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Abstract 

freeze in W AM 

Two very useful extensions to Prolog's computation model, dif and 

freeze, were introduced with Prolog II. A method for their 

incorporation into the Warren Abstract Machine is presented. Under 

reasonable assumptions, the method does not incur any overhead on 

programs not using these extensions. 
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§1 Introduction 

We are considering the "New Engine", or WAM, for Prolog by D.H.D. Warren. In [Warren 83], 

an abstract machine is defined consisting of a memory model and about 40 instructions. We 

assume herein some familiarity with the W AM. 

Prolog II [Colmerauer 82a,82b], has received much attention for its theoretical model as a term 

rewriting system in the domain of infinite trees, but also for its ability to delay certain predicates 

until enough information is available: dif(X,Y), read as "X and Y are different terms", and 

freeze(X,P) , read as "delay P until X has been instantiated". 

Similar primitives have subsequently been included into various implementations, for example 

LM-Prolog [Carlsson 83], MU-Prolog [Naish 85a], and NU-Prolog [Naish 86]. The concept of 

delay primitives is related to the idea of coroutines which were first introduced in Logic 

Programming with IC-Prolog [Clark 79], [Clark 80]. It is tightly coupled to the concept of 

constraints [Steele 80]. A study of the introduction of the constraint concept into Logic 

Programming is given in [Dincbas 86]. 

The usefulness of delay primitives is widely recognized. By adding a data-driven component to a 

language which otherwise is goal-driven, new programming techniques become available. They 

help solve certain semantical problems, in particular by allowing a sound treatment of negation. 

MU-Prolog, for example, supply sound versions built on delays for arithmetic, negation, and 

if_then_else. They can increase the efficiency of "generate and test" programs and even prevent 

infinite loops. They can be used for simulating and-parallelism by coroutining. Certain uses of 

delay primitives cause new yet unsolved semantical problems, for example when used for 

simulating perpetual processes computing with infinite streams. These problems are being attacked 

in a scheme called Constraint Logic Programming (CLP) [Jaffar 86], and some very promising 

results have already been reported. 

The implementation issues have been addressed in [Naish 85b], in particular how to avoid 

complexity problems in implementations of dif. Naish also devises a method for automatic 

generation of wait declarations. Our work addresses the challenge of adding delay primitives to the 

W AM with reasonable efficiency without causing performance penalties for programs not using 

these primitives. We consider the work on constraint propagation techniques for logic 

programming [Dincbas 86] most significant, but it is outside the scope of this paper. 

§2 Preliminaries 

The terminology used herein will correspond to the procedural interpretation of logic programs, for 

example, relations are called procedures , body atoms are called procedure calls . We say that a 
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variable is instantiated when it is bound to a non-variable. 

An important characteristic of the W AM is its use of registers for passing parameters and storing 

temporary variables , i.e. such that do not occur in more than one body goal. A variable that has 

next use after a body goal must be stored as a permanent variable in a binding environment, and it 

is the caller's responsibility to do so. As is customary, we denote temporary variables J .. n by 

Xl .. Xn , which stand for global memory locations or machine registers. Permanent variables 

1 .. m are customarily denoted by Yl .. Ym , which is short-hand for offsets from the start of 

the current environment. 

The use of registers for parameter passing leaves considerable freedom for a compiler to optimize 

register usage. However, it causes some problems in implementing the ability to interrupt a 

computation and later resume from the interrupt. Such an ability is essential for dif and.freeze . In 

general, interrupts may only occur when it can be determined which registers are live, for example 

at procedure calls, when the arity of the called procedure determines the set of live registers. 

§3 Implementation Schemes 

All implementations of delay primitives that the author is aware of are engineered in the same 

general framework: A new datatype, typically called suspension , is introduced. A suspension is 

an unbound variable with a reference to a suspended goal, represented as a record on the heap. A 

suspended goal is woken when the suspension is unified with another term. 

Abstractly, we are partitioning the goal statement of SLD-resolution in two parts: (a) the ordinary 

goal statements, and (b) the suspended goals. The control structure of the inference engine is 

modified to deal with newly woken goals. The termination condition likewise has to be modified 

to preserve soundness: it no longer suffices that the ordinary goal statement is exhausted, since 

there could be goals that still are suspended. Not taking them into account would lead to incorrect 

answers. For example, in Prolog II, the programmer must ensure that goals are not suspended 

indefinitely. 

3.1 Freeze in LM-Prolog 

Implementations differ in details of the above framework. For instance, in LM-Prolog [Carlsson 

83] suspended goals are woken recursively by the unifier, although it is implemented as a 

truth-valued function, without the ability to introduce choicepoints. This leads to an incomplete 

delay mechanism, since delayed goals are forcedly deterministic. In this paper we take a different 

approach where the unifier raises a condition which is tested at the next inference. Besides 

simplifying the interface between the engine and the unifier, this measure is necessitated by the 

precense of temporary W AM variables and the way that structures are allocated on the W AM heap. 

Another detail where implementations differ is the unification of two suspensions. In LM-Prolog, 
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it is up to the unifier to combine the two suspensions into a single suspension over the conjunction 

of the two suspended goals. The approach taken in this work is to lay the responsibility on the 

suspension primitive and wake suspended goals whenever the suspended variable is bound rather 

than instantiated, whereupon the suspended goal may notice that it should re-suspend. 

3.2 Dif in Prolog II 

Superficially, Prolog II treats dif by a completely different mechanism. Prolog II replaces 

unification by the solving of systems of equations and inequations over infinite trees, using two 

algorithms called reduction and simplification [Colmerauer 84]. dif(X,Y) is defined as adding the 

inequation X ;t:Y to the system, and this has nothing to do with the freeze mechanism. However, 

the simplification algorithm, which is invoked whenever the system is augmented, can select certain 

inequations for "reprocessing", an operation that is tantamount to waking a delayed goal. 

3.3 Boizumault's Framework 

A proposed general framework for dif andfreeze is given in [Boizumault 86]. The framework 

requires certain architectural extensions of the Prolog engine: 

◊ an extra stack, the frozen goal stack , is added and contains pointers to frozen goals. The 
stack discipline makes deallocation at backtracking easy, but requires an extra slot in each 
choicepoint. Presumably, the stack discipline makes it easy to check termination. 

◊ the trail entries are generalized to consist of <reference, previous value>. If this applies to 
all trail entries, it is a serious penalty on programs that do not use freeze . The generalization 
is motivated by examples like :- freeze(X,p(X)), freeze(X,q(X)). A suspension points to a 
list of frozen goals, and this list is destructively updated by the second freeze , and so the 
previous list has to be remembered. 

In our approach, we avoid the extra memory area and choicepoint slot by simply using the heap. 

We trail each new suspension and check termination by scanning the trail. We avoid destructive 

updates and generalized trail entries by binding the old suspension to a new one which is a 

suspension over the conjunction ','(p(X),q(X)). 

§4 Freeze in the W AM 

In addition to dif and.freeze , we introduce a primitive delay(X,P) as the means for delaying the 

goal P until the variable X is bound to any other term Y even if Y is not instantiated. In 

SICStus, our experimental Prolog system developed at SICS, we have used delay as the basic 

delay mechanism and have built the other primitives on top of it. Van Caneghem also showed [Van 

Caneghem 84] that dif can be expressed in terms of other delay primitives. 

4.1 The event mechanism 

We introduce a general event mechanism , and implement delay as an instance of this mechanism. 

An event signals an extra-ordinary condition of some kind which needs to be dealt which at the 
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next inference. Typical conditions are interrupts from the terminal, trace mode in a debugger, the 

need to garbage collect, or the waking of a delayed goal. The reason for waiting until the next 

inference is that the event may involve a recursive computation. It is generally not possible for the 

engine to keep track of which argument registers are live, except when a predicate is entered, at 

which time the arity determines what registers are live. Thus the current sequence of W AM 

instructions is not interrupted until the next call or execute instruction. 

A flag register F is introduced. F is initially zero and is cleared at backtracking. An event signals 

a condition by raising a bit in the flag register. When a predicate is entered, the flag register is 

tested: 

Proc/n: if F:;tO 
{ 

} 

allocate; 
Yl .. Yn := Xl .. Xn; 
Process F flags and reset F; 
Xl .. Xn := Yl .. Yn; 
deallocate; 

<compiled code for Proc/n> 

4.2 Wakeup events 

Delay is conveniently implemented in the setting of events. The implementation requires a wakeup 

register W and a data structure suspension over G , where G is a goal. References to 

suspensions are called constrained variables . The W register contains the goal to wake at the next 

inference, if any. 

A suspension is a heap data structure with two fields, denoted by $susp (Valuecell, Goal). 

Constrained variables have their own datatype in the implementation. They are treated much like 

ordinary variables, i.e. are dereferenced by accessing the valuecell. However, when the valuecell 

is bound, a wakeup event is signalled, and the goal to wake is stored in W as: 

if F<wake>=O 
{ 

else 

W := Goal; 
F<wake> := 1; 

W : = ' , ' ( W, Goal) ; 

That is, if more than one wakeup event is signalled before the next inference, a conjunction of goals 

to wake is built and stored in W. The action taken at each inference when the wake flag is raised 

is simply to execute the contents of W : 

Proc/n: 
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if F<wake>=l 
{ 

F<wake> := 0; 
Xl : = W; 
call call/1,n; 

freeze in W AM 

We can now give an operational definition of our primitive delay(X,G), read as "delay G until X 

is bound", or "constrain X to satisfy G ". The definition deals with three cases: If X is 

instantiated, the goal G is invoked now. If X is a variable that is constrained to satisfy G0 , a 

suspension over the conjunction of G0 and G is created. If X is an unconstrained variable, a 

suspension over G is created: 

delay(X,G): 
if Xis instantiated 

call (G); 
else if X=$susp(V,GO) 

bind V to $susp ( , ',' (GO,G)); 
else 

bind X to $susp ( , G); 

To make the above account more explicit, we display here a few pictures of relevant data structures. 

Prolog terms are represented by tagged pointers. The first picture shows an ordinary WAM 

variable: 

x-+j unbound I 
AN UNBOUND VARIABLE x 
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The second picture displays the situation when X has a constraint s(X) : 

□ VARIABLE REFERENCE 

x_. ~ SUSPENSION REFERENCE 

■ STRUCTURE REFERENCE 

~ FUNCTOR REFERENCE 

S/1 

DATA STRUCTURES AFTER delay (X, s (X)) 

Thus the delay mechanism performs standard W AM actions: goals are copied to the heap, value 

cells are bound, and normal trail conditions apply. The only extra work needed at backtracking is 

to clear the F register. 

Note that in this implementation, as opposed to LM-Prolog and [Boizumault 86], the case where 

two constrained variables are unified is not treated as a special case. Instead, it is the responsibility 

of delay to deal with that case. 
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Finally, if X had two constraint s(X) and t(X), the corresponding data structures would be as in 

the picture: 

□ VARIABLE REFERENCE 

x~ ~ SUSPENSION REFERENCE 

■ STRUCTURE REFERENCE 

~ FUNCTOR REFERENCE 

S/1 

T /1 

DATA STRUCTURES AFTER delay (X, s (X)), delay (X, t (X)) 

4.3 Detection of Termination 

We use the trail for keeping a record of all suspensions that have been created simply by pushing a 

reference to each new suspension on the trail. The toplevel can then detect unsatisfied delayed 

goals by scanning the trail. 

Trail entries are touched by the engine at two other occasions: 

◊ When the engine backtracks, all references in a section of the trail are reset to unbound. The 
extra suspension references cause no problem here, since unbound suspensions are 
(vacuously) being reset to unbound. 

◊ At the cut operation, such references in a section of the trail that refer to a certain part of the 
heap and stack are deleted. Because of the termination detection, this algorithm has to be 
modified to not delete references to unbound suspensions. We argue that this should not 
cause any extra overhead for the cut operation, if suspensions are represented as a unique 
basic type. 
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The termination test could be encapsulated in a generalized metacall primitive implies(S,G) which 

tries to solve G : 

• if G fails, S = false 

• if G succeeds and no delayed goals exist, S = true 

• otherwise, S = < a conjunction of unsatisfied delayed goals > 

4.4 Inline Goals 

Since raising a wake condition and waking a goal happen at different times, there is a problem with 

the instructions executed before the next inference, if those instructions can cause failure or remove 

choicepoints, e.g. arithmetic tests, meta-logical type tests, and cut. This problem occurs for inline 

goals that compile to instructions rather than procedure calls. For example, in 

p ( 1, X) 

p(2,2). 

• - I . ' q (X) . 

:- dif(U,l), p(U,X). 

if the cut compiles inline and is executed before waking dif (U, 1), the solution (X = u = 2) 

is not found. In 

p(l,X) ·- var(X). 

p ( 2, X) · - non var (X) . 

:- freeze(U,U=V), p(U,V). 

if var compiles inline the incorrect solution U = 1 is found. We avoid this problem by 

decompiling [Buettner 86] inline goals, so as to delay them if a wake condition has been raised, 

thus preserving the desirable procedural semantics of delayed goals. For example, cut compiles to 

an instruction cut (X) with semantics 

cut (X) : if F<wake>=l 
W := ','(W,cut(X)); 

else 
<perform normal cut operation> 

and similarly for all instructions corresponding to inline goals. This ensures that the cut is properly 

delayed until after the goal W . The emulator overhead of testing the wake condition can be 

avoided by well-known techniques. 

We thus use decompilation for constructing a goal which is semantically equivalent to an instruction 

sequence, although not necessarily syntactically identical with the source code. 
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4.5 Conjunctive and Disjunctive Freeze 

Several applications require the ability to delay until each element, or some elements, of a set of 

variables have been instantiated. For instance, a dataflow instruction waits until all arguments have 

arrived. An equation solver waits until enough unknowns have been instantiated. 

Delaying p(X,Y) until X and Y have both been instantiated is easily expressed by: 

:- freeze(X,freeze(Y,p(X,Y))). 

Delaying p(X,Y) until either X or Y have been instantiated can be expressed by (this example is 

adapted from the Prolog II manual): 

·- freeze(X,thaw(M,1,p(X,Y))), 
freeze(Y,thaw(M,2,p(X,Y))). 

thaw(M,M,G) 
thaw (M, N, ) 

· - call (G) . 
·- M '# N. 

i.e. using M as a mutual exclusion variable, ensuring that p(X,Y) is not woken twice. If this 

second technique is used, the termination test has to be trivially modified to avoid spurious 

warnings about goals of the form: 

freeze( ,thaw( , , )) . 

Similar but more hard-wired mutual exclusion techniques are used in the implementation of FCP 

[Mierowsky 85]. 
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4.6 Freeze and Dif in terms of Delay 

It should be clear how to define freeze and dif in terms of delay. Freeze could be defined as: 

freeze (X, G) · - var (X), delay (X, freeze (X, G)) . 
freeze(X,G) ·- nonvar(X), call(G). 

Dif could be defined as: 

dif(X,Y) ·­
different(X,Y,M), 
dif' (M, X, Y) . 

dif'(true,, ). 
dif' (maybe (M), X, Y) · - delay (M, dif (X, Y) ) . 

where different(X,Y,M) is true if: 

M = true andX and Y do not unify, or 
M = false andX and Y are identical, or 
M = maybe (V) and the variable V has to be bound for X and Y to unify. 

Both of these definitions have the property that binding the constrained variable causes the 

suspension to wake up, the test to be re-computed, and possibly a new suspension to be created. 

This potential inefficiency has been discussed in [Naish 85b], where remedies to the problem are 

proposed. 

One could argue for a more basic freeze(X,P) mechanism that waits until X is instantiated to avoid 

the recomputation of var(X) . Such a mechanism does however not suffice for dif. For example, 

in 

:- dif(X,Y), X=Y. 

the failure would go undetected, i.e. dif will stay suspended, since X and Y are uninstantiated. 

LM-Prolog uses freeze as the basic mechanism with a special case treatment of dif to avoid this 

bug. 
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4.1 Language issues 
We agree with [Naish 85b] that explicit calls to freeze tend to obscure the logic of programs since a 

callfreeze(X,P) is logically equivalent to P. We therefore use a variant of the !-annotations of 

IC-Prolog. A declaration 

: - mode Pred ( ! , ? , ! ) . 

denotes that any call Pred(X,Y,Z) with X or Z uninstantiated must delay. In IC-Prolog, the 

annotation occurs on goal variables rather than in a declaration. We chose to use a declaration 

instead, to simplify compilation. Note that our declarations are much less sophisticated than 

MU-Prolog's in that subarguments cannot be declared, and the delay criterion is tested before any 

head unification is attempted. The above declaration is treated as an abbreviation for extra clauses 

added to P red/ 3 as follows: 

Pred(A,B,C) 
Pred(A,B,C) 

· - var (A), ! , delay (A, Pred (A, B, C)) . 
· - var (C), ! , delay (C, Pred (A, B, C)) . 

In the implementation, wait declarations are compiled more compactly using special wait 

instructions which precede the indexing code: 

Pred/3: 

Lv: 
Le: 
Ll: 
Ls: 

wait(Pred/3,X3) 
switch on term Lv,Lc,Ll,Ls 
wait xI (Pred/3) 
/* constant case*/ 
/* list case*/ 
/* structure case*/ 

where the semantics of the new instructions are: 

wait (F/n,Xi): If Xi is uninstantiated, then construct on the heap a goal G = F(Xl, .. Xn) 
and execute delay(Xi,G ). If Xi is instantiated, then continue at the next 
instruction. 

wait xl (F /n) : Xl is guaranteed to be uninstantiated. Construct on the heap a goal G = 
- F(Xl, .. Xn) and execute delay(Xl,G). 
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§5 Concluding Remarks 

We have compared some implementations of delay primitives like dif andfreeze and proposed a 

way of incorporating them in the W AM. The proposal is built on a more general event mechanism 

which can be argued to be necessary for handling conditions like user interrupts and garbage 

collections. Assuming the presence of an event mechanism and the availability of a new datatype, 

the W AM extension does not cause any execution time penalty for programs that do not use the 

extensions. By combining the event mechanism with decompilation techniques, the correct 

execution sequence for delayed and inline goals is preserved. 
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