Apr 24 23:44 1985 lisp.mss Page |

The Lisp Interface.
1. The instructions generated by the compiler have the form

(start.calling (furnction symbaoly {(number of arguments?)
(mend. variable. A1 (Prolog temporary register number?d...
{call.lisp {(number of results sxpected))

{umify. local. Xn {(femporary register rnumber))...

Z. The ultimate idea is that start.calling should prepare a Lisp
stack frame, which is why the number of arguments appears there
instead of bsing counted as the rumber of send.variable. Qi
instructions or something.

3. Currently, the arguments are passed in the multipls value

variables, The first few instructions go something like this:
(SETAA GP.AV (3 Argument Variables
MY. RETURNER®

MV, RETURNERLE
)

start.to.call. lisp:
{(put. 16 I {(the argumsnt rnumberi)
fput. 24 C (the function symbold)
(put. 24 R GP.AVY

send. variable. Al
SET (CAR (get.24 RY) (GP. lispify {(get.fAval N#®)))
(put.24 R (CDR (get.Z4 R

call.lisp:
(SETE MY. RETURNER @ (SELECTG I
@3 (APPLY* C))
(1% (APPLY=* MV. RETURNERZ MV, RETURMER1 MV. RETURNERZ
MY. RETURNERLS))
(SHOULDNT * Too% many% arguments)
)
(put. 16 I {the number of results))
{put. 16 R GPR.AYV)
{put. 24 5 (get.24 H))
(incremant.cell. pointer H 1)
{urntil {(zerao I :
(OGP, prologify (CAR (get. 24 R))Y (get.Z4 5))
)

The rest is Prolog.

4. Key featuwres:

F. Therse is a limit to the rumber of arguments which can be passed from
Prolog to Lisp (18 and & similar limit to the number which can be
retuwrned from Lisp to Prolog. Neither of these limits means very
muzh.

B 24 23:44 18985 lisp.mes Page ©

B. If any arguments or results are lists, then Lisp consing will be dorne
whan the arguments are passed and Prolog consing will be done when
the results are returned.

L. Howsver, no obther consing is done. I particular, if we call getid/1,
o consing will be done.

D. The objects which can be passed betweern Prolog and Lisp inm either
direction are symbols, rumbers, and lists. Other Lisp constants will
e supported later.

