

Like the preceding, except that Priority is an 
integer which specifies the relative priority 
of the process thus created. 

Like the preceding, except there is no handle 
nor priority. 

Creates a channel object which permits 



recv( +Channel, ?Tenn) 

send( +Channel, + Term) 

blocking_ send( +Channel, + Term) 
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communication between two or more 
processes. 

Offers to receive a Term îom Channel, and 
waits for one to be sent. I several processes 
are awaiting to receive a erm on the same 
channel, then a FIFO quere of processes is 
formed, the next term sent being given to the 
first process on the queue Other processes 
await to receive future terms. 

Sends a Term on Channel. If no process is 
waiting to receive, then trtenn is left in a 
queue in the channel d the process 
continues. 

Sends a Term on Cha nel, waiting for 
acceptance by a process ]oing recv. If no 
process is waiting to eceive, then the 
sending process waits in a queue until the 
term is received. 

For a given channel, if either the queue of terms to be sent is non-empty or if there is a waiting 
blocking_send, then we say that the channel has a send pending. 

await_send(+List_of_Channels, -Channel) Waits until one of the channels in 
List_of_Channels has a send pending. 
When one does, that channel 's identification 
is returned as Channel. If tnore than one has 
a send pending, the first sl!lch channel in the 
list at the time of call will be returned. If 
more than one channel become pending after 
a wait is initiated, then the system will 
choose arbitrarily among those which 
become pending first. [Note: Coding styles 
which permit an await send to "race" 
against another primitiver such as a recv 
which could nullify the condition satisfying 
the await_send, should be avoided due to the 

close channel( +Channel) 

get_status(+Channel, -Status) 

stop _process 

get _procid(-Handle) 

indeterminacy thus create~. 

Terminates input to the delignated Channel. 

Returns the current status P,f the channel, as 
an integer. If Status = 0, lthen the queue of 
terms is empty and there are no waiting 
sends or recvs. If Statu~ > 0, then Status 
indicates the sum of the number of terms in 
the queue plus the number of waiting sends. 
If Status < 0, then Status indicates the 
number of waiting recvs. 

Terminates the current profess. 

Gets the handle of the current process. 
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set_priority( +Handle, +Priority) Set relative priority of process identified by 
Handle to Priority. Priorities range over 
integer values with a maximum and 
minimum to be determined. Setting a 
priority to the minimum value is equivalent 
to suspending the process. 

get_priority(+ProcSpec, -PQspec) Gets process priority. ProcSpec is either 
?? f one Handle or a list of Handles. In the first 

..::i'vv\ e:: ',-a;-t' · case, Handle:Priority is returned in PQspec. 
--- In the second case, a list of Handle:Priority 

pairs is returned. 
Above, "current process" means the one executing the goal being mentioned. 

The usage modes of a channel have some things in common with Ada [4] and Occam [5], 
however the current Prolog-based model is more dynamic in its means of instantiating processes, 
and more disciplined in its form of communicatiôn. We have simplified channel communication 
so as not to incur unnecessary inefficiencies in dealing with problems of canceling 
rendezvous [4] requests when a channel has more than one send or more than one recv request 
pending. At the sa.me time, it is conjectured that we can perform the most useful types of 
synchronization and communication using our mechanism. 

4. Canonical Examples 
Here is a simple example of communication using a channel: 

producer( +Channel) 

filter( +In Channel, +OutChannel) 

will be a process which produces successive 
terms on Channel, 

will be a process which reads successive 
terms on InChannel and either passes them 
to OutChannel or absorbs them, 

consumer( +Channel) will be a process which reads and uses the 
successive terms on Channel. 

Note that the modes of these channels are all +, meaning that the channel is supplied to the 
process from the outside. The mode says nothing about whether terms are sent or received on 
the channel. 

To establish communication in the prescribed way, we might use the following: 

run :-
make _ channel(Chl), 
make channel(Ch2), 
fork(producer(Chl)), 
fork(filter(Chl, Ch2)), 
fork consumer u.---------

For example, suppose red/ i a predicate which generates numbers, filte~assed only those 
numbers within a given range, and consumet1/.i>rinted out the numbers. Tuen we might add pred 
and range as arguments of producer and filter Îespectively, the overall code appearing as: 

run(Pred, Lo, Hi) :-



5 

make_channel(Chl), 
make channel(Ch2), 
fork(producer(Chl, Pred)), 
fork(filter(Chl, Ch2, Lo, Hi)), 
fork(consumer(Ch2)). 

producer(Channel, Pred) :­
call(Pred, X), _.:_---
send(Channel, X), 
fail. 

filter(In, Out, Lo, Hi) :-
repeat, 

recv(In, X), 
X >= Lo, X =< Hi, 
send(Out, X), 
fail. 

consumer(Channel) :-
repeat, 

recv(Channel, X), 
write(X), nl, 
fail. 

The reason for the repeat sub-goals is to insure looping behavior. This type of construct is 
probably a bit foreign to the non-Prolog programmer. The repeat construct, which is standard to 
Prolog, provides a "barrier" for backtracking. That is, when a repeat is hit during backtracking, 
there is always success, so that the goals following repeat will again execute in sequence. The 
sequence of goals can either be terminated by fail, which causes infinite repetition, or by a test 
which will permit the entire sequence to succeed, thus terminating the iteration achieved by 
backtracking. The advantage of using tat any storage allocated on the run-time stack 
during the loop body is immediately reclai ed. t _ . +-(.:rr 

1 
h ~ '\. -r "'"? ~"""j,-rv C, '"J 

The following expresses the equivalent procedures filter and consumer using tail-recursion 
instead~ ..t,;1.,.,(_ ...Jr-,~l'"I 1~ ps? 

filter(ln, Out, Lo, Hi) :-
recv(In, X), 
( (X>= Lo, X=< Hi)-> send(Out, X) h I" ,-1\-~~ 

1 true 
), 
filter(ln, Out, Lo, Hi). 

consumer(Channel) :­
recv(Channel, X), 
write(X), nl, 
consumer(Channel). 

The producer process cannot be expressed using tail-recursion, since it relies on backtracking to 
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get the solutions of pred/1. 

Using similar examples, it is easy to see that various fonns of merging and choice service can be 
achieved by more than one process sending to, or receiving from, a single channel. 

5. Detached Goal Solving 
In our specification, the fork primitive does not permit the transfer of results from the forked 
process back to the forking process. In fact, some thought reveals that there is no sensible way 
to do this, since the fork always succeeds, and we have no synchronized access to the variables 
in the forked goal. However, such a transfer is easily and naturally achieved through the added 
use of the channel construct. The idea is that we create a channel at the time of forking, for the 
purpose of receiving the result bindings. Then, by doing recv on this channel, we can cause 
waiting until the goal has been solved. 

For greatest overlapped processing on a multiprocessor system, we do this recv as late as 
possible. If, on the other hand, the goal f ails, we would like to pass something on the channel to 
so indicate this information, otherwise the recv would wait forever. We adopt the convention 
that the term fail will be sent. 

The predicate being described is 

detach(?Goal, ?ResultForm, -Channel) 

Here Goal is the Goal to be solved in parallel, ResultForm is a term which has as its variables a 
subset of those in Goal, and Channel is a channel that will be created by detach. The definition 
is: 

detach(Goal, ResultForm, Channel) :­
make channel(Channel), 
fork(-((Goal, send(Channel, ResultForm)) 

1 send(Channel, fail))). 

The I denotes disjunction, so that the first argument of fork reads: if Goal is solved, then send 
ResultForm (where variable values are filled automatically by virtue of the fact that they are 
shared between Goal and ResultForm). That is, the definition of forked processes here always 
makes a copy of the goal, and such copying preseives sharing (see the discussion of structure 
sharing in [1]). Thus, the process which solves the conjunction 

(Goal, send(Channel, ResultForm)) 

passes the values of any variables which become bound during solving out by appropriate 
embedding in ResultForm. 

The detach procedure will usually be followed by a recv primitive on the channel thus created. 
So the typical use is 

detach(Goal, ResultForm, Channel) 

recv(Channel, Result). 
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U sing detach we can create a more symmetric looking procedure, par, whlch runs its two 
arguments as goals in parallel. 

par(Goall, Goal2) :­
detach(Goall, Goall, Cl), 
Goal2, 
recv(Cl, Goall). 

The result of par(Goall, Goal2) will be to instantiate the variables in Goall and Goal2, to the 
extent that the goals are mutually solvable. Note that if there is a conflict in the binding of the 
variables, then the par goal will fail. 

As an example, if we wished to sum in parallel the leaves of a tree, where a tree is either a single 
number, or a list of trees, we could write 

sum([], 0) :- !. 

7~ 
par(sum(Y, Ysum), sum(X, Xsum)), 
Sum is Xsum + Y sum. 

/ sum(X,X). 

% the sum of an empty tree is 0 

% the sum of a non-empty tree 

% is done recursively by 
% summing the sub-trees in parallel 

% the sum of a leaf is the leaf' s value 

Similarly, we mimic this technique in a tree search, looking for leaves which are tenns satisfying 
a given predicate: 

search([X I Y], Pred, Result) :- !, 
par(search(X, Pred, XResult), 

search(Y, Pred, YResult)), 
or(XResult, YResult, Result). 

7 
search(X, Pred, Y):-

Term = .. [Pred, X], 
( (call(Term), Y= X) 1 Y= fail). 

or(A, B, C) :-
A = fail -> (C = B) \ 

1 otherwise -> (C = A). } ~v--«i..y 

6. Higher-Level Primitives 
Even in a single processor environment, having multiple processes provides a means for clean 
separation of tasks that work together as co-routines. It also provides an easy way to respond to 
user input when it occurs, while continuing to process ready tasks during "think rime". Each 
process tends to its own task, and its state is preserved when it is suspended. 

In a multiple processor, shared memory environment, different processes can be executed 
simultaneously. If they share the same database of clauses, updates to the database must be 
serialized. However, because process state persists when the process is suspended, process 
structuring reduces the need to update the database temporarily during a computation to 
"remember" facts; instead a process can be assigned to remember them. Each process' state is 
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private (the state is contained, for example, in the arguments of a tail-recursive procedure, not 
the database), so updates toits state need noi be serialized with updates to other process' state or 
the global database. 

As a tutorial example, in Prolog, a global counter is frequently used to ensure unique ids (i.e. we 
have an implementation of the equivalent of gensym in Lisp. When an id is needed, an "id 
server" procedure is called. Its code might be 

~~;(lastld(M)), 
NisM+l, 
asserta(lastld(N) ). 

This code contains two updates of predicate last1<1{~~ the global database. In contrast, a process 
(instead of procedure) would have code something like 

~. IdChannel) :-
~--=-i>I~cking_ send(IdChannel, M), 

NisM+l, 
genld(N, IdChannel). 

which does not touch the global database at ail. Whenever a process wants an id it does a recv 
on the channel. 

The ability of the language to express computations naturaily in a way that reduces the 
bottleneck of global updating is important in achieving substantial performance gains with 
multiple processors, and can lead to cleaner programs even with a single processor. 

6.1. A Term Server 
An example of a higher-level primitive implementable using the low-level primitives above is a 
generic "term-server" facility. A special case was the id-server mentioned earlier. We design 
this primitive to be similar to Prolog's findall: 

findall(ResultForm, Goal, Result) 

generates as Result the list of terms of the form ResultForm which are instantiated results of 
Goal. A process-oriented analog is 

serve(ResultForm, Goal, Channel) 

Instead of generating the solution tenns ail at once in a list, this creates a process which serves 
them one-at-a-time via a channel. The programmer does not need know that there is parallelism, 
and could make use of this primitive even if there were none, since the state of the serving 
computation can be kept inside of the process. Unlike findall, this goal makes sense even if the 
bag of solutions is infinite. It is therefore similar to "lazy-evaluation" in parallel functional 
languages [ 6]. 

As an example, suppose we have the following rules and facts in the database: 

ancestor(X, Y) :- parent(X, Y). 
ancestor(X, Y):- parent(X, Z), ancestor(Z, Y). 

parent(fred, carol). 



parent(tom, sam). 
parent(fred, mary). 
parent(john, fred). 
parent(john, tom). 
parent(tom, judy). 

If we created the process 
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fork(serve(X, ancestor(john, X), Channel), _) 

then on each recv from Channel, we would get successive ancestors of john: 

fred, tom, carol, mary, sam, judy 

To see how the tenn-server is implemented using the proposed extension, we need only exhibit 
the coding: 

serve(Form, Goal, Channel):­
call(Goal), 
blocking_send(Channel, Fonn), 
fail. . 

'?.erve(Form, Goal, Channel ·­
send(Channel, en _of_fi e , 
stop_process. 

This works by means of a fail-loop. The Goal is called repeatedly, and each time it succeeds, the 
current instantiation of Form is sent on Channel. When there are no more instantiations, 
end_of_file is sent by virtue of the second clause. 

7 
/t-''· '! 1 

6.2.f Doall and map 
The \ts'redicate doall attempts to solve a list of goals in parallel, where each Goal is accompanied 
by a ResultForm for packaging the resulting bindings. 

doall([]). 
doall([Goal I More]):­

detach(Goal, Goal, Chan), 
doall(More ), 
recv(Chan, Goal). 

The idea here is that a process is created for each goal in the argument list. The recursive clause 
creates a detached process for the first goal in the list, which can run in parallel with the 
recursive call of doall on the rest of the list. Only after that call is done wil1 waiting for the first 
goal occur. In this way, thé maximal amount of parallel execution is generated. 

doall thus provides a limited form of AND-parallelism [2], but one capable of generating large 
speedups due to solving each element of a large list of goals in parallel. The technique can 
similarly be applied to other useful forms, such as map, in an obvious way. 

map(Pred, D, □). 
map(Pred, [AIX], [BIY]) :­

Term = .. [Pred, A, B], 
detach(Term, Term, Chan), 
map(Pred, X, Y), 
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recv(Chan, Tenn). 

For example, 

map(parent, [fred, tom, john], X) 

gives the result [ carol,sam,fred] when run with the parent database in the previous section. 

Note that we are not providing for backtracking within AND-parallelism; this is up to the user to 
arrange. Although more conservative in tem1s of compiler technology. we conjecture that this 
method of intentional wholesale parallelism will often be more fruitful than that provided by 
smaller scale automatic detection, which is known to still be fraught with problems [3]. 

Although the primitives developed can also achieve OR-parallelism by having multiple 
processes feed a single channel, in order to get OR-parallel execution of Prolog clauses, we 
would have to build a meta-interpreter around the user program. This is the means by which one 
would build a parallel findall procedure. We do not show the details here. 
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I. Commercial Impact of Implicit Parallel lmplementations 

1.1. Types of Implicit Parallelism 
Many designs enabling Prolog systems to exploit global shared memory hosts have been 

G
roposed by the Logic Programming community. In choosing to implement an industrial-quality 
parallel Prolog" within a limited rime-frame, to the required standard (i.e. that of Quintus 

Prolog), it is important to pick a design that meshes well with other related products and tools. 

Implicit parallelism in Prolog implementations is coarsely divisible into "AND-parallel" and 
"OR-parallel". The first refers to attempting to solve several sub-goals within a given goal 
simultaneously (corresponding to an "AND" node of a search tree), while the second refers to 
attempting to solve a given goal in several different ways simultaneously (corresponding to an 
"OR" node of the tree).2 

This appendix discusses the status of research on OR-parallel Prolog systems and tries to 
determine whether a commercial OR-parallel Prolog for a global shared memory machine is a 
viable short-term option. (We take "short-term" to mean a beta-test within 1 to 1.5 years.) A] ~i->.b-•t-h~~ 
similar discussion can be developed for AND-parallel Prolog, and we have similarly thought this e;f'C. , "" 

through, but do not present a comparable argument here. 
_.. .. r,sL 

The discussion is based on close acquaintance with current relevant research, as well as the 
opinions expressed by key researchers. Ail designs considered will be assumed equally 
appropriate for the hosts in question, so hardware and 0/S issues can be ignored. 

1.2. The Status of Work in OR-parallel Prolog 
The body of research into OR-parallel Prologs owes much to the efforts of the Gigalips 
Consortium, a cooperation between a group at Manchester University headed by David 
H. D. Warren, the Swedish Institute of Computer Science (SICS), and researchers at Argonne 
National Laboratory (ANL). One of the projects of the Gigalips group is Aurora Prolog, a high­
quality testbed for OR-parallel Prolog systems based on SICStus Prolog. Because Aurora 
Prolog, in our opinion, is the most advanced OR-parallel Prolog research environment in 
existence, we will take it as the state of the art and discuss its implications for a commercial 
OR-parallel Prolog. 

To make clear the differences between Aurora Prolog and a commercial OR-parallel Prolog a 
technical summary of the former is needed. Aurora Prolog consists, notionally and 
implementationally, of two main modules. One module, known as a worker, constitutes an 
emulator for the Warren Abstract Machine (W AM) that has been modified to operate some of its 
runtime areas in global memory, and maintain additional structure necessary to avoid binding 
conflicts for shared variables. A worker traverses the Prolog search tree in OR-parallel under 
direction of a scheduler, the second module. When a Prolog program is to be run in OR-parallel, 
multiple WAM/scheduler pairs are initialized and set running on stacks in shared memory. 

2We mention that "searching" is a metaphor often used in describing Prolog systems, but that such systems are 
~ally computational; the implied tree is usually never constructed explicitly, except perhaps in debugging via . 
L/ _reter. 

s lt\.-.p,c- ... 
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Scheduling decisions are made by individual workers on the basis of local information in the 
shared memory. There is no global coordination of workers. Behavior and performance of the 
workers can be monitored using a suite of tools. 

The interface between a WAM and its scheduler is well-defined and documented, which should 
greatly ease future research (it has already proved valuable to the Gigalips participants). The 
interface has the advantage that W AM modifications or scheduler changes can be made 
independently of the other module. It also makes possible debugging tools like a test harness for 
schedulers conforming to the interface, making it possible to extensively test a scheduler without 
a working W AM module. 

As of the March, 1988 meeting of the Gigalips group in Manchester, a single version of the 
modified SICStus WAM was being used in all investigations. Variable bindings are handled 
using the SRI mode/ first proposed by David H. D. Warren in 1983. The three main Gigalips 
participants are, at least for the time being, committed to the SRI model, although some work is 
being done by associated groups on alternatives. The Gigalips group's satisfaction with the SRI 
model represents a significant development for commercial prospects, as will be discussed later. 

Two schedulers, one done at ANL and one done at Manchester, were being tested in Manchester, 
and a third, very promising, scheduler design was proposed by a researcher from SICS. While 
the existing schedulers handled pure (e.g. cut-free and side-effect-free) Prolog acceptably, they 

~emain a long way from running arbitrary Prolog programs. Most of the research spent on 
~+ Aurora Prolog this March went into scheduler issues. 

r'"~ ~¼<1 r-;o.r- c;i O > 
-0'-"-; 1.3. Moving from Aurora Prolog to a Commercial OR-parallel Prolog 

~ ~-:l< Commercialization of each of the two modules of Aurora Prolog will be discussed separately. 
,~\1,..; ~ The major issues involved in the design and implementation of the WAM module of a 

.,., c; \. c... commercial OR-parallel Prolog can be split into the areas of emulator support and memory 
~ management Gigalips research has demonstrated that degradation of sequential Prolog 
,.,,.._rtf · performance due to the SRI model can be made acceptably low. Sequential performance of an 
'( , OR-parallel Prolog system is important as it defines the amount of parallelism that MUST be 

~ ~J ~h:i:c; ed to corne out ahead in the race with fast sequential Prologs. Preliminary studies at 
~ • Quintus also indicate that a modified Quintus Prolog emulator should yield reasonable sequential 

performance. 

The Aurora system does not adequately address memory management issues. It has not been 
designed to be very careful with memory (e.g. implementing stack expansion using UNIX's 
realloc(3)). However, independent of the "parallel Prolog" paradigm chosen, the memory 
management rewrite undertaken for the next major release of Quintus Prolog would go a long 
way toward efficiently managing multiple scheduler-WAM invocations in a single address 
space. 

The real remaining issue for the W AM module is the dependence of an OR-parallel Prolog using 
the SRI model on scheduling technology. The main drawback of the SRI model, which has not 
yet been adequately assessed, is that the cost of a worker switching tasks is proportional to the 
distance of the new task from the old. ("Distance" can roughly be measured in terms of the 
amount of W AM trail not shared between the old and new positions of the worker on the search 
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tree.) Thus, when using the SRI model, it may be essential to good performance that the 
scheduler be smart enough to find the best available work. If this cannot be done, or if progran1s 
require long-distance relocation of workers, variable binding models may have to be 
reconsidered. 

Scheduler issues point to the maturation still needed by Aurora Prolog. One of the motivations 
for investigations of OR-parallel logic programming languages rather than, say, committed 
choice languages like GHC or FCP, is the prospect of retaining the Prolog language. The only 
difference (we might hope!) would be that applications would run faster. Unfonunately, 
efficiently executing arbitrary Prolog programs in OR-parallel means having to deal with 
problems that are often not encountered when demonstrating a design concept. The problems, in 
general, have to do with suspending and restarting workers either as desired by the semantics of 
the language (in the case of eut/commit and predicates with side-eff ects, or when retaining the 
Prolog order of solutions) or for better efficiency (e.g. if a branch suspends, its worker might 
detach itself and search for work elsewhere). 

Scheduling issues also find their way into the language. At least three forms of eut (the standard 
Prolog eut and two forms of commit) are being considered. The three have different scheduling 
demands, with the normal Prolog eut giving the most difficulty. Various proposais have been 
aired as to how cuts can be implemented, however, all complicate scheduling significantly. One 
Gigalips group (ANL) has proposed not even attempting to handle arbitrary Prolog programs yet, 
but instead to try to efficiently execute programs in which parallel sections are circumscribed 
and contain only a subset of Prolog. Under this view, a parallel section of a program must not 
cause side-effects (e.g. do I/O or assert/retract), cannot care about solution order, and make do 
with a restricted notion of eut. The point is that such restrictions on the language make it 
possible to implement a usable system with scheduler technology that is understood today. 

Other proposals include a first attempt at using annotations to classify procedures into, for 
instance, those not needing Prolog's solution ordering. Sorne techniques as this might eYentually 
help to ease the scheduling burden. 

It is Quintus' view that better performance at the cost of significant departures from the Prolog 
language is not in the application developer' s best interest. Our experience shows that 
compatibility across platf orms is very important - our product line reflects our appreciation of 
this fact. It is probably not in the host machine vendor's interest either, as it will make 
applications difficult to pon to or from other machines. The implementation would be more 
likely used for experimentation than application delivery, making it less attractive in terms of 
sales. In addition, because research into more general solutions is active, such a system would 
quickly become obsolete. Thus, we would not find a strategy like ANL's acceptable in a 
commercial product. 

The alternative is to implement a system now that runs arbitrary Prolog programs ~ Ç)R;:pârânel -;~ 
As we have seen, however, research into scheduling in the context of sid ects, cuts and UV\ 

frequent worker interruptions, even only to be correct, i~ egi:îiru~stimates of 
finally achievable performance should also be looked atwith th~hedlilerin mind. If it is 
important that schedulers choose work intelligently to avoid task switching overheads, especially 
in an execution environment in which interrupts are frequent due to side-effects and solution 
ordering, the scheduler becomes grossly more complicated. 
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~ 
It appears that man-years are being committedVby the Gigalips groups to scheduler problems. 
(While Quintus could also undertake scheduler research, there is no reason to believe that we 
would be able to achieve results faster than the Gigalips participants.) When we take into 
consideration that good scheduling may be essential to efficient execution of programs on OR­
parallel, we must conclude that, at least in the short term, a commercial OR-parallel Prolog is not 
viable. 
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II. Resource Estimates and Time-Table 
The following is a resource estimate for the development of the multithreading version of Prolog 
on the Sequent. Except as noted, the numbers are not yet firm, although every effort will be 
made to meet this schedule, at a minimum. 

11.1. New Memory Management 
In order to make multithreading possible, a re-design of the current memory management system 
is necessary. Following are the principal tasks involved, the resource estimates, and target dates. 

1. Block server and initialization of code-space and stacks from environment 
variables working (but not integrated into system). [3 man-months, done] 

2. Elevate the above into a working Prolog W AM system. No stack shifter or 
garbage collector. Runs test programs. [l man-month, done] 

3. Add stack shifter. [0.5 man-month, 15 June, 1988] 

4. Garbage collector working. [2 man-months, 15 September, 1988 (gap due to 
Vacation and staffing changes)] 

5. Interim testing and debugging. [0.5 man-month, 30 September, 1988] 

6. Porting memory-management concepts to Sequent. [2 man-months, 28 November, 
1988] 

11.2. Multithreading State Handling 
Approximately 12 man-months are estimated to fully design implement the needed state­
switching mechanisms and multithreading primitives. A detailed plan has not been developed as 
yet. With anticipated loading, this phase will be complete mid-May, 1989. 

11.3. Scheduler and Sequent Operating System Calls 
Approximately 7 man-months are estimated to provide operating-system support to the 
multithreading primitives and scheduler under the Sequent operating system. Documentation 
will be done during this period. A detailed plan has not been developed as yet. With anticipated 
loading, this phase will be complete by the end of July, 1989. 

11.4. Beta Test 
Assuming a two-month beta-test period, this phase will be completed by the end of September, 
1989. 
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