
Release Notes for Quintus Prolog Release 2.0 FCS

1. Introduction
The main new features in Release 2.0 are

1. A module system.

2. Garbage collection.

3. lndexing of interpreted procedures.

4. An interprocess communication package which allows Prelog to be called from C.

The module system allows a large program to be partitioned into separate name spaces, thus making it
easier for a group of programmers to work together on a large project, and also making it feasible to
regard library predicates as extensions to the set of built-in predicates. The module system is fully
described in the new manual which is available on-line. For example, having started up Prelog under
Emacs, you can type help(modules) to find out about modules.

For the most part, you won't need to know much about the incremental garbage collecter, except that it is
there. For an explanation of what it does, as well as information on how to monitor its behavior and tune
it if necessary, see chapter 6 of the Ouintus Prelog System-Dependent Features Manual. (This too, is
available on-line: manual(sysdep-6)).

lndexing of interpreted procedures is not covered in the current version of the manual, and is therefore
explained below. ·

The interprocess communication package is in a set of Prelog and C files which can be used to build a
Prelog "goal server" which accepts goals from another process and retums solutions of that goal to that
process. The calling process may be written in C or in Prelog; a more general interface is provided for the

I

Prolog-to-Prolog case. The package can be found in the directory called IPC in the Quintus Prolog
installation directory. ln addition to the sources, documentation is provided in a file called !PC.doc. The
same documentation is aise provided in PostScript form in IPC.ps in case you have access to a suitable
printer.

Section 2, below, explains the indexing of interpreted code and section 3 explains the related issue of the
changed semantics of dynamic code. Section 4 describes ail the other changes in the Prelog system.
Section 5 describes changes in the library; and finally, section 6 gives some performance measurements
comparing this release with Release 1.6.

See aise the file called lncompatibility_notes in the Quintus Prelog installation directory. This file
describes a couple of difficulties which may arise in porting programs from earlier releases of Ouintus
Prelog to Release 2.0.

2. lnterpreted Code 1s Now lndexed
Many applications involve run-time changes to dynamic Prelog procedures, using such predicates as
assert/1 and retract/1. Ali dynamic code, as well as static code loaded by consult/1, is implemented in
Ouintus Prolog via an interpreter.

Quintus Prolog 2.0 2 FCS Release Notes

Prior to Quintus Prolog Release 2.0, the clauses of an interpreted procedure were linked together
sequentially. The time required to access clauses of interpreted procedures was thus proportional to the
number of clauses in the procedure. ln Quintus Prolog Release 2.0, all interpreted code is indexed.
lndexing provides hash-table access to interpreted clauses. Indexes are maintained automatically by the
built-in predicates manipulating the Prolog database (e.g., assert/1, retract/1 and consult/1). lndexing is
on the primary functor of the first argument of each clause, as is indexing on compiled static code.

ln addition te providing fast clause access, the new semantics for interpreted code allow indexing to

greatly improve determinacy detection. This can, in turn, provide considerable memory savings by means
of tail recursion optimization.

3. New Semantics for Data Base Predicates
The semantics of those predicates which modify the Prolog data base (e.g., assert/1 and retract/1) have
changed. The new semantics are more intuitive, improve memory performance, and increase the
effectiveness of the indexing of interpreted code. The remainder of this section discusses the motivation
for the change, and contrasts the behavior of Quintus Prelog Release 2.0 with that of previous releases.

ln earlier releases of Quintus Prelog, changes to the Prelog data base became globally visible upon the
success of the built-in predicate modifying the data base. An unsettling consequence was that the
definition of a procedure could change while it was being run. This could lead to code that was difficult to
understand. Furthermore, memory performance of an interpreter implementing these semantics was
poor. Worse yet, the semantics rendered ineffective the added determinacy·detection available through
indexing.

ln Release 2.0, the definition of an interpreted procedure that is to be visible to a call is effectively frozen
when the call is made. A procedure always contains, as far as a call to it is concerned, exactly the
clauses it contained when the call was made.

For the purposes of explanation, a call to an interpreted procedure makes a virtual copy of the procedure,
then runs the ÇQQ:t rather than the original procedure. Any changes to the procedure made by the call are
immediately reflected in the Prolog data base, but not in the copy being run. Thus, changes to a running
procedure will not be visible on backtracking. A subsequent call, however, makes and runs a virtual copy
of the modified Prelog data base. Any changes te the procedure that were made by an earlier call will be
visible te this call.

ln addition te being more intuitive and easy to understand, the new semantics allow interpreted code to
execute with the same determinacy detection (and excellent memory performance) as static compiled
code. lt is likely that interpreted code developed on previous Quintus Prelog releases will run under
Quintus Prelog Release 2.0 without any noticeable differences. However, the new semantics can be
demonstrated when modifying the Prelog data base.

3.1. Example: assertz/1
Consider the procedure foo/0 defined by

:- dynamic foo/0.
foo :- assertz(foo), fai1.

Quintus Prolog 2.0 3 FCS Release Notes

Each call ta foo/0 asserts a new last clause for foo/0. After the Nth call ta foo/0 there will be N+ 1 clauses
for foo/0. When the first call to foo/0 is made, the procedure has exactly one clause. Under earlier
releases of Ouintus Prelog, the change to the Prolog data base made by assertz/1 took effect as soon as

the call ta assertz/1 succeeded. Suddenly the procedure had two clauses. fail/0 then forced the call to
foo/0 ta backtrack. The backtracking call found the newly asserted clause and succeeded. Sa in Quintus
Prelog Release 1.6, we have

1 ?- compi1e(user).
1 :- dynamic foo/0.
1 foo :- assertz(foo), fai1.
1
[user compi1ed 0.117 sec 188 bytes]

yes
1 ?- foo. % The asserted c1ause succeeds!

yes
1 ?-

When foo/0 is first called under Ouintus Prelog Release 2.0, a virtual copy of the procedure is made,
effectively freezing the definition of foo/0 for that call. At the time of the call foo/0 has exactly one clause.
Thus, when fail/0 forces backtracking, the call to foo/0 simply fails: it finds no alternatives. Under

Quintus Prelog Release 2.0,

1 ?- co:mpi1e(user).
1 :- dynamic foo/0.
1 foo :- assertz(foo), fai1.
1
[user compi1ed 0.100 sec 204 bytes]

yes
1 ?- foo. % The asserted c1ause is not found

no
1 ?- foo. % A later call does find it, however

yes
1 ?-

Even though the virtual copy of foo/0 being run by the first call is not changed by the assertion, the Prolog
data base is. Thus, when a second call to foo/0 is made, the virtual copy for that call contains two
clauses. The first clause fails, but on backtracking the second clause is found and the call succeeds.

3.2. Example: retract/1
Under Quintus Prelog Release 1.6, retracted clauses were made invisible immediately:

Quintus Prelog 2.0 4 FCS Release Notes

1 ?- assert(p(l)), assert(p(2)), assert(p(3)).

yes
1 ?- p(N), write(N), nl, retract(p(2)), retract(p(3)), fail.
l

no
1 ?-

We first assert three clauses into the (previously empty) procedure p/1, then make a query. The call to
p/1 succeeds, first binding N to 1 and writing out N. The two retractions then take place, the retracted
clauses becoming invisible before fail/0 was called. On backtracking the call to p/1 finds no further
clauses, so the call to p/1 fails. Thus, the query fails.

Under Quintus Prolog Release 2.0, the side effects caused by retract/1 go unrecognized by the

backtracking call, but are seen by a subsequent call to p/1 :

I ?- assert(p(l)), assert(p(2)), assert(p(3)).

yes
1 ?- p(N), write(N), n1, retract(p(2)), retract(p(3)), fai1.
l
2
3

no
I ?- p(N), write(N), fail.
l
no
I ?-

At the first call to p/1, the procedure has three clauses. These remain visible throughout execution of the
call to p/1. Thus, when backtracking is forced by fail/0, N is rebound to 2 and written. The retraction is
again attempted, causing backtracking into p/1. N is rebound to 3 and written out. The call to retract/1
f ails. There are no more clauses in p/1, so the query finally fa ils. A subsequent call to p/1, made after the
retractions, sees only one clause.

3.3. Example: abolish/2
An example using abolish/2 exhibits behavior similar to that of retract/1. Under earlier releases of
Quintus Prelog:

Quintus Prolog 2.0

1 ?- compile(user).
1 :- dynamic q/1.
I q(l) .
1 q (2) •
1 q(3).
1 "D

5

[user compiled 0.117 sec 260 bytes]

yes
1 ?- q(N), write(N), nl, abolish(q,1), fail.
1

no
1 ?- q(N).

[Warning: The procedure q/1 is undefined]
(1) 0 Call: q(432) ?
(1) 0 Fail: q(-432) ?

no
1 ?-

Under Quintus Prolog Release 2.0:

?- compile(user).
:- dynamic q/1.
q(l) .
q(2) •
q(3) .
"D

[user compiled 0.117 sec 260 bytes]

yes
1 ?- q(N), write(N), nl, abolish(q,1), fail.
1 /
2
3

no
1 ?- q(N).

[Warning: The procedure q/1 is undefined]
(1) 0 Call: q(_432) ?
(1) 0 Fail: q(_432) ?

no
1 ?-

3.4. A warning concerning retract/1

FCS Release Notes

A warning may be in order against a common mistake in the use of retract/1. This applies equally to

users of earlier releases of Quintus Prolog as well as Release 2.0.

retract/1 is a non-determinate predicate. Thus, we canuse

1 ?- retract((foo(X) :- Body)), fail.

Ouintus Prolog 2.0 6 FCS Release Notes

to retract ail clauses for foo/1. A non-determinate predicate in Quintus Prelog (including user-defined
ones) uses a choice point, a data structure kept on an internai stack, to implement backtracking. ln a
.simple model, a choice point is created for each call to a non-determinate predicate, and is deleted on
determinate success or failure of that call, when backtracking is no longer possible. (ln fact, Quintus
Prelog employs advanced determinacy detection to recognize contexts in which choice points required by
the simple model can be avoided, or are no longer needed.)

The Prolog eut works by removing choice points, disabling the potential backtracking they represented. A
choice point can thus be viewed as an "outstanding call", and a eut as deleting outstanding calls.

To avoid leaving inconsistencies between the Prolog data base and outstanding calls, a retracted clause
is reclaimed only when the system determines that there are no choice points on the stack that may try to
backtrack into it. Thus, the existence of a single choice point on the stack can disable reclamation of
retracted clauses for the procedure whose call created the choice point. Space is recovered only when
the choice point is deleted.

Often retraet/1 is used determinately, e.g., to retract a single clause as in

1 ?- <do some stuff>
retract(C1ause),

<do more stuff without backtracking>.

No backtracking by retract/1 is intended. Nonetheless, if Clause may match more than one clause in its
procedure, a choice point will be created by retraet/1. While eX:ecuting <do more stuff without
backtracking>, that chojce point will remain on the stack, possibly "freezing" the retracted Clause. (Such
careless choice points can also disable tail recursion optimization.) This can be avoided by simply cutting
away the choice point with an explicit eut or a local eut (·>). If not eut away, the choice point can also
lead to runaway retraction on the unexpected failure of a subsequent goal. Thus, in the previous
example, it is preferable to write either

or

1 ?- <do some stuff>
retract(C1ause),
1 . ,

<do more stuff without backtracking>.

?- <do some stuff>
(retract(C1ause) -> true),
<do more stuff without backtracking>.

This will reduce stack size and allow the earliest possible reclamation of retracted clauses.

4. Other Changes in Release 2.0

4.1. Changed lnterpretation of Relative File Names
When a file being loaded into Prolog contains an embedded command to load another file, a relative file
name in that command is interpreted with reference to the directory which contains the first file. For
example, if the file /usr/fred/test.pl contains the following commands

Quintus Prolog 2.0 7 FCS Release Notes

·- ensure loaded(foo).
·- compile(' .. /whatsit').
·- load_foreign_files('test.o', []).

then the files to be loaded would be /usr/fred/foo.pl (or /usr/fred/foo), /usr/whatsit.pl (or /usr/whatsit) and
/usr/f red/test.o. This is different from previous releases of Quintus Pro log in which the current working
directory of the Prolog system would have been used.

The advantage of the new scheme is that you can more conveniently have a file which loads up several
other files. For example, you can have a file called mainfile.pl containing

:- compile([filel, file2, file3]).

and provided that you keep all of these files in the same directory as mainfile.pl, you can compile them all,
no matter what your current working directory is, by giving compile/1 a file specification for mainfile.pl.

4.2. Built-in Operator Properties Can Be Overridden
Prior ta Quintus Prelog Release 2.0, the properties of predefined "built-in operators" could not be
overridden. This restriction has been lifted in Release 2.0: system operators are indistinguishable from
user-supplied ones except by their predefinition. Declarations for operators built into the Prolog system
can be found in Appendix Il of the Quintus Prolog Reference Manual.

Note that ':'/2 is now a built-in infix operator, as well as being a built-in predicate - Module:Goal means
call Goal in module Module. Since built-in operator properties can be overridden, the operator properties
will not affect any programs which use ':'/2 in data. However, since ':'/2 is a built-in predicate, it is net
possible in this release to define clauses for ':'/2.

4.3. Memory Management lmprovements
ln addition to the garbage collecter, Release 2.0 incorporates a number of other improvements in memory
management. The two most important of these are described below.

4.3.1. Space for Abolished Compiled Code ls Reclaimed
Space for abolished static compiled code (including compiled code which is abolished during
recompilation) is now reclaimed on retum to the top level. (Space is not reclaimed on return to a break
level.) This can reduce memory use - especially during development, when recompilations might be
frequent. ln earlier releases of Ouintus Prolog, space for abolished static compiled code was not
reclaimed.

4.3.2. The Code Space Congealer
ln Quintus Prelog, the code space is the area which contains ail compiled and consulted code as well as
space allocated by calls ta mallac(3) from users' C cade. This space is managed by a system of multiple
free lists. ln previous releases, excessive fragmentation sometimes arase, particularly when the program
had the characteristic that it was repeatedly allocating and then freeing larger and larger blacks of
memory. This problem has been solved in Release 2.0 by the provision of a congealing routine which,
tram time ta time, searches out adjacent free blacks and "congeals" them into a single black.

Quintus Prolog 2.0 8 FCS Release Notes

4.4. New Built-in Predicates
These are all explained in more detail in the Reference Manual. This is a summary.

·abolish(+Predicates)
This is like abolish(Name,Arity) except that the predicate to be abolished is specified
as a single argument in the form Name!Arity. Vou can aise specify a list of predicates
ta be abolished.

retractall(+Head) Erases every clause in the data base whose head matches Head. The argument Head
must be instantiated ta a term corresponding ta a dynamic predicate.

retractall/1 used to be defined in the library package library(update).

retractall/1 is useful for erasing ail the clauses of a dynamic predicate without forgetting
that it is dynamic; abolish/1 will indeed erase all the clauses, but it will aise forget
absolutely everything about the predicate. retractall/1 just arases the clauses.

As retractall/1 arases al! the clauses whose heads match Head, it is determinate. If
there are no such clauses, it succeeds trivially.

portray _clause(+Clause)
Writes the clause Clause to the current output stream. portray_clause/1 is the
operation used by listing/0 and llsting/1. The clause is written ta the current output
stream in exactly the format in which listing/1 would have written it, including a final
period and newline.

If you want to print a clause, this is almost certainly the command you want. By design,
none of the other term output commands puts a period after the written term. If you are
writing a file of tacts to be loaded by consult/1 or compile/1, use portray_clause/1, as
it tries to ensure that the clauses it writes out can be read in again as clauses.

atom_chars(?Atom, ?Chars)
Chars is the list of ASCII character codes comprising the printed representation of the
atom Atom. This is like name/2 except that the first argument may not be a number,
and in the cases such as

1 ?- atom_chars(X,"1.2").

X='l.2'1

an atom rather than a number is returned.

number_chars(?Number, ?Chars)
Chars is the list of ASCII character codes comprising the printed representation of the
number Number. This is like name/2 except that the first argument may not be an
atom, and the second argument may not be bound ta a list of characters which do not
represent a number.

copy_term(+Term,-Copy)
This is a meta-logical predicate which makes a new Copyot its Term argument in which
al! variables have been replaced by new variables which occur nowhere else.

prolog_flag(?FlagName, ?Value)
This allows you ta find the current value of a flag. lt is like prolog_flag(+FlagName,
Value, Value) except that with this predicate it is permissible ta give a variable as the
FlagName argument and have it backtrack through ail the flags.

stream_position(?Stream, ?Position)
is true when Stream is a stream abject representing an open stream, Pos is a stream
position abject, and the current position of Stream is Pos.

This operation makes sense on any stream at all: streams which are connected to disk
files, strearns which are connected ta the terminal, and even strearns defined using
OP _make_stream().

Quintus Prolog 2.0 9 FCS Release Notes

garbage_collect This predicate forces an immediate garbage collection. There should normally be no
need to call garbage_collect/0, because the garbage collecter is automatically invoked
whenever the system would otherwise require more space.

Module System predicates
The following new built-in predicates concern the module system. They are fully
described in the manual chapter on modules.

use_module (+FileSpecList}
use_module (+FileSpec, +lmportList
module (+ TypelnModule)
current_module (?ModuleName)
current_module (?ModuleName, ?SourceFileName)
: (+Module, +Goal) or +Module:+Goal

The following two functors are not built-in predicates, but their names are reserved
since they are used as declarations.

module (ModuleName, PublicPredList}
meta_predicate (Term>

4.5. Changes to System Limitations

1. An internai limitation on the number of clauses in an index of a static compiled procedure
has been removed. ln earlier releases of Ouintus Prolog, an index could overflow on as few
as 2"13 clauses. (To reach this limit, a compiled procedure would need at least 2"13
clauses with nonvariable first arguments.) There is also no limit to the number of clauses in
an index for any interpreted procedure.

2. Previously there was an internai limitation (see the Quintus Prolog System-Dependent
Features Manual, Appendix Il) that compiled clauses could contain no more than 255
temporary variables. The limit has been raised ta 512 temporary variables.

5. Changes to the Library 1

The most important change to the library is that several files are now supported. Many new files have
been added. Sorne old files have been withdrawn and their contents moved into the system or distributed
among other files.

5.1. On-line documentation
The library directory contains two files which describe the contents of the directory. They are called
Contents and Index.

The Index file contains one line for each exported predicate in the library. The predicates are listed in
standard order, ignoring module. A typical entry looks like this:

list_to_binary/4 flatten ./flatten.pl

This means that there is a predicate called list_to_binary/4 in the library, that it lives in a module called
'flatten', and that the file which contains it is 'flatten.pl' in the same directory as the Index.

If you have set up an "environment variable" OL holding the name of the Quintus library directory, you

could ask ''what predicates are there ta deal with files?" by issuing the UNIX command

% egrep files $QL/Index

Quintus Prolog 2.0 10 FCS Release Notes

The Contents file is organised by library files rather than by predicates. A typical entry in this file is a
black of lines like this:

basics + is supported
basics % the basic list processing predicates
basics - ./basics.pl
basics append/3
basics member/2
basics memberchk/2
basics nonmember/2

The first line means that library(basics) is part of the supported library. The second line is a short
description of the contents. The third line says which file contains library(basics), in this case it is
'basics.pl' in the same directory as Contents. The remaining lines list the predicates exported by
library(basics). You could obtain this information by issuing the UNIX command

% egrep 'Abasies' $QL/Contents

These files are provided as a convenience, and do not have the same authority as the printed manual.

5.2. For C Programmers
The library includes a header file, "quintus.h" which provides external declarations for ail the variables and
functions which the Quintus Prelog system experts ta user foreign code. Do not look for these functions
in the library, they are in the system. This file is supported.

The Prelog Lint checker automatically includes this header file into the scratch file it generates.

5.3. Supported Library Files
Ali the files described here have fuller descriptions in the Quintus Prelog library Manu al.

arg.pl library(arg) defines several generalisations of arg/3. The predicates args/3, args0/3,
and path_arg/3 are new in this release. project/3 was moved here from the defunct
library(project).

ask.pl

basics.pl

changearg.pl

continued.pl

ctypes.pl

library(ask) is for asking questions of the user. Most of the commands take a prompt
and a specif ication of what sort of answer is wanted and read a one-character answer
f rom the terminal. ask_chars/4 is new in this release.

library(basics) is the basic list-processing routines. You will almost always want these.

The predicates change_arg/{4,5] and swap_args/{4,5,6] have been split out of
library(arg), and the two new predicates change_path_arg/[4,5] have been added. The
new package is library(change_arg). There is a new matching path_arg/3 predicate in
library(arg). With the new predicates, you can find a path ta a subterm and then
replace it; for example,

if Te:rm = ((a+b)*(c+d))/((e+f)*(g+h)), then
path_arg(Path, Tenn, c)

binds Path = [1,2,1], and then
change_path_arg(Path, Te:rm, NewTe:rm, z)

binds NewTe::cm = ((a+b)*(z+d))/((e+f)*(g+h)).

library(continued) is a new package for reading continued lines (such as TERMCAP
entries) from files.

library(ctypes) provides a kit of predicates for classifying characters. For the most part,
these predicates are very closely modelled on the character classification macros
provided in the C header file <ctype.h>. Check "isalpha" in your C manual. These

Quintus Prolog 2.0 11 FCS Release Notes

predicates (though not the code in any particular version) are portable between ASCII
and EBCDIC versions of Quintus Prelog. The predicates is_csym'1, is_csymf/1, and
is_digiV3 are new in this release.

directory.{pl,c} library(directory) is specific to UNIX, and will not be available for VMS or for Xerox
Quintus Prolog.

files.{pl,c}

lineio.pl

lists.pl

math.{pl,c}

net.pl

ordsets.pl

prompt.pl

readconst.pl

readin.pl

readsent.pl

The predicates

file_member_of_directory(
[Directory, [Pattern,]]Name, Full)

directory_member_of_directory{
[Directory, [Pattern,]]Name, Full)

enumerate the file (directory) Names in the given Directory [default = '.'] which match
the given Pattern [default = '*']. The Name argument is unified with a simple file name
(that is, just the name and extension), and the Full argument is unified with a full path
name including the directory prefix. The predicates

file_J>roperty(File, Property[, Value])
directory_J>roperty(Directory, Property[, Value])

check whether a File or Directory has a certain boolean property (such as being
readable), or find the value of a File or Directory's Property (such as its owner).

See the Library Manual ta find out which properties can be tested.

library(files) provides commands for renaming, deleting, and opening files, for testing
whether a file cou Id be opened, for enumerating DEC-10-compatible streams, and for
closing ail open streams. The predicates current_dec1 0_stream/2 and rename/2 are
new in this release.

library(lineio) provides commands for reading lines from files and writing lines ta files as
lists of character codes. The predicate geUine/3 is new in this release.

library(lists) is a collection of list-processing utilities which are not used quite as often as
the ubiquitous library(basics). The predicates append/5 and same_length/3 are new in
this release. numlist/3 has moved into library(between) {not supported yet}. Severa!
other predicates in this file have been generalised.

library(math) is an example of the use of the foreign code interface. lt provides an
interface to the C "math" library. The predicates abs/2, max/3, and min/3 are new in
this release.

library(not) provides some sound, and some unsound, negation predicates. If you are
worried about the "unsoundness" of \+'/1, not/1 may be what you want. The predicate
once/1 is new in this release.

library(ordsets) is a collection of operations on sets represented as lists in standard
order. With this representation, set operations can be more efficient than with the
unordered list representation used by library(sets). The predicates ord_intersection/2,
ord_intersection/3, and ord_union/2 are new in this release.

library(prompt) provides prompted input from the terminal.

library(read_const) provides Pascal-style input from files or from the terminal. The
command read_constant(X) acts much like read(X) would in Pascal. That is, it skips
layout in the current input stream, reads a "token", and unifies that with X. " .. .'' is read
as a list of character codes, ' .. .' as an atom. Other input is terminated by a layout
character. %-comments are allowed, and behave like layout characters. The
command read_constants([X1, ... ,Xn]) acts much like read(X1, ... , Xn) would in Pascal.
The commands prompted_constant/2 and prompted_constants/2, which read from the
terminal, act like readln(). See also library(lineio).

library(read_in) is for reading sentences.

library(read_sent) is another package for reading sentences.

Quintus Prolog 2.0 12 FCS Release Notes

samefunctor.pl library(same_functor) is a new package defining some predicates which test whether
two terms have the same functor. These ope rations make it easier te write "reversible"
meta-logical predicates.

sets.pl library(sets) is a collection of operations on sets represented as lists with no duplicata
elements but in no particular order. If you can ensure that the lists are in standard order
(as the result of setof/3 or sort/2 is), you will find library(ordsets) more efficient. The
predicates intersection/2, intersection/3, and union/2 are new in this release.

strings.{pl,c} library(strings) is a collection of operations on character sequences represented as
atoms (or, in Xerox Quintus Prelog, as Lisp strings). The predicates atom_chars/2 and
number_chars/2 which used to be defined here are now part of the Quintus Prolog
system. The predicates compare_strings/3, compare_strings/4, concat_atom/2,
concat_chars/2, midstring/[3,4,5,6], nth_char/3, span_left/[3,4,5], span_right/3,4,5],
span_trim/{2,3,5], string_length/2, string_search/3, subchars/[4,5], and substring/5 are
new in this release.

subsumes.pl library(subsumes) provides predicates for testing whether one term subsumes another.
copy_terrn/2 is now part of the Quintus Prelog system.

unify.pl library(unify) implements sound unification (that is, unification with the occurs check).

5.4. The Unsupported Library
Many new files have been added to the unsupported library. Additions and improvements have been
made te most of the others, and a few files have been withdrawn and their contents distributed among
other files.

The withdrawn files are

contains.pl renamed to occurs.pl because the argument order of its predicates was changed.
library(occurs) is supported.

portray_string.pl renamed te printchars.pl

project.pl contents distributed between library(arg) and library(lists), both of which are supported.

streampos.pl this used te define'stream_position/2, which is now a built-in predicate.

The new and changed files are

aggregate.pl

aropen.{pl,c}

arrays.pl

assoc.pl

between.pl

library(aggregate) defines aggregate/3, an operation similar to bagof/3 which lets you
calculate sums. For example, given a table pupil(Name,Class,Age), to calculate the
average age of the pupils in each class, one would write

1 ?- aggregate(sum(Age)/sum(1),
NameApupil(Class,Name,Age),
Expr),

call(Average_Age is Expr).

library(aropen) lets you open a member of a UNIX archive file (see ar(1) in the UNIX
manual) without having te extract the member. Yeu cannot compile or consult such a
file, but you can read from it. This may be useful as an example of defining Prelog
streams from C.

library(arrays) provides constant-time access and update to arrays. lt involves a fairly
unpleasant hack. Vou would be better off using library(logarr) or library(trees).

library(assoc) was present in 1.6. The predicates get_next_assoc/4, get_prev_assoc/4,
max_assoc/3, and min_assoc/3 are new in this release.

library(between) was present in 1.6. The predicate gen_arg/3 has moved te library(arg)
which is supported. The predicate numlist/3 moved here from library(lists).

Quintus Prolog 2.0 13 FCS Release Notes

big_text.{pl,c}

call.pl

caseconv.pl

charsio.{pl,c}

library(big_text) defines a 'big_text' data type and several operations on it. The point of
this module is that when writing an interactive program you often want to display ta (or
acquire tram) the user large amounts of text. lt would be inadvisable (although
possible) ta store the text in Prolog's data base. With this package you can store text in
a file, copy text to a stream, acquire new text from a stream, and/or have Emacs edit a
big text file.

See the file big_text.txt in the library area for more details.

library(call) was present in 1.6. The predicates call/6 and call/7 are new in this release.
lt works with the module system. This is actually a very important library file.

library(caseconv) is mainly intended as an example of the use of library(ctypes). (Note
that the order of the arguments to the 'ctypes' predicate to_upper changed in Release
1.6.) Here you'II find predicates to test whether text is in all lowercase, ail uppercase, or
mixed case, and to convert from one case to another.

library(charsio) lets you open a list of character codes for input as a Prelog stream and,
having written to a Prelog stream, collect the output as a list of character codes. There
are three things you can do with library(charsio):

1. You can open an input stream reading from a (ground) list of characters.
This is the predicate chars_to_stream.

2. You can run a particular goal with input coming tram a (ground) list of
characters, The predicates with_input_from_chars/(2,3] do this.

3. You can run a particular goal with output going to a list of characters (the
unification is done after the goal has finished). The predicates
with_output_to_chars/[2,3) do this.

crypt.{pl,c} and encrypt.c

decons.pl

environ.pl

foreach.pl

library(crypt) defines two operations similar to open/3: crypt_open(+RleName[,
+Password], +Mode, -Stream)

If you do not supply a Password, crypt_open/3 will prompt you for it. Note that the
password will be echoed. If there is demand, this can be changed. The Stream will be
clear text as far as Prelog is concerned, yet encrypted as far as the file system is
concerned.

encrypt.c is a stand-alone program (which is designed to have its abject code linked to
~ names: encrypt, decrypt, and recrypt), and can be used ta read and write files using
this encryption method.

This encryption method was designed, and the code was published, in Edinburgh, so it
is available outside the USA.

library(decons) provides a set of routines for recognising and building Prolog contrai
structures. lt is derived from the Dec-1 O Pro log library file of the same name. The only
predicate which is likely ta be useful ta you is prolog_clause(C/ause, Head, Body).

library(environ) provides access ta the UNIX "environment variables". (See sh(1),
csh(1), getenv(3), and environ(S) in the UNIX manual.) environ(?Varname, ?Value) is a
genuine relation. Note that if you include this file in a saved state, the values of
environment variables are those current when the saved state was run, not when it was
saved. There is also an argv/1 in this file, which is superseded by the supported feature
unix(argvLJ).

library(foreach) defines two iteration forms.

fora11(Generator, Test)

is the standard double-negation "there is no proof of Generator for which Test is not
provable", coded as"\+ (Generator, \+ Tes~."

foreach(Generator, Test)

Quintus Prolog 2.0 14 FCS Release Notes

freevars.pl

fromonto.pl

knuth_b_ 1 .pl

logarr.pl

long.pl

maplist.pl

maps.pl

menu.pl

multil.pl

works in two phases: first each provable instance of Generator is found, then each
corresponding instance of Test is collected in a conjunction, and finally the conjunctîon
is executed.

If, by the time a Test is called, it is always ground - apart from explicitly existentially
quantified variables - the two forms of iteration are equivalent, and forall/2 is cheaper.
But if you want Testto bind some variables, you must use foreach/2.

A foreach{ Variables, Generator, Tes~ predicate is planned but was not ready in time for
the beta release.

This is an internai support package that was split out when modules were added to
Quintus Prolog. Users will probably have no use for its predicates.

library{fromonto) defines some "pretty" operators for input/output redirection.
Examples:

1 ?- (repeat, read(X), process(X)) from_file 'fred.dat'.

1 ?- read(X) from_chars "example. ".
X= example

1 ?- write(273.4000) onto_chars X.
X= "273.4"

BEWARE: you will have to correct this file. The directive

:- use_module(library(charsio)).

was accidentally omitted, and you will have to supply it.

library{knuth_b_1) is a table of constants taken from appendix B1 of D.E.Knuth's "The
Art of Computer Programming", Volume 1. The point is not to provide the constants -
you could have calculated them yourselvès easily enough - but to illustrate the
recommended way of building such constants into your programs.

library{logarr) is an implementation of "arrays" as 4-way trees. See aise library{trees).

This is a rational arithmetic package. Users of the DEC-10 library file LONG.PL will
miss the ''trig" functions and will welcome the f act that exponentiation works!

rational(N) recogriises arbitrary precision rational numbers; this includes integers,
'infinity', 'neginfinity', & 'undefined'. whole(N) recognises arbitrary precision integers.
eval(Expr, Result) evaluates an expression using arbitrary precision rational arithmetic;
it does not accept floats at ail. {eq,ge,gt,le,lt,ne}/2 are infix predicates like < that
compare rationals {or integers, not expressions). succ/2, plus/3, and times/3 are
relational forms of arithmetic which work on rational numbers (not floats). To have
rational numbers printed nicely, put the command

:- assert((portray(X) :- portray_number(X)))

in your code. See long.doc and the comments in the long.pl

library(maplist) was present in release 1.6. lt is built on top of library(call), and provides
a collection of meta-predicates for applying predicates to elements of lists. The
predicate include/3 is new in this release.

library(maps) was present in release 1.6. lt implements functions over finite domains,
which functions are represented by an explict data structure. The predicate
map_intersection/3 is new in this release.

library(menu) illustrates how ta drive the Emacs interface from Prelog. The sample
application involves choosing items from a menu. See aise menuexample.pl in the
demo subdirectory of the installation directory.

has been converted from the DEC-10 Prolog library and debugged, but we don't
recommend that you use it.

Quintus Prelog 2.0 15 FCS Release Notes

note.pl

ordered.pl

ordprefix.pl

pptree.pl

printchars.pl

qsort.pl

random.{pl,c}

retract.pl

The built-in predicates and commands pertaining to the "recorded" (or "internai" data
base) have an argument called the "key". Ali that matters about this key is its principal
functor. That is, fred(a,b) and fred(97,46) are regarded as the same key. Library(note)
defines a complete set of storing, fetching, and deleting commands where the "key" is a
ground term all of which is significant, using the existing recorded data base. Note that
this package is no better indexed than the existing recorded data base.

library(ordered) is a collection of predicates for doing things with a list and an ordering
predicate. The predicates select_max/(3,4] and select_min/(3,4] are new in this
release. See also library(ordprefix), library(ordsets), and library(samsort).

library(ordprefix) is for extracting initial runs from lists, perhaps with a user-supplied
ordering predicate. See also library(ordered).

This file defines pretty-printers for (parse) trees represented in the form

<tree> --> <node label>/[<son>, ... <son>]
1 <leaf label> -- anything else

Two forms of output are provided: a human-readable form and a Prolog term form for
reading back into Prelog.

pp_tree(+Tree)

prints the version intended for human consumption, and

pp_te:.cm(+Tree)

prints the Prolog-readable version. There is a new command ps_tree/1 which prints
trees represented in the form

<tree> --> <node label>(<son>, ... ,<son>)
1 <leaf> -- constants

The output of ps_tree/1 is readable by prolog and people bath. You may find it useful ·
for other things than parse trees.

library(print_chars) was present in release 1 .6. The name of the file has been changed
several times because of restrictions in VMS file names. (These restrictions no longer
exist.) This is not a module, and it would be pointless to load it into any module but
'user'. lt defines portray/1 so that lists of character codes are written by print/1, by the
top level, and by the debugger, between double quotes.

1 ?- X= "fred".
X= [102,114,101,100]

1 ?- ensure_loaded(library(print_chars)),
1 X= "fred".
X= "fred"

NOTE: quicksort is not a good sorting method for a language like Prelog. If you want a
good sorting method, see library(samsort), which was described briefly in a recent
newsletter. This is what a good Prelog quicksort really looks like. Read it carefully to
see why this version is stable and the usual version isn't!

library(random) provides a random number generator and several handy interface
routines. This was present in release 1.6, but the heart of it was rewritten in C for
speed. The random number generators in UNIX 4.2, System V release 2, VMS, and
lnterlisp are all different. lt is useful to have a random number generator which will give
the sarne results in all versions of Quintus Prelog, and this is the one. The random
number generator was recommended in a Statistics journal, so should be good, but if
anyone knows or can show that it is not, please tell us. You might care to consult the
book "Numerical Recipes", by Press, Flannery, Teukolsky, and Vetterling, published by
Cambridge University Press.

The names and arguments of the built-in predicates for asserting, retracting, and

Quintus Prolog 2.0 16 FCS Release Notes

accessing clauses of dynamic predicates are somewhat haphazard. This file adds
more, so that there are two complete families of commands for clauses and a complete
family for the recorded data base. The built-in predicate retract/1 will backtrack
through a predicate, expunging each matching clause until the calier is satisfied. This is
not a bug. That is the way retract/1 is supposed to work. But it has long been felt to be
a problem. library(retract) defines, among many other commands, retract_first/1, which
is identical to retract/1 except that it expunges only the first matching clause, and if
asked for another solution, fails.

samsort.pl library(samsort) provides a stable sorting routine which exploits existing order, bath
ascending and descending. (lt is a generalisation of the natural merge.)
samsort(Raw,Sorted) is like sort(Raw,Sorted) except that it does net discard duplicate
elements. samsort(Order,Raw,Sorted) lets you specify your own comparison predicate,
which the built-in sorting predicates sort/2 and keysort/2 do not. This file also exports
two predicates for merging already-sorted lists: merge/3 and merge/4. See aise
library(ordered) and library(qsort).

setof.pl library(setof) was present in release 1.6. The predicates bag_of_all/3 and set_of_all/3
are new in this release. Note that the built-in predicates bagof/3 and setof/3 were
improved in this release, and are much more efficient than the predicates in this file.
See aise library(findall).

show.pl The built-in command listing/1 displays dynamic predicates. But there is no built-in
command for displaying the terms recorded under a given key. library(show) defines
two predicates: show(Key) displays ail the terms recorded under the given Key, and
show/0 displays ail the Keys and terms in the recorded data base.

showmodule.pl library(show_module) provides a command for displaying information about a loaded
module. show_module(Module) prints a description of the Module, what it experts, and
what it imports. The command

terms.{pl,c,h}

trees.pl

types.pl

1 ?- show_modu1e(_), fai1; true.

will print a description of every loaded module.

The Quintus Prelog foreign code interface provides means of passing constants
between Prelog and C, Fortran, Pascal, etc. lt is sometimes thought that it would be
useful to pass general terms between Pro log and some other language. Passing actual
terms across the foreign interface would not be a good idea at ail. ln fact, it would be a
very silly thing to do, the foreign code could corrupt the system in ail sorts of ways, and
it would not be in your interests, because it would mean that we couldn't change the
representation we use for terms. Which would mean that some of the good things
coming couldn't corne. But there is no harm in passing copies of terms across the
interface. library(terms) lets you pass copies of terms from Prelog to C, and receive
copies of terms from C. For example, the new built-in predicate copy_term/2 could
have been defined this way, but wasn't:

'copy term' (Tenn, Copy) :-
pro1og_to_c(Term, Pointer_to_C_version),
c_to_pro1og(Pointer_to_C_version, Temp),
erase_c_tenn(Pointer_to_C_version),
Copy = Temp.

The C code in terms.c is just as much a part of this package as the Prolog code. ln
particular, the comments in that file describe the representation used on the C side of
the interface and there are routines and macros (see terms.h) for accessing terms-in-C.

library(trees) is an implementation of arrays as binary trees.

This file is support for the rest of the library, and is not really meant for general use.
The type tests it defines are almost certain to remain in the library or to migrate to the
system. The error checking and reporting code is certain to change.
must_be_compound/3, must_be_proper_list/3, must_be_var/3, and proper_list/1 are

Quintus Prelog 2.0 17 FCS Release Notes

unix.{pl,c}

vectors.{pl,c}

new in this release.

library(unix) was present in release 1.6. For this release, it was split into library(files)
which is supported under VMS tao- and library(unix).

The Quintus Prolog foreign code interface provides means of passing scalars between
Prolog and C, Fortran, Pascal, etc. That isn't always enough. library(vectors) provides
routines you can use ta pass one-dimensional numeric arrays between Prelog and C,
Pascal, or Fortran. See the comments in the code. Briefly,

list_to_vector(+ListOfNumbers, +Type, -Vector)

creates a vector, which you can pass ta C. C will declare the argument as Type·, and
Prolog will declare the argument as +address(Type). Fortran will declare the argument
as an array of Type.

make_vector(+Size, +Type, -Vector)

creates a vector which the foreign routine is ta fill in. C will declare the argument as
Type•, and Prelog will declare the argument as +address(Type). Fortran will declare
the argument as an array of Type.

vector_to_list(+Vector, ?List)

extracts the elements of the Vector as a list of numbers; if the Vector contains chars or
ints, the Listwill contain integers, otherwise it will contain floating point numbers.

kill_vector(+Vector)

frees a vector. Don't forget ta do this! You can still call vector_to_list/2 on a dead
vector, until the next time memory is allocated. Ali that you can really rely on is that it is
safe to create some vectors, call a C routine, kill ail the vectors, and then extract the
contents of the interesting ones before doing anything else.

6. Performance Measurements
The following table gives the results of running a suite of benchmarks written by Fernando Pereira. The
two columns are the times taken, in milliseconds, to run each benchmark on a Sun 3/50 workstation
under releases 1.6 and 2.0 respectively. These benchmarks have been designed ta each measure a
particular aspect of a Prelog implementation. ln order ta give accu rate timings, most of the tests are run
many times and the cost of the loop overhead for doing this is factored out.

The main things to note about these figures are that, because of the indexing of dynamic code, assert is

slower but accessing an asserted clause can be many times faster. Also note that the speed of setof and
bagof has been substantially improved.

+--+
1 Quintus Prolog Release 1
1 Benchmark 1.6 2.0 1
--1
tail_call_atom_atom 1.58 1.37 1
binary_call_atom_atom 2.05 2.30 1
cons list 2.42 2.77 1
walk list 1.50 1.29 1
walk list rec 1.27 1.14 1
args(l) 1.23 1.11 1
args(2) 1.74 1.68 1
args(4) 3.41 2.78 1
args(8) 6.89 5.80 1
args(16) 13.24 11.55 1
cons_term 2.95 2.60 1

Quintus Prolog 2.0

wal.k teJ:m
wal.k term rec - -shal.l.ow_backtracking
deep_backtracking
choice_point
trail._variables
medium unify
deep unify
integer_add
fl.oating_add
arg(l)
arg(2)
arg (4)
arg(8)
arg (16)
indez
assert_unit
access unit

18

2.30
2.08
l.59
3.22
3.35
3.62
1.81

118.67
1.95
9.17
5.50
5.49
5.48
5.49
5.49
2.29

1933.00
1051.33

FCS Release Notes

l.64
1. 61
l.47
3.07
3.07
3.70
1.69

109.83
2.05
8.95
5.02
5.00
5.01
5.01
5.01
2.16

3717.00
39.50

sl.ow access unit 1211.70 1171.80
setof 596.60 268.40
pair setof 613.30 360.00
double setof 1786.60 815.00
bagof 479.90 154.90

+--+
To complement these figures for small benchmarks, here are some figures for loading and running CHAT,
a program of some 5000 lines of Prelog code which can be found in the derno directory of the Quintus
Prolog installation ,directory. These figures were obtained on a Sun 3/11 0 which is a bit faster than a
3/50.

+--+
1 Quintus Prol.og Rel.ease
1 Benchmark 1.6 2.0

--/

compil.ing CHAT: 159.1 sec 160.9 sec
code space used: 170,156 bytes 173,900 bytes
time hi(questions): 19.4 sec 13.7 sec
stack space used: 26,928 bytes 24,932 bytes
heap space used: 136,068 bytes 129,676 bytes

consul.ting CHAT: 74.3 sec 67.4 sec
code space used: 195,416 bytes 279,180 bytes
time hi(questions): 242.7 sec 67.1 sec
stack space used: 197,288 bytes 32,356 bytes
heap space used: 481,404 bytes 422,876 bytes

+--+
The release 2.0 figures were obtained with the default garbage collection. The garbage collecter only in
tact ran during interpreted hi(questions) when it took 4.9 seconds which is included in the 67.1 seconds.
The stack and heap usage figures are maxima during the run of hi(questions), and they were obtained by
means of specially built versions of the Prelog releases.

Quintus Prolog 2.0

Table of Contents
1. Introduction
2. lnterpreted Code 1s Now lndexed
3. New Semantics for Data Base Predicates

3.1. Example: assertz/1
3.2. Example: retract/1
3.3. Example: abolish/2
3.4. A warning concerning retract/1

4. Other Changes in Release 2.0
4.1. Changed lnterpretation of Relative File Names
4.2. Built-in Operator Properties Can Be Overridden
4.3. Memory Management lmprovements

4.3.1. Space for Abolished Compiled Code Is Reclaimed
4.3.2. The Code Space Congealer

4.4. New Built-in Predicates
4.5. Changes to System Limitations

5. Changes to the Library
5.1. On-line documentation
5.2. For C Programmers
5.3. Supported Library Files
5.4. The Unsupported Library

6. Performance Measurements

I

FCS Release Notes

1
1
2
2
3
4
5
6
6
7
7
7
7
8
9
9
9

10
10
12
17

-----------~------- --- ---

