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Abstract 

We have implemented logic programming in a functional setting. Continuations are used 
as a technique for making procedures of the implementation language compute relations 
rather than functions. 

A ·new technique· based on a 'genetic code' for terms is used for constructing complex 
terms in a demand-driven fashion during unification. A microcoded unifier using dispatch 
hardware makes the genetic code technique feasible. The technique has been generalized 
to handle variable annotations. 

Our language, LM-Prolog, includes significant extensions of the Prolog language, e.g. 
demand-driven, data-flow, and parallel computations, multiple databases, user extensi
ble unification, optional prevention or handling of cyclic terms, and the ability to call Lisp 
functions. Terms of LM-Prolog are built up from variables, atoms, and binary records 
(conses). 

The implementation consists of an interpreter and a compiler. The compiler transforms 
LM-Prolog predicates to Lisp procedures which are translated into an extended machine 
instruction set by the host machine's Lisp compiler. 

LM-Prolog is implemented on MIT Lisp Machines,'•'which provide a very rich environment 
for developing and running programs. They are personal work stations with large address 
spaces, large amounts of memory and disk storage, and high resolution graphics. A high
performance implementation of a logic programming language is for the first time available 
in such a powerful programming environment. 

s October 25, 1984 
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1. Introduction 

1.1 Overview 

LM-Prolog is an implementation of a logic programming language on MIT Lisp Machines 
[Greenblatt, 1974]. This thesis is a description of LM-Prolog, focusing on its implemen
tation. A description from the user's point of view can be found in [Carlsson and Kahn, 
1983]. . 

Throughout, boldface stands for LM-Prolog entities; italics introduces new concepts and 
is used for syntactic variables; u denotes the result of compiling u. 

This chapter introduces the language and the principal design decisions underlying its 
implementation, and gives pointers to other chapters that go into details. Chapter 3 gives 
a general overview of the irnplementation. 

1.2 Language and Computational Model 

Our language is essentially the Horn clause formalism for logic programming [Kowalski, 
1974]. A program is composed of a set of predicate 1 definitions, each consisting of a 
sequence of Horn clauses together with optional pragmatic information. The clauses do 
not have to be st-rictly first-order, but may contain meta-logical goals, control goals and 
collectors. A collector constructs the list of all members of a relation. In this thesis, we 
call such lists collections rather than sets, since they do not have all the properties of sets. 
The idea of having collectors in a logic programming language originates from IC-Prolog 
[Clark et al., 1982]. 

The terms of LM-Prolog are built up from variables, atoms, and binary records (conses). 
We take the approach of LogLisp [Robinson and Sibert, 1980] and use the pair constructor 
as the only constructor. The terms are implemented as Lisp Machine objects; in particular, 
binary records map to Lisp conses and variables map to Lisp locatit1es. Everything else is 
an atom. 

The computational model of LM-Prolog is by default the fixed sequential left-to-right, 
depth-first execution of goals and sequential consideration of alternative clauses by back
tracking. This basic computational model, which is the standard one for any Prolog imple
mentation, can however by the use of special annotations be replaced by and intermixed 
with alternative models such as 

• demand-driven computation via lazy collectors which find elements of a relation as they 
are needed (driven by unification), rather than all elements at once; 

• data-flow computation via constraints, offering a means for restricting the range of vari
ables by associating an uninstantiated variable with a goal to be. executed when the 
variable is instantiated. It is remarkable that a class of "generate and test" programs 
can be written both efficiently and clearly using this technique; 

• parallel processing via eager collectors which spawn a separate process so that the col
lection is computed in parallel with its consumer (synchronized by unification); 

1 In this thesis, we do not keep a strict terminological difference between "a predicate of some arguments" 
and "a relation over some domains" 
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• functions, by means of a mechanism for calling Lisp functions with negligible overhead; 

• data-flow synchronization in the context of and-parallelism by means of variable anno
tations [Clark et al., 1982]. This mechanism was added to the language for supporting 
an interpreter for the logic programming language Concurrent Prolog [Shapiro, 1983j. 

These computational models and their implementation are described in Chapter 8. They 
all capitalize on the fact that our unifier is open-ended so that new datatypes and the 
semantics for their unification with other objects can be added in a modular fashion. For 

· efficiency, our unifier is by default ignorant of the fact that cyclic terms may result from 
unification. It is well known that such terms jeopardize the consistency of the logic system, 
and unification itself may not terminate. Therefore, users who are willing to pay a certain 
runtime penalty can optionally tell the unifier to prevent cyclic structures from occurring. 
It is also possible to tell the unifier, still at a certain penalty, to allow cyclic structures 
while retaining its termination properties. More on unification in Chapter 5. 

LM-Prolog's"database is structured into collections, called worlds [Nakashima, 1982], of 
predicate definitions. The search order of the database is defined by the universe which is 
a list of worlds. Worlds are generally useful for structuring of knowledge and modularity. 
Programs may dynamically add and delete clauses from worlds, and also add and delete 
worlds from. the universe. Chapter 4 contains a detailed description of the database . 

... 
A predicate can optionally be declared to be deterministic, i.e. that any invocation of it 
shall have at most one solution. Determinism, either declared or detected at compile time, 
plays an important role in the tasks of efficient interpretation and generation of efficient 
code. The interpretation and compilation processes are described in Chapter 6 and 7. 

Other declarable pragmatic properties of predicates include indexing, assertability, com
piled or interpreted execution mode, world membership, and on-line,documentation. The 
language description is continued in Chapter 2. 

1.3 Construction of Complex Terms 
1.3.1 St:ructure Sharing (SS) 

In some Prolog implementations including the first !Battani and Meloni, 1973) and DEC-
10 Prolog [Warren, 1977j, the representation of a term is a variant of the elegant structure 
sharing technique [Boyer and Moore, 1972]. A term is represented by two pointers, one to 
the pure code, the other to a binding environment containing the bindings of the variables 

· in the pure code. A variable in the pure code is represented by a distinct type marker and 
an integer offset. In structure sharing implementations, then, every part of the abstract 
machine executing Prolog must deal with molecules i.e. pairs of pointers· representing 
terms. 

Structure sharing is particularly advantageous on machines whose instruction set support 
user-defined base registers. The environment part of a molecule can then reside in a base 
register, and a variable is then looked up by offsetting from the base register. This is 
heavily exploited in DEC-10 Prolog. 
1.3.2 Copying Pure Code (CPC) 

As an alternative to structure sharing, terms can be represented directly, without need for 
an additional pointer to a binding environment. Whenever a free variable is unified with. 
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a term of pure code containing variables, a copy of the term is made with the variables 
replaced by their bindings if they are bound, or by newly allocated free variables if they 
are unbound. 

Bruynooghe labeled this implementation technique copying pure code, see [Bruynooghe, 
1982a]. 

Of course, the terms are not quite represented directly, since the bindings of variables 
inside complex terms still have to be looked up. Because of the copying scheme, however, 
there are much fewer such variables than in the structure sharing case. Copying can be 
avoided in the case of variable free terms, since variable free terms of pure code can be 
represented directly and be structure shared in the sense of having several pointers to 
them. 

1.3.3 Invisible Pointers 

We have chosen the CPO approach, partly because it happens to map extremely well to the 
Lisp Machine. Using a kind of forwarding pointer datatype called invisible pointer, terms 
can really be represented directly in the normal sense of the word. The look-up of variables 
inside co1nplex terms is handled by the firmware, and so the variables become invisible to 
all norrnal uses of the terms. In particular, interfacing to Lisp functions, passing terms as 
Lisp objects without any conversion or other overhead, becomes feasible. Details of the 
invisible pointer mechanism are discussed in Section 5.2. 

Other factors advocating the choice of CPO rather than SS on the Lisp Machine include: 

• The machine cannot hold two addresses in one word. 
In !Mellish, 1982], this is claimed to be a significant factor in the choice, since the 
necessity to store a 'molecule' in two machine words leads to twice as many memory 
accesses for looking up the value of a variable. 

• By the same token, a logical variable would have to map to two local Lisp variables in 
cpmpiled predicates, causing the stack to grow almost twice as fast as in the present 
CPC implementation. 

• The machine's instruction set does not support user-defined base registers· and it seems 
that 'a dedicated instruction for doing so would incur too large an overhead. 

Object and Source Terms 

For the purposes of this thesis, Prolog terms are called object terms, and their pure code 
representations are called source terms. Object terms are terms of the object language 

· i.e. terms that normal programs compute with. Source terms are descriptfons of object 
terms. A source term can unify with an object term. A source term can also be used 
to construct instances of the object term which it describes. Source terms are structure 
shared constants with special annotations, principally for first and single occurrences of 
variables and for ground subparts of the terms they describe. 

There are two ways for object terms to be constructed: 

• When a variable is matched against a source term, the variable is bound to an object 
term constructed out of the source term. 

• Object terms are also constructed as argurnents in procedure calls. 

6 October 25, 1984 
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1.4 Logic Programming in a Functional Setting 

Logic programs are based on relations and functional programs are based on functions. 
Since functions are a special case of relations, it would seem that functional programming 
could easily be implemented in a logic programming setting ( and this is indeed so), but 
not necessarily vice versa. 

One of the results of this thesis is a technique for making procedures of a functional 
language compute relations rather than functions. The technique is called continuation 
passing and is the workhorse for implementing Prolog relations as Lisp procedures. 

An important feature of logic programming, extraneous to functional programming, is the 
logic variable and its incorporation in complex terms. It would seem that logic program
ming terms must be incompatible with the data structures of functional programs. Luckily, 
due to the invisible pointer mechanism discussed in Sections 1.3 and 5.2, thir, incompati
biUty does not occur in the present implementation, and Prolog terms can be represented 
directly as their equivalent Lisp terms. Therefore, the interface between Lisp and Prolog 
becomes extremely simple and cheap. 
1 Continuation Passing 

Continuations [Strachey and Wadsworth, 1974] are well known from denotational semantics 
theory, and were first conceived as a formalization of the semantics of jumps in imperative 
programming languages. Later, they have been used to characterize non-deterministic 
constructs in functional languages. These techniques are exemplified in [Henderson, 1980]. 

Continuation passing consists in passing each procedure as an extra argument a function of 
no arguments. This function has typically been created by another procedure closing over 
some of its local variables. The continuation describes the computation that remains to 
be done once the called procedure has finished its work, at which point the continuation is 
invoked i.e. applied as a function of no arguments. Once the continuation has terminated, 
the called procedure may find an alternative solution and may re-invoke the continuation, 
and so on. 

For example, the relation p defined as 

p(X) 4- q(X) I\ r(X). 
p(2). 

could be translated into the procedure 

(defun p' (cont x) 
(or (q' #'(lambda () (r' cont x))) 

(unify cont x 2))) 

where unify is a function of a continuation and two terms which invokes the continuation 
with the two terms unified. In the example, the procedure p' passes a continuation closing 
over cont and x top'. When invoked, this continuation will pass the original continuation 
cont tor'. If it ultimately fails, a unification of x and 2 will be attempted and, if successful, 
cont will be invoked. (Details of Lisp Machine Lisp syntax are given in Section 2.2.) 

The potential of continuation passing is capitalized in our implementation as follows: The 
satisfaction of a conjunction P I\ Q corresponds to a call to a procedure representing P 
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with an extra continuation argument representing Q. If the procedure succeeds in finding 
a member of the relation it computes, it invokes its continuation. If the value eventually 

. returned by the continuation is nil, the procedure goes on to find more solutions, i.e. 
backtracking is triggered, and more members of the relation can be found. 

The continuation passing mechanism has been exploited to enforce determinacy, to im
plement collectors, and more, in addition to achieving backtracking. In addition to being 
passed as arguments, continuations can also be stored away in data structures. See Section 
5.3. 

Stepwise refinement of Prolog interpreters using the mechanism can be found in [Carlsson, 
1984]. 

1.4..2 Realization of Continuations 

A continuation is realized as a structure which contains a function and a set of arguments 
for that function. Invoking a continuation consists in applying the function part to the 
arguments. 

8 October 25, 1984 
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2. The LM-Prolog language 

2.1 Introduction 

M. Carlsson 

LM-Prolog stands for Lisp Machine Prolog. It is a Prolog, although with an extended con
trol language, and it is thoroughly embedded in the programming environment of personal 
Lisp Machines. 

The data structures are based on lists as opposed to records, and so i's the syntax, which is 
very close to that of LogLisp !Robinson and Sibert, 1980] or QLOG !Komorowski, 1980]. 
We do not support infix operators, as opposed to micro-Prolog [Clark and McCabe, 1984]. 

As an example of LM-Prolog, consider the following definition of some family relations. 

Logic LM- Pro log 

grandparent(Gp, Ge) +

parent(P, Ge)!\ 
parent(Gp, P). 

parent(P, G) +

I ather(P, G). 
parent(P, G) +

mother( P, G). 

/ather(Gustaf Adolf, CarlGustaf). 
Jather(CarlGustaf, Victoria). 
f ather(CarlGustaf, CarlPhilip). 
/ather(CarlGustaf, Madeleine). 

( define-predicate grandparent 
((grandparent ?gp ?gc) 
(parent ?p ?gc) 
(parent ?gp ?p))) 

( define-predicate parent 
((parent ?p k) 
(father ?p ?c)) 

((parent ?p ?c) 
(mother ?p ?c))) 

(define-predicate father 
(:options (:type :dynamic)) 
((father Gustaf-Adolf Carl-Gustaf)) 
( (father Carl-Gustaf Victoria)) 
( (father Carl-Gustaf Carl-Philip)) 
( (father Carl-Gustaf Madeleine))) 

The principal means of defining pr.edicates is by using the define-predicate statement, which 
is both a. Lisp special form and an LM-Prolog predicate so it can be entered at top-level 
to either system or included in Lisp files. 

Its arguments are mainly the clauses of the predicate, written as lists 

(P Q1 ... Qn) 

to be read as "P is true if each of Q1 ••• Q11 is true". 

By default, relations in the language are not mutable, but the declaration (:options (:type 
:dynamic)) informs LM-Prolog that programs are allowed to upda.te the father relation. 
Other declarations can be given as :options sub-specifications. In particular, a predicate 
can be declared to be deterministic if it is desired that it should never try to find more 
than its first solution. This control annotation can be regarded as an alternative to 'the 
cut primitive ('!' or '/' in other references) and has the stylistic advantage of a clearer 
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separation between logic and control. Indeed, it has been shown in [Nilsson, 1984] that all 
uses of cut can be replaced by this control annotation. 

LM~Prolog predicates may call Lisp functions. Although this involves two inference mecha
nisms, namely resolution for Prolog and a variant of lambda-calculus for Lisp, the semantics 
of function calls is exactly as if functions were a part of the logic programming language 
itself. A call to a Lisp function is recognized by a syntactical device, and is treated by the 
resolution machinery as an invocation of a deterministic predicate. The function eventually 
returns a value to be unified with a term specified together with the call. 

LM-Prolog obeys the Lisp system's conventions regarding procedure calls and. usage of 
the execution stack, and also inherits Lisp's datatypes and organizes its terms in such a 
way that they can be passed to Lisp directly without conversion. 'J'.herefore, calling Lisp 
functions from LM-Prolog incurs no overhead. 

2.2 Lisp Machine Lisp 

An accurate description of Lisp Machine Lisp can be found in [Moon, 1983). 

2.2.1 Data.types 

Lisp objects are called forms and can be of two categories - atoms 1 and conses i.e. 
dotted, pairs or binary records of any two forms called its car and cdr. A cons of u and v 
is abstractly written u.v. 

The principal use of conses is for constructing lists. A list is recursively defined to be the 
empty list ( abstractly written 0), or a cons of an element and a list. In Lisp Machine Lisp, 
0 is written nil and u1.u2 ••• u11.0 is written (tt1 u2 ••• u11), where n ~ 0. Non-lists of the 

·form U1,U 2 •• • u11_1,u 11 are written (u1 U2 ••• Un-1. u11), where Un I 0. 
Conses correspond to one particular Lisp Machine datatype, whereas atoms correspond 
to a multitude of datatypes, the pr_incipal ones being symbols, used as identifiers and 
written as any sequence of characters not confusable with some other object. Symbols 
may optionally have a package prefix specifying that the symbol belongs in a particular 
namespace. The package prefix is written as a sequence of characters followed by a colon 
':'. Symbols used as keywords are written without prefix but with the colon, e.g. :handle. 

Other atoms are numbers e.g. fixed point, arbitrary-precision, rational, floating point, or 
complex numbers, and arrays, which can be multi-dimensional and contain any terms. 
Many numerical array types are space optimized. Strings are a special case of arrays and 
can be read in as opposed to other array types. Strings are enclosed in double quotes 0

". 

If strings are to contain double quotes, or if symbols are to contain certain special cha.racter, 
those characters have to be prefixed by a slash '/'. A symbol containing special characters 
may alternatively be enclosed in bars (I I). 
A semicolon ';' indicates that the rest of the source code line is a comment, unless the 'i' 
is protected by a slash or double quotes or bars. 

Wlil use a data.type called locative for the purpose of representing logic variables. Locatives 
are generally a kind of pure pointers to arbitrary memory locat;ions. In this implementa-
tion, they are used in a restricted way which is described in Section 5.2. · 

1 Not to be confused with atoms in resolution theory 
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2.2.2 Variables 

M. Carlsson 

Lisp Machine Lisp uses local and special variables. The scope of a local variables is re
stricted to the function defining it but does currently not include any internal functions 
of that function, i.e. (function (lambda ... )) constructs. Special variables are dynamically 
scoped. 

2.2.3 Function definitions 

The principal means of defining a Lisp function is by using the defun statement, used e.g. 
as 

(defun fac (x) 
(cond ((zerop x) 1) (t (* x (fac (1- x)))))) 

The following syntactic variant is used for functions that take a variable number of argu
ments: 

(defun how-many-args (&rest args) (length args)) 

An argument list of (x &rest y) means that the fun_f,tion takes at least one argument (x), 
and some additional arguments collectively viewed as the &rest argument y ( a list). 

Read macros 

For convenience, the Lisp reader provides some shorthands for commonly used forms. In 
this thesis we will use 'x, which is shorthand for (quote x), and #'x, which is shorthand 
for (function x). 'x evaluates to the form x and #' x evaluates to the function definition of 
the form. x. 

2.2,6 Flavors 

An important programming subsystem of the Lisp Machine is the flavor system. 

Flavors is the Lisp Machine subsystem for object-oriented programming. It is a sub
language for defining abstract objects. Instantiations of these objects are called instances. 
The instances hav.e two parts: instance variables and methods. Instance variables are vari
ables that are local to the instance. The methods define the semantics of the abstract 
object. Flavors can also inherit all or some attributes from one or more superior flavors. 

Specifying flavor methods is_ like specifying the operations of an abstract data type. An 
operation on a flavor instance is performed by sending it a message. This is equivalent to 
calling it as a function with the first argument a keyword symbol that selects the proper 
method. Whatever value the method returns is passed back. 

A method is defined by the defmethod statement, e.g. 

(def method (lazy-collect.ion :unify) (other-term) 
(unify (send self ':ordinary-term) other-term)} 

This defines the :unify method of the lazy-collection flavor. The method takes one argument, 
other-term, and refers to the current instance (self). 

11 October 25, 1984 
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2.3 LM-Prolog syntax and terminology 

In LM-Prolog, we represent terms and all other logic programming constructs as Lisp 
forms, using Lisp Machine Lisp syntax except for logical variables, which are represented 
by locatives and written as variables beginning with '?'. 
An LM-Prolog program is a set of predicate definitions. A definition consists of an opt-ion 
spec and a sequence of clauses pertaining to a particular predicate. The option spec is 
optional and contains on-line documentation, argument list declaration, database control, 
determinacy control, whether execution is compiled or interpreted, whether the predicate 
is static or dynamic, and more. Every definition goes into a world which is denoted by a 
symbol and may be given in the option spec. Worlds name collections of predicates and 
are discussed in the section about procedural semantics. 

Clauses of dynamic predicates can be added or deleted ( asserted or retracted) at run time, 
clauses of static predicates cannot. 

Each clause comprises an optional name, a head, and a body. The name is just a symbol 
or omitted. Each definition is constrained to not contain two named clauses with identical 
names. 

The body consists of a sequence of zero or more predications ( called goals, queries, literals, 
or boolean terms in other references). A predication is a cons of a predicator, which names 
a predicate, and a list of arguments. 

The-head and body of a clause are all examples of terms. In general, a term is a variable, 
an atom, or a cons of any two terms. 

A variable is written as a symbol beginning with a single character '?'. An anonymous 
variable, i.e. a variable having just a single occurrence in the clause, may be written as 
the single character '?'. In the implementation, variables are represented as locatives. 
Occurrences of variables inside structures are represented as invisible pointers, described 
in more detail in Section 5.3, 

Declarative and procedural semantics 

The declarative semantics of an LM-Prolog statemenl; is no different from that of other 
Prologs and more generally from that of predicate logic. It defines the set of predications 
which are true according to a given program. With Warren [1977] we say that a predication 
is true if it is the head of some clause instance and each of the predications of that cbuse 
instance is true, where an instance of a clause is obtained by substituting, for some of its 
variables, a new term for each occurrence of the variable. 

Not all true predications are heads of clause instances, however, the exceptions being bui"lt~ 
in predicates ( called evaluable predicates in other references), the declarative semantics of 
which will have to be accounted for separately. The principal buiH-in predicates are lislied 
in Appendix B. 

The procedural semantics of an LM-Prolog statement is a superset of tha,t of other Prologs 
since LM-Prolog has a richer control language. Given a predication P, the system searches 
the clauses of a definition of P, in the same order as they were defined, for a matching 
head. The search is restricted to the current universe which is a sequence of worlds. The 
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systems searches the worlds of the universe, one at a time, for a definition of P. The search 
normally stops at the first definition found. If no definition is found, an error is signalled. 

If a matching clause instance is found, each of the predications in the body of the matching 
clause instance is executed, from cleft' to cright'. If at any time a match is not found, 
the system backtracks. Execution terminates with success if there are no more pending 
predications. Execution terminates with failure if all choices for the original predication 
have been rejected and there are no more choices. 

Predicates can be declared to be mutable, allowing programs to update t.he database 
dynamically. The universe can similarly be updated dynamically by adding or deleting 
worlds. 

A predicates is deterministic if it can have at most one solution whatever the arguments. 
Tlre control langtrage of LM-Prolog includes the ability to declare a predicate deterministic, 
i.e. to force it to never produce more than one solution. 

2.5 Programming comments 

The parser issues stylistic warnings for variables other than ? if they occur only once. This 
catches many typing errors. No warnings are issued for variables beginning with ?ignore. 

Unlike most Prologs, undefined predicates signal er:rors when called, since we believe such 
behavior to be more informa'~ive than just failing. Note that it is possible to define empty 
predicates, e.g. fail can be defined in LM-Prolog. Calling a, compiled predicate with the 
wrong number of arguments also signals an error. 

Predicates in LM-Prolog can take any number of arguments-they do not have fixed arity. 
This might seem like a deviation from first-order language theory but it is not. LM-Prolog 
predicates can be viewed as taking exactly one argument which is a list, 
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3. Overview of LM;..Prolog implem.entation 

3.1 Introduction 

M. Carlsson 

Prolog is a language where procedure calls and unification are by far the most common 
operations, hence it is important to minimize the overhea,d incurred by these. With this 
in mind, the crucial issues in the implementation of LM-Prolog are the following, to be 
discussed in more detail in subsequent sections. 

1. Organization of the database. 
The concept of worlds makes the structure of the database non-trivial. The most 
important problem becomes to minimize the overhead involved with searching the 
sequence of worlds. Indexing techniques for speeding the search for matching clause 
instances are also relevant. 

2. Organization of run-time data structures. 
The main design decision is how to represent terms at run time, and the choice be
tween "structure sharing" and «copying pure code". We have chosen a variant of 
copying pure code because ( i) the run time terms become indistinguishable from the 
corresponding Lisp objects, ( ii) the firmware provides good support for construct
ing terms whereas the machine architecture does not provide supporl; for handling 
structure sharing 'molecules', i.e. pairs (source term, frame). 

3, Unification. 
Two problems have to be solved viz. ( i) the unification of two object lierrns, and ( ii) 
the unification of a object term with a source term. The latter problem is aided by 
a coding scheme for source terms enabling us to use dispatch ,hardware to support 
unification. Our unifier can operate in three different modes with respect to cyclic 
terms, viz. ( i) ignoring the possibility of cyclic terms being created and related 
termination problems, ( ii) preventing cyclic terms from ever being created using a, 
traditional occur check, and ( iii) handling cyclic terms i.e. being able to unify, copy, 
a11d print them, and pass them to Lisp. 

4. Run-time control structure. 
We use a continuation-passing control structure as outlined in Chaplier i. Each predi
c~te compiles to a Lisp function that takes an extra argument; which is a continuation 
that in the general, non-deterministic case corresponds to the remaining goals to be 
solved. If the predicate succeeds it calls the continuation, if it, fails it returns nil. This 
control structure is optimized if a compile-time analysis deems a predicate determin
istic. 

3.2 Database organization 

Conceptually, the database is organized as a collection of worlds, each world being a 
collection of predicates. At any given time, the current universe imposes' a search order over 
the database. Two different predicates with the same name may coexist in different worlds. 
,The :if-another-definition declaration (see define-predicate) decides what the serna.ntics for 
that case is. 

The implementation maintains the current universe in the special variable *universe*. 
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Each predicate is stored as a data structure in the database. This data structure contains 
a function called the prover, which is invoked by predicate-to-predicate calls. The kind of 
prover depends on the kind of predicate: 

• For indexed predicates, the prover tries to find an index to apply. A subterm of one of 
the arguments passed in a call is used as a lookup key in the index, and typically a small 
set of clauses are found and tried sequentially. 

• For static compiled un-indexed predicates, the prover is the translation of the entire 
predicate. 

• Otherwise, the prover is a small function that tries the clauses sequentially. 

For dynamic compiled predicates and for indexed compiled predicates, each clause is com· 
piled to a function. Otherwise, the clauses are just stored as source terms. 

Provers of compiled predicates are exemplified in Appendix C. A typical prover of an 
interpreted predicate a could look like the following: 

(defun a-in-user-prover (continuation &rest arguments) 
(rest-arg-fixup arguments) 
(try-each-interpreted-clause 

(contents a-in-user-clauses) continuati~n arguments *trail*)) 

An interpreted predicate a that is forced to be deterministic might look as follows: 

(defun a-in-user-prover (continuation &rest arguments) 
(rest-arg-fixup arguments) 
( cond ( (try-each-interpreted-clause . 

(contents a-in-user-clauses) (continuation (true)) arguments *trail*) 
(invoke continuation)))) 

Above, contents denotes the operation of following a locative pointer. The function rest
arg~fixup fixes a problem with &rest' arguments. The special variable *t.rail* contains the 
trail 8tack pointer and is discussed in section 5.5. The special form continuation creates a 
continuation of its argument. 

3.3 Term organization 

The LM~Prolog implementation deals with two kinds of terms, object terms (or, sirnply 1 

terms, to be discussed in the following section), and source terms which are descriptions 
of object terms. The source terms contain various codes that the microcoded unification 
routines dispatch on. There are special codes for single, first, and subsequent variable 

· occurrences, since the unification routines take different actions for different kinds of oc~ 
currences. The codes are defined in Section 5.1. 

Object terms are terms ordinarily dealt with at run time and are visible to the user, whereas 
source terms occur in the database and as constants inside of compiled code. Source terms 
are used as templates for creating object terms. The creation of object terms is expensive 
in terms of both space and time, and in all non-structure sharing implementations it is 
important to not wastefully create terms. Indeed, LM-Prnlog creates object terms only 
when a variable is matched with a source term and prior to predicate"f;o-predicate calls, 

For example, the source term corresponding to the clause 
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((append (?a . ?x) ?y (?a . ?z)) (append ?x ?y ?z)) 

is 

(3 (3 (0 . append) 3 (3 (1 0. ?a) 11 . 7x) 3 (1 2 . ?y) 3 (3 (2 0 . ?a) 1 3 . ?z) 0) 

3 (3 (0 . append) 3 (2 1 . ?x) 3 (2 2 . ?y) 3 (2 3 . ?z) 0) 0) 

If one may attempt an analogy with micro-biology, source fierms are the genes for object 
terms, and unification is the ribosome, synthesizing object terms only when needed. 

8.4 Unification 

Since there are two different kinds of terms, there are-also two different unification algo
rithms in the system. The most commonly used algorithm, Unify 8 , is the one that unifies 
a predication (represented as a object term) with the head of a clause (represented as a 
source term). This is the main action taken by the interpreter. Compiled code does not 
construct predications, but rather their arguments, and unifies these with corresponding 
source terms for arguments of the head of a clause, one at a time. The second algorithm, 
Uni/y0 , which unifies two object terms, is used as a subroutine to Unify8 • So is a third 
algorithm, Construct, that constructs object terms out of source terms. These three al
gorithms correspond to three instructions of the extended instruction set, ~ee Appendix 
D. 

8.5 Invocation of predicates 

Invocation of predicates rests upon the standard function calling protocol of the machine 
which corresponds to call-by-value in conventional languages. Even a logical variable is 

· passed by value, in a sense, since it is the pointer to its value cell that is passed. 

There are two complications to this that deserve further comment. One has to do with 
the dynamic search order of the database, the other is non-determinacy. 

3.6.1 The cache mechanism 

When a predicate Pis called, the system in general has to search for its definition, according 
to the current universe. To avoid having to do this search if the universe is not changing, 
we have invented a cache mechanism. The definitions of P, if any, are stored under prolog
definitions on P's property list. The value of the property is an alist ( association list) 

(cache (world . definition} (world . definition) ... ) 

where the first element is a distinguished element 

(universe . current-definition) 

The cache mechanism consists in checking if universe is identical to *universe* (the current 
universe). If so, use current-definition. If not, the rest of the alist is searched according to 
*upiverse*, and cq,che is set up. There is a dedicated machine instruction for predicate-to-· 
predicate calls which handles the normal case of the cache mechanism. 
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3.6,2 Backtracking 

Variable bindings generally have to be undone upon backtracking. When a value cell is 
bound, its address is also pushed onto the trail-stack. The value cell is eventually made 
unbound when the trail-stack unwi"nds. 

Backtracking is implemented by ( i) for each backtrack-point saving away the trail-stack 
pointer; ( ii) continuation passing; ( iii) if the value passed back from the continuation is 
nil, unwinding the trail-stack and reinstalling its stack pointer, and continuing to find more 
solutions. 

Assume that the interpreter is called with a continuation C and a conjunction of two 
predicates P and Q. The interpreter will then call P with continuation C1 

Ci = [call Q with continuation Gj 

If P succeeds it will invoke its continuation C1 whereby Q is called. P will go on to consider 
more alternatives only if C1 returns nil. Thus, the way to force a predicate to exhaust its 
search space is by calling it with continuation false. To get only the first solution, one 
calls it with continuation true. The top-level calls the interpreter with continuation to ask 
the user whether more solutions are wanted. Sets and bags use special continuations that 
collect the answers, and so on. 

3.6 Non-determinacy and continuations. 

Continuations are normally passed as arguments in predicate-to-predicate calls. The only 
exception to this is when a continuation is put on the trail as explained in Section 5.3. 

In the current version of the Lisp system, continuations a,re allocu,ted as lists where the 
first element is a function F of the rest of the elements which are the variables referred 
to by F. In other words, all local ,variables that the continuation needs to access are 
copied when the continuation is created. A continuation is 1:nvoked by applying its car 
to its cdr. F will then get all its variables passed as arguments. We have adopted this 
solution since coin piled code can only access ( i) the local activation frame and ( ii) spec£al 

· i.e. dynamically scoped variables which are too expensive for our purposes. 

In newer versions of the Lisp system, lexical scoping of variables will be supported. With 
lexical scoping, "internal" functions, for example continuations, will have access to the 
activation frame of the function they occur in. For the normal use of continuations, then, 
there will be no need to allocate continuations as lists, Instead we will r~ally be using. 
functions of zero arguments as continuations. A continuation will be invoked by caJling it. 

For example, the Lisp procedure f defined as 

(defun f (x y) 
(g x (continuation (h y)))) 

passes a continuation to the procedure g. The continuation refers to a variable in the 
stack frame of the invocation of f. Without lexical scoping, (continuation (h y)) would 
macro-expand to (list #'h y) i.e. at run time, a list 2 long would be constructed, With 
lexical scoping, the continuation form would macroc•expand to tr (lambda () (h y)) i.e. at 
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run time, a pointer to a piece of compiled code referring to a higher binding context would 
be passed. Nothing would be constructed. 

Using continuations can require a large execution stack since in general the system recurses 
deeper while it succeeds and returns only upon failure. Every node in the proof tree will 
correspond to a stack frame. Clearly this is unacceptable, and so reasonable Prolog im
plementations optimize "deterministic subtrees". LM-Prolog does a compile time analysis 
of predicates to see if they are deterministic. Predicates can also be forced to become 
deterministic by a declaration (see define-predicate). The compile time analysis is based 
on detection of incompatible clause heads and on knowledge about the predicates called 
in the bodies of clauses. 

Assume, again, that the interpreter is called with a continuation O and a conjunction of 
two predications P and Q. Assume moreover that P is known, by compile-time analysis, 
to be deterministic. The interpreter will then call P with continuation true. If P succeeds 
it will invoke its continuation true and return t. The interpreter then goes on to call Q with 
continuation C. The stack space used in the computation of P, and all sub-computations, 
is thus reclaimed and reused in the computation of Q. No Intermediate continuation is 
created. 

For compiled code, analogous code is emitted in tJ1e non-deterministic and deterministic 
cases. 

3. 7 Tail recursion 

When a function f finishes its computation by calling another function g we say that f 
calls g tail-recursively. If f = g, we say that f is locally tail--rcwrsi'oe, Tail-recursive calls 
offer an important opportunity for optimization, particularly in applicative languages. On 
the Lisp machine, a tail-recursive call makes it possible to reclaim the stack frame of the 
calling function. Indeed, the machine can be told to operate in a, mode in which it always 
reclaims the stack frame at ta,il-recursive calls. 

In Prolog, tail-recursion occurs when a predicate p C3,lls :mother ,predicate q as its last goal, 
and p has no more alternatives. Some implementations of Prolog optimiie tail-recursive 
calls, notably [Warren, 1980) and [Bruynooghe, 1982a]. LM--Prolog's interpreter detects 
opportunities for tail-recursion optimization, and is aided in this respect by determinacy 
declarations. The compiler transforms local tail-recursion into iteration by post-processing 
the emitted Lisp code by a recursion removal package base<l on [Risch, 1973]. 

3.8 The interpreter 

The interpreter is tiny given unification and given that all built-in pr(~dico,tes have their 
own provers. Its main functions are prove-conjunction and try~each~dause which h,mdle 
conjunctions of predications and alternative clauses, respectively. It is small enough to be 
listed verbatim in Appendix A. Aspects of the interpreter are discussed in Chapter (j, 

3.9 The compiler 

The compiler is written in Lisp and emits Lisp code, which is post-processed as described 
above. The emitted code makes use of the exl;ended instruction set described in Appendix 
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D if microcode support is available. It is further translated into machine code by the 
ordinary Lisp compiler. 

The compiler operates in one mode for static un-indexed predicates and in another mode 
for dynamic or indexed predicates. In the previous case it translates predicates to prover 
functions. In the latter case, it translates individual clauses to functions. 

The compiler optimizes static predicates in the following wayg: 

Arity restriction. 
In general, an LM-Prolog predicate does not have a fixed arity and must be 
prepared to handle predications of any arity. For static predicates, all clause 
heads are known and so the compiled code can be specialized to handle only 
the relevant arities. 

Incompatible head detection. 
Even for un-indexed predicates there are opportunities to not just try the clauses 
sequentially. Using c+'-declarations of arguments (see define-predicate), the 
compiler can detect mutual exclusion among the clause heads. 

Determinacy analysis. 
For a static predicate, the compiler performs an analysis to see if it is determin
istic. The principal use of this analysis is to optimize subsequent compilation 
of predications of this predicate. Incompatible head detection often helps this 
analysis step. 

The main parts of the compilation process can be divided into: 

• The optimizations discussed above. 

• Compilation of alternative clauses at the top-level of a predicate and when opencoding 
(unfolding) a predication. This involves the resolution of predications against clause 
heads producing instances of clause bodies unification and variable initialization goals. 

• Compilation of conjunctions of predications. This involves continuation passing and 
predicate-to-predicate calls. 

• Compilation of unification. 

• Compilation of built-in predicates which is handled by intrinsic compile-methods. 

Minor optimizations are performed for all these steps. 

3.10 Lisp interface 

We .ha.ve shown how the Lisp-to-Prolog interface works by the continuation passing pro
tocol. As a variant of that control structure, the relation can be computed in a stack 
group i.e. in a coroutine object, with continuation to del;ach (stack-group-return) from the 
coroutine with its state saved. Resuming the coroutine triggers backtracking. This control 
structure corresponds to using a Prolog relation as a generator of solutions. On top of this 
mechanism, we have defined the flavor prolog .. query wHh methods 

:flush Kill the generator and release all its resources. 
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:next-answer 
Request the next answer. An instantiation of the answer is returned. 

The default top-level behavior is based upon prolog-query. 

There is also a Prolog-to-Lisp interface, defined by built-in predicates (see lisp-value, lisp
predicate, and lisp-command). The compiler does not translate calls to these predicates to 
calls to the Lisp evaluator, but rather tries to compile their arguments as far as possible. 
Normal object terms are compatible with (indeed, indistinguishable frorn) Lisp objects, 
and so the arguments of these predicates are just passed to the called Lisp procedures. 
In case the Lisp procedure wants to do something strange to its argurnent, like storing it 
away, or in case certain language extensions have given arise to flavor instances among the 
Prolog terms, the arguments have to be converted first. The interface predicates take an 
optional control annotation which notifies LM-Prolog that conversion is needed. 
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4. Database organization 

As we have discussed in sections 2.3 and 3.5, LM-Prolog has facilities to support worlds 
i.e. collections of predicates, and user controllable indexing. . . 
LM-Prolog's database is a collection of definitions, subdivided into worlds. A world is 
identified by a symbol. Not all worlds need to be active. A definition is active if it belongs 
to a world that is in the universe. When a predication P is to be executed, the system 
in principle searches the worlds of the universe, one at a time, for a definition of P. The 
search stops at the first definition found, unless a different semantics is desired by the 
:if-another-definition option (see define-predicate). 

Each predicate is stored in the database as a data structure with the following slots: 

• prover-a function of the continuation and the predication's arguments. 
This is the entrypoint to the code that executes the predicate. It can be compiled code 
for the predicate, or a small function which serves as an interface to the int;erpreter. The 
calling sequence is standardized to be the same for both cases. 

• interpreter-slot-is a substructure containing: 

• deterministic-non-nil if the predicate is deterministic. 
The compiler analyzes all static compiled predicates to see if "they are determinis
tic. The user may also optionally declare a predicate to be deterministic, see define
predicate. 

• interpreter-prover-the prover or nil. Under certain circumstances, interpreter-to
predicate calls can be optimized to not go through the prover, .but rather proceed 
directly to try the clauses of the callee. The value of this slot fa equal to the disjunc
tion of the following conditions, i.e. the optimization is performed if all the conditions 
are false: · 

• The callee is indexed. 
It is normally worth while to go through the index. 

• The callee is compiled. 

• The callee contains cut. 
The callee's prover must take special actions for the workings of cut, see Chapter 
6. 

• The value of the :if-another-definition option is not :ignore (see define-pn~dicate). 

• clauses-the clauses making up the definition. 
The structure of a clause is discussed below. 

• indexer-function for adding new clauses 

• predicator-name of predicate defined 

• options-given and compiler-emitted options merged with the defaults 

• indexes-mainly hash tables for indexes of predicate 

Clauses are flavor instances with instance variables 
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templates 

M. Carlsson 

A cons of source term for the head and source term for the.body. Source terms 
are explained in Section 5.1. 

committing 

predicator 

name 

t iff the head of the clause is incompatible with the heads of all subsequent 
clauses. The value of this slot is cornputed by the Incompatible Head Detection 
optimization step discussed in Section 7.2. 

name of predicate defined. 

the name of a named clause, or "No name" for an 1mnamed clause. 

contains-cut 

prover 

world 

t iff the clause contains a cut. 

a function of a continuation and arguments. Used for compiled indexed and 
compiled dynamic predicates. 

the world that this is a part of 

Interesting flavor methods of clauses are: 

:unify term 
unifies term with a unique instance of the clause, this is used by some database 
predicates. 

:resolve continuation arguments 
just calls the prover, this is used for compiled indexed and compiled dynamic 
predicates. 
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5. Term organization 

5.1 Representation of source terms 

A source terms Sis represented as a cons whose car contains a type code (an integer) with 
the following meaning: 

0. S stands for a ground term. The cdr contains the ground term. 

1. S stands for a first occurrence of a variable. The cdr contains an occurrence spec as 
explained below. 

2. S stands for a subsequent occurrence of a variable. The cclr contains an occurrence 
spec. 

3. S stands for a non-ground cons. The cdr is a cons of { source tei·m for the car} and 
{ source term for the cdr}. 

4. S stands for a read-only first occurrence of a variable. The cdr contains an occurrence 
-spec. 

5. S stands for a read-only subsequent occurrence of a variable. The cdr contains an 
occurrence spec. 

6. S stands for a read-only single occurrence of a variable. The cdr contains the variable 
name or nil. 

7. S stands for a single occurrence of a variable. The cdr contains the variable name or 
nil. 

Read-only annotations are explained in Chapter 8. Read-only single occurrences are prob
ably not useful but are included for symmetry. 

An occurrence spec is either a cons ( occurrence code . variable name) or just occurrence 
code. The latter is an integer xyy where x (octal) specifies a base register and yy (octal) is 
an offset. The following base registers are used: 

0. The interpreter's scratch vector. 

1. A compiled predicate's local variable block. 

2. A compiled predicate's argument block, 

Base register O occurs in clauses in the database, The interpreter and the compiler use 
those. Compiled Prolog code uses base registers l and 2. 

5.2 Representation of object terms 

This section discusses the representation of run-time (object) terms. The discussion takes 
place from two viewpoints. First, we describe the representation from the viewpoint of 
Prolog, of the user, and of normal Lisp machine functions. In order to be able to describe 
the implementation of logical variables, however, we must also describe these matters from 
the viewpoint of the firmware and hardware. 
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5.2.1 The normal view 

M. Carlsson 

From the normal point of view, a Prolog term is indistinguishable from the corresponding 
Lisp object, e.g. 3.14 is both a Lisp and a Prolog flonum; () is the empty list in both Lisp 
and Prolog; (Im . prolog) is a cons of two symbols in both languages. 

The one exception of the above statement is the treatment of logical variables. An (un
bound) logical variable really doesn't correspond to a Lisp object at all since it stands 
for an unknown term. Nevertheless, it has to be represented somehow. Lisp machine 
functions see (unbound) variables as locatives. Moreover, if a term T0 contains one or 
more occurrences of an unbound variable v,,. and V becomes bound to a term T1 , then T1 

effectively substitutes all occurrences of V in T0 • The implementation of course doesn't 
use substitution, but from normal viewpoints, the result is indistinguishable from that of 
substitution. 

The next subsection discusses the mechanisms that realize this. 

6.2.2 A machine-oriented view 

To understand the machine's point of view, we must first discuss its storage conventions. 
On the firmware level, a term is a tagged pointer ( datatype, pointer). For the sake of this 
discussion we will use symbolic names prefixed by dtp- to denote datatypes. The data.type 
field determines the kind of term: 

• variables are dtp-locative, 

• conses are dtp-list, 

• other data.types are atoms. 

For the sake of storage efficiency of list structures, machine words have a third field called 
the cdr-code. For the sake of this discussion we will use symbolic names prefixed by cdr
to denote cdr-codes. The cdr-codes are used as follows: 

· • A cons dtpa, ptra) .0 is stored as 

p: (cdr-nil, dtpa, ptra} 

• A cons dtpa, ptra}.u where u is a cons is stored as 

p: (cdr-next, dtpa, ptra} j storage for u ... / 

• A cons (dtpa, ptra}.(dtpd, ptrd} where {dtpd, ptrd} is not a cons or (/J is stored as 

. p: I (cdr-normal, dtpa, ptra} 11 (-, dtpd, ptra} I 

where p: ~~denotes adjacent machine stored at address p. In all three cases, 
the cons term itself is represented as a tagged pointer (dtp-list, p}. 

Thus, it takes one word per element to represent a list (not including the space requirements 
of the elements themselves). Accessing the car of a cons {dtp-list, p} consists in reading 
the machine word stored as p, ignoring the cdr-code field. Accessing the cdr of a cons 
(dtp-list, p} consists in reading the machine word stored as p, and then taking further 
action depending on the cdr-code field. 
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Now I there is one important exception to the storage scheme outlined here. If the data type 
field of a machine word contains an invisible pointer datatype such as dtp-external-value
cell-pointer I then the pointer field is considered as a forwarding pointer. For example, the 
car of (dtp-list, p) with 

p: I (cdt-nil, dtp-external-value-cell-pointer, •)I ... I(-, dtpa, ptra) I 

is ( dtpa,ptra). Invisible pointers can form chains of any length. The car and cdr operations 
follow such chains to their end. Invisible pointers are used for representing occurrences 
of variables inside structures, and also for representing variables linked to other variables. 
The invisible pointer chains thus created always end inside a value cell. Value cells are the 
subject of the following subsection. 

5.2.8 Value cells and binding 

A logical variable is represented as a tagged pointer (dtp-locative, p), pointing at a value 
cell. A value cell contains a pointer to a term. In the unbound case, a value cell points to 
itself, For the sake of a more friendly appearance to the user, a value cell may optionally 
contain the source code variable name. Value cells of the interpreter contain the source 
code variable name, those of compiled code do not. Thus, a value cell is stored as one 
machine word 

p: [ {cdr-nil, dtp-locative, •) j 

or as two machine words 

p: I (cdr-normal, dtp-locative, •) 11 (-: dtp-symbol, •) j .•. 

. . . I storage for source code name of the variable I 
A value cell can become bound to a term in which case the datatype and pointer field of 
the first machine word are replaced by the term's. Again, there is an exception if the term 
is a variable, in which case the datatype stored is changed to dtp-external-valoe-cell-pointer. 
We ca~ have chains of variables bound to other variables by forwarding pointers. A chain 
ends either in an unbound variable or in a term which is not a variable. The following of 
chains of pointers is called dereferencing and is performed automatically when a car or cdr 
indirects to a value cell. Dereferencing has to be done explicitly on terms stored as local 
variables in compiled predicates. Unbound variables are self-referential so that the unifier 

· can get hold of an unbound variable after dereferencing it. 

It is the usage of forwarding pointers to value cells inside of' the representation of terms 
that give the appearance of literal substitution of occurrences of a variable when that 
variable becomes bound. 
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As opposed to e.g. DEC-10 Prolog [Warren, 1977], there is no enforcement of the direction 
of the pointer when a variable is bound to another variable. That is to say, the senior 
variable can be assigned to the value cell of the junior variable, equally well as the other 
way around. It is unclear how an enforcement could be implemented, due to the compli
cated storage allocation scheme of the machine (see Section 5.5). In DE0-10 Prolog, the 
enforcement is cheap ( an integer comparison of two registers) and necessary to prevent a 
dangling pointer problem. Warren claims that the enforcement also helps preventing long 
chains of linked variables to be built up. 

5.2.4 A:n example 

As an example of a complex term, let us once again consider the clause 

((append {?a . ?x) ?y (?a . ?z)) (append ?x ?y ?z)) 

which is represented as 

~~~~((append (• . •) • (• . •)) (append • • •)) 

where~ denotes an unbound value cell and • denotes a variable occurrence. 

5.2.5 &REST arguments 

As we have seen, variable occurrences inside of list structures are always represented as 
invisible pointers to value cells. However, lists can be implicitly constructed as &rest 
arguments by the predicate calling mechanism, when the callee accepts a variable number 
of arguments. If elements of a &rest argument are variables, the mechanism will not 
automatically change the datatype .to dtp-external-value--cell-pointer. For this case, the 
implementation uses a runtime function, rest-arg-fixup for the datatype correction. 

Another problem with variable arity is the fact that &rest arguments reside on the execu
tion stack and not in heap storage 

5.2.8 Some notes on complexity 

The cost of making a variable binding is constant. 

The cost of accessing a value cell is linear in the length of the chain of forwarding pointers 
starting at the value cell, although the proportional constant is quite small (6 Jt-cycles). 

The cost of constructing an object term out of a source term is roughly proportional to its 
· number of occurrences of type codes 1, 3, 4, 6, and 7. 

5.3 Unification 

5.3.1 Introduction 

Unification [Robinson, 1965] is the heart of all Prolog implementations, indeed, of all 
resolutfon-based logic programming. It plays the role of constructor and accessor func
tions in functional programming languages, and of conditionals, assigmnent, and pointer 
referencing in conventional languages. 
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In Robinson's classical unification algorithm, the domain of unifiable terms is restricted 
to acyclic terms. Contemporary implementations of Prolog typically do not enforce the 
acyclicity of terms and it is easy to construct cases where unification does not terminate. 
Lately, several authors have proposed unrestricted unification algorithms which consider a 
variable to be unifiable with a term containing it. See e.g. [Huet, 1976; Robinson, 1976; 
Colmerauer, 1980; Haridi, 1981]. 

With respect to the treatment of cyclic structures, our system operates in one of three 
modes: 

:ignore This is the na'ive way of treating cyclic terms: the possibility of constructing 
them is ignored altogether, and attempts to unify such terms may not terminate. 
This mode of operations is the fastest ( almost linear time) and in most Prologs 
the only available mode. 

:prevent This is the classical way of treating cyclic terms: the possibility of constructing 
them is prevented by means of an occur check which is invoked any time that 
a variable is bound to a cons term. The occur check simply does a tree walk 
of the term, searching for an occurrence of the variable, This operation mode 
slows down unification severely, making its time complexity 0( n:") in the size of 
the terms. It should be noted that there exist better (indeed, O(n)) algorithms, 
although for small n they are much worse than the algorithm we use. See 
[Martelli and Montanari, 1976] and [Paterson and Wegman, 1976j for these 
linear algorithms. 

:handle The possibility of constructing cyclic terms is fully supported by unification and 
by the rest of the run-time system. In this mode of operation, unification still 
proceeds in almost linear time, although with a larger constant. It is well known 
that cyclic terms may introduce paradoxes and jeopardize the conBistency of the 
logic system, but since cy,clic terms may have pragmatic advantages, they are 
included as an optional feature. The semantics of logic programming languages 
with cyclic terms is a difficult subject, treated first in [Colmerauer, 1980] where, 
in fact, all connections with logic have been severed. Later, van Emden a,nd 
Lloyd [1984] have shown that Colmerauer's language can be regarded as a logic 
programming language. Hansson et al. [1981] attack the problem by distin
guishing between canonical (i.e. finite) and non canonical tenns and having 
different computation rules for the two cases. 

· 5.3.2 Classical unification of object terms 

The classical unification algorithm is very simple. Our formulation closely matches e.g. 
th~ formulation of unify given in [Morris, 1980]. 

1. Two identical terms unify. We use the Lisp predicate eq to judge whether terms are 
identical. 

2. Two cons terms unify if their cars unify and their cdrs unify. 

3. A variable unifies with another term if it br:nds to the other term. In :prevent mode, 
a variable binds to a term iff the term does not contain the variable. ln the other 
modes, a variable always binds to a term. 
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4. Two equal atomic terms unify. We use the Lisp predicate equal to judge whether 
atoms are equal. 

5. No other pairs of terms unify. 

As we shall see later in this section, there is a way for objects of user-defined datatypes to 
unify with other objects. 

As an example of unifying object terms, let us consider the predication 

(= (?a ?b 0) (?b ?c ?a)) 

with all variables initially unbound. It is represented as 

Satisfying the predication results in the data structure 

which prints as 

(= (0 0 0) (0 0 0)) 
5.3.3 Unrestricted unification of object terms 

In :ignore mode, the classical algorithm may not terminate if its arguments are cyclic. To 
arrive at unrestricted unification with guaranteed termination, we ~nodify the algorithm 
slightly introducing assumptions about identity, replacing steps 1-2 above by: 

1'. Two terms unify if they are identical or if they are assumed to be identical. 

2', Two cons terms cx.(3 and 1.8 unify if, under the assumption that (x.(3 and 1.8 are 
identical, a unifies with , and (3 unifies with 8. 

Our idea is to use these assumptions to narrow down the structures to be unified until a base 
case can be used. Variants of the scheme have been published in [Huet, HY/6; Robinson, 
1976J. 'Interesting alternative schemes based on equations can be found in. [Colmerauer, 
1980; Haridi, 1981]. 

Morris has shown [1980] our idea to be equivalent ( i) to an algorithm by Fisher and Galler 
[1964] for representing an equivalence relation in such a way that it may expeditiously 
be both interrogated and progressively coarsened, ( ii) to an extension of the classical 
unification algorithm so that it computes a substitution which contains cons-cons pairs in 
addition to variable-term pairs. 

Since the size in cons cells of a cyclic term is finite and each assurnption decre,tses the 
effective total size by one, a formal termination proof based on induction on the effective 
total size can be worked out and has been published in [Fages, 1983]. 
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The time complexity of the algorithm depends crucially on how fast the assumptions can be 
checked. It is important that the assumptions are dereferenced, 1 i.e. that chains of identity 
assumptions are followed to the end, when new assumptions are added. Dereferencing 
assumptions yields trees of terms that are assumed to be unifiable. The algorithm has 
been shown to be quadratic if the assumptions are not dereferenced, O(n log n) if they 
are dereferenced, and almost linear if, whenever an assumption is added, it is added from 
a smaller assumption tree to a larger. 2 See [Galler and Fisher, 1964; Tarjan, 1975] for 
details . 

. Our implementation dereferences assumptions but is ignorant about the sizes of the as
sumption trees. However, checking the assumptions is extremely fast and uses the same 
mechanism as dereferencing, and so we claim that we have an almost linear algorithm. 
In particular, when the algorithm operates on strict trees, assumptions are made but are 
never encountered. We use the Lisp machine primitive bind to temporarily insert forward
ing pointers into the terms to be unified. If a.(3 stored at address p is assumed to be 
identical to "(,8 stored at address q, then the situation before and after unification can be 
described as: 

p: @] ... I storage for f3 •• , I 
q: [1] , .. I storage for 8 .. , I 

With the identity assumption in effect, the situation is: 

p: I(-, dtp-header-forward, •} I ... I storage for (3 .. , I 

q: G] ... I storage_ for 8 .. , I 

with @] to be reinstalled at p when the special binding stack unwinds. The difference 
between dtp-external-value-cell-pointer and dtp-header-forward is that the former forwards 
a car or a cdr, whereas the latter forwards a cons. 

5.3.4. Variable Binding 

The variable binding mechanism has been discussed in Section 5.2. 

In order for the implementation to be able to backtrack, it must in particular be able to 
undo variable bindings. The traditional way in Prolog implementations to arrange this 
is using a "trail", i.e. a stack onto which the system pushes pointers to value cells being 
bound. LM-Prolog is no different in this respect. The followiug comments are relevant 
though. 

• LM-Prolog trails all variable bindings since there is no easy way for it to see if the trailee 
would in any case be discarded on backtracking since there is no machine register holding 
the "latest backtrackpoint". 

1 Called path compression in [Tarjan, 1975] 
11Called balancing in [Tarjan, 1975] 
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• LM-Prolog uses separate trails in the implementation of lazy and eager collections. Each 
LM-Prolog toplevel has its own trail. 

• Continuations are allowed on the trail and are invoked when the trail unwinds. This is 
used when there is a need to guarantee that something happens on backtracking, e.g. to 
undo a side-effect. 

If the occur check is enabled, the variable binding mechanism traverses the other term and 
fails if the other term has an occurrence of the variable about to be bound. In general, 
this makes unification quadratic in the size of the largest of the two terms. 
5.3.5 Unifying object terms with source terms 

Recall that a source term is a cons whose car is a type code: 

(0 . "ground constant") 
(1 . "offset for first variable occurrence") 

(2 . "offset for subsequent variable occurrence") 
(3 "car's source term". "cdr's source term") 

( 4 . "offset for read-only first variable occurrence") 
(5 . "offset for read-only subsequent variable occurrence") 

( 6) ;;read-only single varia.ble occurrence 
(7) ,·;single variable occurrence 

The algorithm follows (numbers corresponding to type codes). OT denotes the object 
term. 

0. Unify0 OT with "ground constant". 

1. Store OT in the place located by "offset for first variable occurrence". 

2. Unify0 OT with contents of place located by "offset for subsequent variable occur-
rence". · 

3. If OT is a variable, then bind it to the object term that this source term describes. 
If OT is a cons, then Unify8 its car with "car's source term" and its cdr with "cdr's 
source term". Otherwise fail. 

4. If ,OT is a variable, then allocate a new cell X and store it at the proper offset and 
bind OT to a read-only object (see Chapter 8) made of X. 

5. Retrieve X at the proper offset. If OT and X are variables, make a read-only object 
of X and bind OT to it. Otherwise if X is a non-variable, then Unify 0. OT with X. 

6. If OT is a variable, then bind it to a read-only object. 

7. Succeed. 

The issues having to do with cyclic structures do not come up here ( excepti in cases 2 and 
5), since source terms cannot be cyclic in our implementation. 

Note that the first occurrence of a variable in a clause corresponds to its own type code. 
Many variables are initialized by their unification with some term. The remaining variables 
have to be initialized by allocating value cells. We haven't done any statistics on this but it 
seems that more than 50% of the variables in typical programs are initialized by unification. 
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Note that there is just one case where a term is actually constructed: when a variable is 
unified with a "type 3" source term. The constructing process is straightforward and its 
output is as follows. Numbers correspond to the type code of its input 

0. "Ground constant". 

1. A newly allocated value cell, which is also stored in the place located by "offset for 
first variable occurrence". 

2. The contents of the place identified by "offset for s1tbsequent variable occurrence". 

3. A cons of the construction of "car's source term" and the construction of "cdr's source 
term". 

4. A read-only object made out of a new value cell, which is also stored in the place 
located by "offset for first variable occurrence", 

5. The contents of the place identified by "offset for subsequent variable occurrence" is 
-retrieved. It is returned if bound, otherwise a read-only object made out of it. 

6. A read-only object made out of a new value cell. 

7. A new value cell. 

The cons constructed in case 3 follows the conventions described in Section 5.2, namely, 
if its car or cdr is a variable, then the pointer physically stored in the cons cell will be an 
invisible ( = forwarding) pointer to the variable's value cell. 

The construction process also uses cdr-coding to compactify lists as much as possible. It 
does not really allocate cons cells but rather chunks of memory to make cdr-coded lists. 

6.8.8 User extensions 

The system is designed to allow modular definitions of new data types as flavors. Adding 
new data types to Prolog is made possible by the fact that the algorithm for unifying two 
object terms has one additional step: 

A flavor instance can be unified with a non-variable if the instance ac
cepts a :unify message with the non-variable as argurnent. The unifica
tion fails iff the flavor's :unify method returns nil. 

The restriction to non-variables is because variables already unify with any tenns, including 
flavor instances. 

So in order to add a data type, the user needs to define a, ffavor (which. should be a 
subaflavor of prolog-flavor) and define its :unify method. 

Lazy collections, eager collections, and constraints are examples of system extensions that 
were implemented this way. These extensions and their :unify methods can be found in 
Chapter 8. 

5.4 Instruction set extensions 

By writing a moderate amount of microcode by hand, we have introduced a number of 
instructions to the benefit of the implementation. The extemiions have led to a factor of 
3 speed up of typical compiled predicates and about a factor of 2 niore compact code for 
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compiled predicates. The difference in compactness of code is due partly to the fact that 
some of the new instructions replace opencoded (unfolded) function calls, partly because 
the microcode support makes the Unify s algorithm feasible in compiled predicates. 

The CADR micro-processor !Knight et al., 1981] has an instruction set which is remotely 
reminiscent of that of the PD Pl 1 computer series. Micro-programming on the CADR ma
chine is not much more difficult than ordinary assembler programming, although there are 
necessarily many hardware restrictions that have to be obeyed. These include a program 
counter stack limited to 32 locations, an execution stack frame size limited to 256 slots, 
and the necessity to check for page faults in connection with memory references. 

Some common operations, e.g. dereferencing, take more macro-instructions than micro
instructions to express, and so much overhead is saved by having them in microcode. 
Paradoxically, the space efficiency aspect of the Construct algorithm. is easier to express 
in microcode than in Lisp - the microcoded version allocates chunks of memory to make 
cdr-coded lists, whereas it is unclear how the Lisp version could do that efficiently. 

Moreover, micro-programming gives access to useful hardware features of the machine and 
:mafes it possible to exploit them directly for supporting logic programming. In particular, 
the dispatch memory in combination with the byte extractor provide excellent support for 
the Unify 8 and Construct algorithms. 

5.5 Storage management 

-First, we will need a brief outline of the Lisp Machine's storage management scheme. The 
storage is subdivided into areas, each area containing related objects, of any type. Areas 
are intended to give the user control over the paging behavior of programs. LM-Prolog 
does so and also uses areas explicitly for allocation of working storage. 

Areas are not Lisp nor Prolog objects, but are identified by integers. Areas are passed as 
arguments to most memory allocation primitives. 

The storage of an area consists of one or more regions. Each region is a contiguous section 
of address space with certain homogeneous properties. A fill-pointer is associated with 
each region, and indicates to what extent storage has been allocated in the region. An 
important property is that a given region cannot contain objects of both of the following 
categories: 

• objects "made out of conses" 
This corresponds to Prolog terms such as variables and conses. 

• objects "made out of arrays" 
e.g. arrays, symbols, a,nd instances. 

Like areas, regions are not Lisp nor Prolog objects, but are identified by integers. Unlike 
areas, the user does not have any control over regions and it is not meaningful to pass 
their identifiers to memory allocation primitives. 

The following are the main data areas of the LM-Prolog implementation: 

The execution stack. 
This is used as the control stack both for Prolog and for Lisp code. It is sub
divided into activation frames, each frame holding linkage pointers, arguments, 
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local variables, and working stack, just as for conventional languages. Variables 
in compiled Prolog code have corresponding slots allocated in the arguments 
or local variables blocks. The architecture of the CADR machine provides a 
high-speed memory device for the top 1024 words of the execution stack. The 
rest of it resides in ordinary virtual memory space. 

•structure-area* 
This i.s the name of a global variable whose value identifies the area. where the 

Prolog database is kept. 

*prolog-work-area* 
This is the name of a special variable which is local to each process running 

Prolog. It contains a number identifying the area where all dynamic memory 
allocation takes place, i.e. value cells, object terms, flavor instances, and con
tinuations. Contrary to most Prolog implementations, it is not used as a stack 
that contracts upon backtracking. The reason for this is that due to the compli
cated 1nemory management scheme of the machine, it is expensive to compute 
a "stack pointer" P and to reset an area back to P. It would entail traversing 
the area's region list and collecting the fill-pointer of each region. 

We have, instead, taken the "brute fore;~" approach of resetting the area only 
at top level, when a new query is entered. This means that for large problems 
with a lot of nondeterminism, the machine can run out of storage. We feel, 
however, that our approach is justified since ( i) reasonable problems are rather 
deterministic, ( ii) the machine has a virtual memory space of at least sixteen 
million words, ( iii) one can always resort to using the machine's incremental 
garbage collector. This last argument only holds for problems that run out of 
storage because of excessive nondeterminism. For «perpetual" problems with 
deep recursion, the trail-stack will have to be garbage colle~ted. Algorithms for 
garbage collecting the trail-stack can be found in [Warren, 1977; Bruynooghe, 
1982b]. 

•trail-array* 
This is the name of a special variable which is local to each process running 
Prolog. It contains the trail-stack. It is arranged so that the value of the 
special variable *trail* is invisibly linked to the stack-pointer, since compiled 
code frequently needs access to it. The trail-stack is used by the microcode for 
trailing variable bindings, and by the run-time system for trailing continuations 
of things to undo upon backtracking. · 
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6. The interpreter 

6.1 A resolution step 

M. Carlsson 

The basic resolution step involving a continuation C, a constructed predication Pc and a 
soul!Ce clause Ps +- Qs is performed as follows: 

• The Unify8 algorithm is applied to Pc and P8 • This fails or creates a temporary envi
ronment E. 

• In case of success, the Construct algorithm is applied to Qs in E creating Qc, the 
constructed body of the clause. E is discarded. The resolvent Q0 then has to be proved 
as a conjunction with continuation C. 

The backtracking mechanism supporting proofs of conjunctions is discussed in the following 
section. 

6.2 Conjunctions 

This section contains a natural language paraphrase of the workings of the interpreter. 
The source listing can be found in Appendix A. 

ProviH;onjunction Q C 
If the conjunction Q is empty we invoke the continuation C. Otherwise we 
prove the first of Q using its prover with continuation to prove the rest of Q 
with continuation C. 

Try-each-clause R C A m 
If the list of alternative clauses R is empty, we fail and return. Otherwise we 
attempt a resolution step between the continuation C, the argument list A, and 
the first of R. If it ultimately fails, we unwind the trail-stack back to the stack 
pointer m and try the rest' of R. Otherwise we succeed and return. 

The implementation technique upon which the interpreter is based was labeled goal stack
ing by Warren in [Warren, 1983] (page 21) and was independently developed by him. 
Among its advantages, he mentions good paging behavior since there is no reference to a 
source clause once resolution with it is complete, although structure shared ground sub
parts could cause some random memory accesses. Another advantage is the fact that 
all binding environments are local to the resolution steps. A disadvantage though is the 
unnecessary copying when a clause is entered and fails early in the body. 

The interpreter uses a scratch pad vector (maintained in the Lisp 'variable' *vector*) as 
its binding environment. Since the construction of a body happens immediately after the 
unification of a head, the vector does not need to be a recursive resource, except in two 
cases: ( i) parallel processes may interfere with each other-therefore each proces8 gets its 
own environment; ( ii) special objects like constraints and lazy collectioirn may invoke the 
interpreter recursively during a unification and so must have their own environments too. 

6.3 ~ voiding going through provers 

If. prove-conjunction encounters a predication whose definition says :if-another-definition 
:ignore, is interpretive, un-indexed, and does not contain cut, it perfohns an optimization. 
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Instead of calling the definition's prover, prove-conjunction immediately proceeds to try 
the clauses of the definition. A couple of levels of function calling and passing of argument 
lists is thereby avoided, and prove-conjunction becomes tail-recursive. 

6.~ Handlin~ of cut 

The implementation of interpreted cut uses the non-local exit mechanism *catch and 
•throw, provided by Lisp machine Lisp: the form 

(*catch tag-form formi) 

is equivalent to just 

unless 

(*throw tag-form form2) 

happens inside of the computation of form 1, in which case the *catch-form becomes equiv
alent to formz. 

LM-Prolog capitalizes on this mechanism for implementing interpreted cut. Cut's prover 
is 

( defun cut-in-system-prover (continuation) 
(•throw •cut-tag* (invoke continuation))) 

A special variable *cut-tag* is maintained so that a cut can be performed at any time. 
N aiuely, an interpretive prover of a predicate P that contains or might contain a cut 
perforrns the following extra actions:. 

1.-It transforms its continuation so that it, when invoked, will bind *cut-tag* to the 
value it had at entry to P; 

2. It binds *cut-tag* to something unique; 

3. It tries P's clauses inside of a (*catch *cut-tag* ... ). 

I.e. the prover sets up a cccut point" local to its computation. The following is an example 
of a. prover capable of handling cut: 

(defun a-in-user-prover (continuation &rest. arguments) 
(rest-arg-fixup arguments) 
(let-if (neq {first continuation) 'true) . 

((continuation (continuation (funcali #'invoke-continuation 
continuation 
*cut-tag*)))) 

(let ((*cut-tag* continuation}) 
(*catch *cut-tag* 

( try-each-interpreted-clause ( contents a-in-user-clauses) 
continuation 
argume11~s 
*trail*))))) 
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Note. The function invoke-continuation binds *cut-tag* to its second argument and invokes 
its first argument. The prover performs a run-time check to see whether it is being called 
deterministically i.e. whether its continuation is just true, in which case it is not wrapped 
in an invoke-continuation continuation. 
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7. The compiler 

'1.1 Introduction 

M. Carlsson 

LM-Prolog's compiler is invoked when the define-predicate option :execution :compiled is 
used. If the predicate is declared to be :static, which is the default, the Prolog source is 

. translated to a Lisp procedure that becomes the prover of the predicate being defined. 
The prover constitutes the standardized entrypoint of all predicates. Its first argument is 
a continuation. The other arguments are the arguments of calling predications. 

If the predicate is :dynamic, its prover becomes the same as for interpreted predicates, i.e. 
a small procedure that tries the clauses one at a time. Here, each clause is compiled to a 
Lisp procedure that takes two arguments: a continuation and the argument terms passed 
by the calling predicate. Indexed predicates are treated as dynamic by the compiler. 

In the :static case, local tail recursion is removed from the generated code. In both cases, 
the Lisp procedure is further translated into machine code. 

7.2 Compiling a predicate 

The compiler performs the following optimization~, on :static predicates. 

'f .2.1 A:rity :restriction. 

LM-Prolog predicates in general do not have fixed arity. The formal argument list of a 
predicate will then be a &rest argument, and unification must pull out the individual argu
ments. Moreover, the predicate-to-predicate calling mechanism causes unbound arguments 
to _be transmitte9 as dtp-locative pointers, violating the storage conventions mentioned in 
Section 5.2 when the &rest argument is regarded as a list. A runtime procedure must 
traverse the &rest argument and change dtp-locative pointers to invisible pointers. 

However, if all the clauses of a predicate have heads with the same arity, the predicate can 
be compiled into a procedure with a fixed number of arguments and no &rest argument. 
This eliminates the need for "fixing up" the argument list and also reduces the job of 
unification. Calling the compiled code with the wrong number of arguments will signal an 
error. 
f .2.2 Incompatible head detection. 

Aided by :argument-list declarations containing '+', the compiler may detect the following 
situation: (Hk denotes heads of the predicate being compiled.) 

While analyzing H;, no predication P matching Hi matches any Hii 
j > i. 

We are describing the situation that the head of clause i is inco:rnpatib]e with all heads in 
subsequent clauses. That is to say, if a predication matches Hi, it cannot possibly match 
any more heads. 

When the compiler detects this situation, it "splices in1
' a (cut) predication right after the 

'+'-unifications of the head of clause i. In particular, it always splices in a (cut) before 
the body of the last clause. This helps the third :static optimization, discussed in the next 
subsection. 
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Section 9.6 discusses a possible generalization of this optimization. . 

7 .2.3 D~te:rminacy analysis. 

M. Carlsson 

We have mentioned earlier that a predicate may be declared to be deterministic. The 
knowledge that a predicate is deterministic is used by the interpreter, which always calls 
deterministic predicates with continuation true, and when compiling predications. The 
compiler does not always emit calls to deterministic predicates with continuation true, 
however, since that would interfere with tail recursion optimization. 

For a :static predicate, the compiler performs an analysis to see if it is deterministic after the 
Incompatible Head Detection step. Our analysis is conservative i.e. it deems a predicate 
deterministic only if it is deterministic, but the converse does not always hold. The code 
will still run correctly, but its time and space requirements can be suboptimal when the 
compiler fails to detect determinacy. 

Our analysis goes as follows: 

1. During the analysis of a predicate P, P is assumed to be deterministic. 

2. The system uses knowledge about previously compiled predicates and of some built-in 
predicates, in particular cut. 

3. P is deemed non-deterministic if and only if P has some clause that does not have a 
(cut) in its body or that has a non-deterministic predication after the last (cut) of its 
body. 

For some meta-level predicates that the system knows about, the algorithm is invoked 
recursively. 

Call the outcome of this analysis G and let D denote whether the predicate has. been 
declared to be deterministic. Based on the truth values of C and D we have three cases. 

l. C = D. 
Compilation proceeds as usual. 

2. C but not D. 
. The compiler automatically emits the determinacy declaration to the benefit of sub

sequent compilation of predications pertaining to the predicate being compiled. 

3. D but not C. 
This is the case where the user forces a predicate to become deterministic by declar
ing it so, even though some predications, to the compiler's lrnowledg_e, could have 
more than one solution. In this case, the compiled code must take special action to 
guarantee determinacy. P compiles to roughly 

(defun P-in-world-prover (continuation argument1 ••• argument11) 

(cond (IP compiled as if with continuation true] 
(invoke continuation)))) 
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7.3 Compiling clauses 

Given a predication P0 and the source terms for a set of clauses, the task is to compile 
the clauses with respect to the predication. This task generalizes to a mechanism which 
is applied for two different situations in the compiler. 

1. At top level of a :static predicate P. P's clauses are compiled with respect to what 
is known a.bout the argument list. The arity range is apparent from the heads of P. 
The argument list declaration may give additional information about whet.her some 
arguments can be expected to be bound. 

2. When a predication pertaining to an :open predicate is compiled. 1 As much as possible 
of the unification of the predication and the clause heads is compiled away. 

The output of the compilation of a set of clauses is as follows. We have three cases 
depending on the number of clauses. 

• Zero clauses compile to nil. 

• One clause compiles to what the resolvent of it and P0 compiles to. 

• Two or more clauses compile to 

(let ((mark *trail*)) 
(cond iGompiled resolvent of P0 and first clause.} 

(progn ( untrail mark) nil)) 
Compiled resolvent of P0 and second clause.} 
(progn (untrail mark) nil)) 

))ompiled resolvent of Po and last clause.} 

The form (untrail x) unwinds the trail-stack back to x. This translation scheme is optimized 
when the compiler detects that "untrailing" is not going to be needed if a clause has failed, 
in which case ( (progn (untrail mark) nil)) is omitted. This is the case if the clause has a 
(cut) and the only predications before the first (cut) are predications corresponding to the 
unification of a '+ '-declared argument with a term that is either atomic or a cons of two 
first-occurrence variables, and predications for initializing local Lisp variables as discussed 
in the following section. If all ((progn (untrail mark) nil)) are omitted, the binding of mark 
is also omitted. 

7 .4 Compiling a clause 

With respect to a predication Po, a clause is compiled in two steps. First, P0 is resolved 
with it. The resulting resolvent is a conjunction of ( i) goals corresponding to unifying P0 

with the head of the clause, and ( ii) an instance of the body of the clause. 

This section describes the "resolution" step. Its purpose is to compute which unificati9n 
steps, and what variable initializations, have to be performed at runtime, 

1 The normal universe mechanism is disabled here, as the predicate found at compile time expands to 
in-line code 
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Given an arbitrary predication and a clause, this step singles out a set of pairs ( variable, 
term} that have to be unified at runtime. Those "small 1

' unifications are further compiled 
with respect to term in subsequent steps. 

To initialize a variable means to set a local Lisp variable to a newly allocated value cell. 
Prolog variables compile to local Lisp variables, except if they only occur once or if they can 
be equated to the car or cdr of a '+'-declared argument. Variable names are allocated in 
a stack discipline so that the variable names used by one clause are re·used by subsequent 
clauses. This discipline is recursively applied when open-compiling predications. 

Variable initializations may be needed both before and after the unification steps. 

"Before" initializations: 
Single-occurrence variables are specially optimized in the implementation so 
that they do not occupy local Lisp variables. If they occur as k~----level argu~ 
ments in the head, they disappear. Otherwise, they become newly allocated 
value cells which are passed as arguments or stored inside structures. Now, 
if a variable only occurs once, and that occurrence is in a predication that is 
compiled open, the variable may turn out fo occur more 'than once after the 
opening. The compiler detects this when it performs the resolution step and 
emits code to initialize such variables pr:i.or to the subsequent unification steps. 

"After" initializations: 
When a predication is matched against the head of a clause, variables that only 
occur in the body of the clause are not initialized. The resolution step has 
to emit code for initializing such variables. A subsequent step moves the code 
into the compiled code of the body so that the initializations happen as late as 
possible since ( i) some initializations will be unnecessary H a predication fails 
early in the body, ( ii) the size of continuations depends on how many variables 
have to be passed to them·. 

The resolution step is performed as follows: 
The compiler unifies the predication with the head of the clause. If the compile-time 
unification fails, the run-time unification is bound to fail also. If it succeeds, the ( variable, 
term} pairs are collected from the trail-array and the body of the clause is constructed in 
the environment of the unification. 

Let e• denote e repeated zero or more times. The output from the resolution step, the 
resolvent, is the symbol impossible, if the compile-time unificat,ion failed, or a conjunction 

(and (initvar u)• (unify v t)• (initvar w)~ . body) 

where 
body is the constructed body, 
u E the previously single-occurrence variables that now occur more than once, 
( v, t} E the trail-array, 
w E the variables that were allocated by the construction of the body. 
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Thus it consists of an instance of the body of the resolved clause preceded by unify predica
tions, each corresponding to the runtime unification of a variable with a term, and initvar 
predications, each corresponding to the runtime initialization of a variable. 

Let us consider a few examples of the described process. Our first exa,mple will treat the 
first clause of the naive-reverse predicate discussed in Appendix C: 

( !naive-reverse (?first . ?rest) ?reverse) 
naive-reverse ?rest ?rest-reversed 
concat~nate ?rest-reversed (?first l ?reverse)) 

compiled with respect to the argument list at top level of the predicate: 

(naive-reverse ?v1 ?v2) 

yielding the resolvent 

( and ,·;no "before" initializations 
unify ?v1 (?first . ?rest)) ;;a "unify" predicntion 
initvar ?rest-reversed) ;;an "nfter" initialization 
naive-reverse ?rest ?rest-reversed) ;;part of the body 
concatenate ?rest-reversed (?first) ?v2) ;;part of the body 

J ,,, 
Note that ?v2 was substituted for ?reverse in the body. 

As an example of open-coding, comiider the clause 

((p ?x ?y) (q ?x ?y ?y)) 

compiled with respect to the predication 

(p ?a ?) 

This yields the resolvent 

(and 
(initvar ?g0001) ,·;a "before" initialization, and '/g000t is marked 
;;as a multiple-occurrence variable. No "unify" predica.tions, 
;;no "after" initialization11. The body i11: 
(q ?a ?g0001 ?g0001)) 

7 .5 Compiling resolvents 

As explained in Section 7.3, resolvents compile to branches of a Lisp cond. Since resolvents 
are conjunctions of predications, one would expect th.em to compile to conjunctions of Lisp 
pr6cedure calls or something similar. In the general case, however, they do not. R.esolvents 
generally compile to constructs that are nested in two ways. The predication { cut) and 
the necessity to pass continuations attribute to the nesting. 

The predication (cut) causes resolvents to compile to nested cond statements, modelling 
the fact that (cut) commits the execution to a particular path. A resolvent · 

(and llo (cut} R1 (cut) ... (cut) Rn) 
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where R. denotes a sequence of predications not containing (cut), compiles to the cond 
branch 

( (funcall 
( current-entrypoint REo) 
(continuation (true)) 

, RAol 
(cond (funcall 

( current-entrypoint RE1) 
( continuation (true)) 

. RAtl 
(cond ... 

(funcall (current-entrypoint RE11) 

original-continuation 
, RAn}})))) 

where RE• denotes the predicator of Ri, RA; denotes the argument list of Ri, current
entrypoint computes what the prover of its argument is. Only the first member of the 
relations REo ... RE11_ 1 is needed, this is enforced by passing (contin,uation (true)). original
continuation is the name of the continuation argument of the procedure being emitted. 

Non-deterministic predications cause resolvents to· compile to nested continuations. A 
resolvent 

(and Po P1 ••• Pn) 

where P, denotes a non-deterministic predication, compiles to the cond branch 

((funcall 
( curr~nt-e~trypoint PEo) 
(continuation 
(funcall 
(curr~nt-e~trypoint PEd 
(continuation 

(continuation 
(funcall 
( current-entrypoint PEn) 
original-continuation 
• PA11)) ... ) 

, PA1)) 
. P,40)) 

where PEi denotes the predicator of Pi and PAi denotes the argument list of Pi. 

Deterministic predications, however, do compile to conjunctions of predicate-to-predicate 
· calls. A resolvent 

(and Qo Q1 ... Q11) 

where Qi denotes a deterministic predication, compiles to the cond branch 
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((and (funcall (current-entrypoint QEo) 
(continuation (true)) 

· QAo) 
(funcall ( current-entrypoint Q El) 

(continuation (true)) 

. QAd 

(funcall (current-entrypoint QE 11 ) 

original-continuation 
• QAn))) 

M. Carlsson 

where QEi denotes the predicator of Qi and QAi denotes the argument list of Qi. 

This intuitive account of the compilation process describes how the control structure of 
Prolog is translated into Lisp. The translation scheme can be made more precise by writing 
it in terms of Prolog predicates. We need to introduce three predicates that define the 
mapping from resolvents to cond branches. 

7' .6.1 CR-Compile Resolvent 

used as (er Resolvent Ante Conse R-Ante R-Conse)' with declarative reading 

(R-Ante . R-Conse) is the result of compiling Resolvent into the cond 
branch {Ante . Conse). 

cou@ be defined in LM-Pro log as: 

(define-predicate er (:options (:deterministic :always)) 
(;;Uninstantiated conjunction-call the intervreter 
(er ?atom ?ante ?conse 

(prove-conjunction-if-need-be ?atom1 (continuation ?ante)) 
?conse) 

(variable ?atom) 
(ct ?atom ?atom1)) 

(,·,·Impossible resolvent-/ ail 
(er impossible? ? nil ())) 

(;;An empty resolvent-base case 
(er () ?ante ?conse ?ante ?conse)) 

(;;A non-empty resolvent--recurse 

!er f?p . ?ps) ?ante ?conse ?ante2 ?conse2) 
er ?ps ?ante ?conse ?ante1 ?conse1) 
cp ?p ?ante1 ?conse1 ?ante2 ?conse2))) 

'1.5.2 CP-Compile Predication 

used as (cp Predication Ante Conse P-Ante P-Conse) with an analogous declarative reading 
could be defined in LM~Prolog as: 
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(define-predicate cp .(:options (:deterministic :always)) 
(;;A (cut) introduces an imJ)lication. 
(cp (cut) ?ante ?conse (true) ((cond (?ante . ?conse))))) 

{;;Closed, non-deterministic comJ)ilation. 
(cp (?p . ?args) ?ante ?conse 

funcall (current-entrypoint ?c-p) (continuation ?ante) . ?c-args) 
. conse) 

!
is-predicate ?p :dosed :non-deterministic) · 
ct ?p ?c-p) 
bag-of ?c-args ?c-arg (member ?arg ?args) (ct ?arg ?c-arg))) 

(;;Closed, deterministic compilation. 
(cp (?p . ?args) ?ante ?conse;;The determinilltic case. 

) 

(and lfuncall (current-entrypoint ?c-p) (continuation (true)) . ?c-args) 
?ante) 

?conse) 

!
is-predicate ?p :closed :deterministic) 
ct ?p ?c-p) 
bag-of ?c-args ?c-arg (member ?arg ?args) (ct ?arg ?c-arg))) 

7 .5.3 CT-Compile Term 

. used as (ct Term Code) with declarative reading 

Code is a Lisp expression that computes Term. 

7.6 Compiling unification 

This eection describes how unify predications are compiled. Unify predications look like 
(unify variable term), where term is a subterm of a clause head, and are generated by the 
compiler in the resolution step, as described in Section 7.4. They specify unifications to 
be done at run time. Their compilation depends on whether there is microcode support 
for unification (there normally is). Some special optimizations are shared between the two 
cases, though, when term is a variable. 

If term does not correspond to a local Lisp variable and this is the first occurrence of term, 
we emit: 

t 

If term does compile to a local Lisp variable and this is the first occurrence of term, we 
emit: 

(progn (setq term variable) t) 

If this is a subsequent occurrence of term, we emit: 

(%unify-term-with-term term variable) 

The following three optimizations are performed if variable has been '+ '-declared and term 
is a non-variable. 

If term is a symbol, the scheme is optimized to: 
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( eq variable term) 

If term is an atom, we emit: 

(equal variable term) 

If term is a cons, we emit: 

(and (consp variable) Ga Gt1) 

where Ca and Gd denote the compiled unification of the cars and cdrs. 

7.6.1 When microcode support is available 

With microcode support, the default is to emit 

(%unify-term-with-tern plate variable sourceterm) 

where source term is the source term standing for term. 
7.6.2 When microcode support is not available 

M. Carlsson 

Without microcode support, the unification compiles to a nested construct depending on 
term: 

If term is a first occurrence of a '-'-declared formal argument, we emit 

(bind-cell-check term variable) 

if term is atomic, we emit 

(unify-atom variable term) 

if term is a cons, we emit 

(cond ((uvar-p variable) 
~....,.-c---c--

(bind-cell-check variable term)) 
( ( con sp variable) 
(and (let ((temp (car variable))) 

Ga) 
(let ((temp (cdr variable))) 

Gi1JJ)) 

Here, unify-atom is the special case of unification where the second argument is instantiated 
to an atom, bind-cell-check is the special case of unification where the first argument is 
uninstantiated or a flavor instance, and uvar-p tests if bind-cell-check is applicable. Note 
that term is an expensive computation if term is a cons, since it amounts to the construction 
of a complex term which we do not want to perform if unnecessary. 

Ca denotes the compiled unification of temp and the car of term. Gd analogously denotes 
the compiled unification of temp and the cdr of term. 

Argument-list declarations are used to cut branches of the nested conditionals. Since the 
size of the emitted code for the case without microcode support grows at least quadratically· 
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with the size of term, there is a bound on the recursion depth so that all conses deeper 
than the bound compile to: 

(%unify-term-with-term variable term) 

7 .6.3 An Example 

The example shows the compilation of the unifications involved with a predicate that 
unifi.e8 two lists. Without microcode support, the predicate 

( define-predicate concatenate ( :options (:argument-list ( + + -) ) ) 
(!concatenate (?first . ?rest} ?back (?first . ?all-but-first)) 

concatenate ?rest ?back ?all-but-first)) 
( concatenate () ?back ?back))))) 

compiles to 

, (deffun concatenate-in-user-prover 
(continuation ?variableO ?variable1 ?variable2 &aux ?variable5) 

(let ( (g1074 (%dereference ?variableO))) 
(cond (;;((concatenate 

(and (cond ((consp g1074) (and t t)))) ;;('?fir:it. ?rest) 
(and (cond (t ;;?back ,, 

( setq ?variable5 (%ce110)) 
(bind-cell-check ;;{?first. ?afl-but-first}) 

(%dereference ?variable2) 
(prolog-cons (car g1074) ?variable5)))) 

(funcall ... ))) ;;{concatenate ... )} 
( ;;{{concatenate 
(and (eq g1074 'nil)) ;;{) 
(and (progn (bind-cell-check ;;?ha.ck ?back) 

(%dereference ?variable2) 
(%dereference ?variable1))) 

(invoke continuation))) ;;/ 
))) 

The example exemplifies some optimizations made feasible by the :argument-list declara
tion: 

• The '+,-declared first argument ?variableO is dereferenced once as opposed to at every 
occurrence 

• The logical variables ?first and ?rest do not need to occupy local variables since they are 
the car a.nd cdr of ?variableO · 

• The first and t~ird arguments of the head of the first clause compiled to unconditional 
code: the second argument was compiled away 

• The Lisp constructs (eq ... nil) and (consp ... ) compile to particularly efficient machine 
code sequences 

7. 7 Compiling built-in primitives 

Built-in primitives are sometimes called "evaluable predicates)'. The predicate cp de
scribed in Section 7.5 is actually :dynamic: Primitives that need to be compiled specially 
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are conceptually incorporated by asserting "compile methods" as new clauses of cp. In 
th~ present impl~mentation, however, each "compile method" is implemented as a Lisp 
procedure. 

Primitives can be deterministic or non-deterministic. It is completely up to the «compile 
method" to translate predications of the primitive. 

For interpreted code to be able to call built-in primitives, they must also be defined as 
Prolog predicates possessing an extra declaration (:compile-method :intrinsic procedure
name), typically with just one clause containing a recursive call to itself. 

Unwind-protect, for instance, is defined as: 

(define-predicate unwind-protect 
(:options (:compile-method :intrinsic ... )) 
((unwind-protect ?do. ?undo) (unwind-protect ?do (and . ?undo)))) 

and has the following compile-method: 

(unwind-protect ;;The clause name, see section 2.2 
(cp (unwind-protect ?do . ?undo) ?ante ?conse 

(let ((cleanup (continuation (cond ((?undo-ante. ?undo-conse)))))) 
(trail cleanup) .. 
?do-ante) 

?do-conse) 
(cp ?do ?ante ?conse ?do-ante ?do-conse) 
(er ?undo (false) () ?undo-ante ?undo-conse)) · 

Notes. The form (trail x) trails x i.e. adds x to the trail-stack. The predication (unwind
proted 7do . ?undo) compiles just like ?do except that code for trailing a continuation to 
do ?.undo is inserted before the code for ?do. More precisely, ?undo will be exhaustively 
executed, since it is compiled with continuation (false), causing the compiled code to 
immediately backtrack after each solution. 

Let us consider an example of the unwind-protect mechanism. The predication (assume 
?clause) asserts ?clause and retracts ?clause upon backtracking. The predicate assume is 
defined as 

(define-predicate assume 
((assume ?clause) (unwind-protect (assert ?clause) (retract. ?clause)))) 

and compiles to 

(defun assume-in-system-prover (original-continuation ?variableO) 
{let ((cleanup 

( continuation 
(cond ((funcall (current-entrypoint 'retract) 

(continuation (false)) 
?variableO)))))) 

(trail cleanup) 
(funcall (current-entrypoint 'assert) original-continuation ?variableO))) 
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8. The control language 

8.1 Introduction 

The basic computational model of LM-Prolog is the sequential Prolog model. Using certain 
control language expressions, the user gets access to alternative models, namely functions 
and variants of producer-consumer relationships. Functions have already been treated 
in Section 2.1. Three kinds of producer-consumer relationships can be expressed in our 
language: 

1. A producer agent, producing members of a relation, may be connected by unbounded 
buffers to any number of consumers. This idea is related to •the streams of Kahn 
and McQueen l1977] and to those of Landin [1965]. Streams in the context of logic 
programming have also been treated by Clark et al. [1982], by Bellia et al. [1982], 
and by Hansson et al. [1981]. Our producers can be lazy or eager, and optionally 
produce only unique elements of a relation. We thus have four possibilities, denoted 
by lazy-bag-of, lazy-set-of, eager-bag-of, and eager-set-of, where 'set' denotes unique 
elements. With lazy producers, we arrive at a form of lazy evaluation (s.ee Henderson 
a~d Morris [1976].) 

2. A goal containing an uninstantiated variable V may be suspended until V is instanti
ated. This can be viewed as the conununication of a single value between a producer 
and a lazy consumer. It is essentially the data-flow computation rule of Dennis [1971], 
and is denoted by constrain. This computation rule can also be regarded as a dynamic 
typing facility, since V can be associated with a predicate which is run when V is in
stantiated, i.e. the range of V is constrained. Constraints as a computational device 
have been studied by Stallman and Sussman [1977] and others. The integration of 
constraints into Logic Programming was conceived by Colmerauer [1980]. 

3. An alternative way of expressing producer-consumer relationships is by variable an
notations, as in IC-Prolog [Clark et al., 1982] where a variable occurrence can be 
marked as a consumer or a producer by a suffix character. Later, consumer annota
tions have been used in the context of and-parallelism for data-flow synchronization 
in Shapiro's [1983] Concurrent Prolog, where they are called read-only annotations. 
Shapiro's interpreter runs in LM-Prolog with read-only annotations written as suffix 
'?' and supported at the source term and microcode level. 

These computational models all capitalize on LM-Prolog's ability to introduce nonstandard 
or noncanonical terms ( cf. Martin-Lof [1979]) of new data types as subflavors of prnlog
flavot, as described in Section 5.3. Since this general facility is confined to unification, 
all the machinery needed by these computational models resides in the :unify operations 
of the new datatypes, which has the important benefit that all of these models are fully 
available from compiled code. 

As-sume, for exari1ple, that a relation has three elements a, b, and c. A request to lazily 
compute this relation leads to the creation of a noncanonical term / 0 • The unification of 
/ 0 triggers the computation of the first element of the relation, i.e . .l '1reduces" to a,./1 , 

and so on. 
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The expressive power of lazy and eager collectors is treated in [Kahn, 1984]. 

8.2 Lazy collections 

8.2.1 Declarative semantics 

(LAZY-BAG-OF bag term. predications) 
(LAZY-SET-OF set term. predications) 

Bag and set are, respectively, the list of instantiations of term such that predications hold, 
and the elements of set are unique. 

8.2.2 Operational semantics 

(LAZY-BAG-OF bag term. predications) 
(LAZY-SET-OF set term. predications) 

unify bag or set with the list of all instantiations of term such that predications hold. 
lazy-set-of suppresses copies. 

The list is built up only when needed. The need can arise from a unification of the list 
with an instantiated term. The need can also arise if the list is passed to Lisp or printed. 

8.2.8 An example 

The predication (prime ?p) as defined below is true if ?p is a prime number. Upon back
tracking, 7p is unified with successive primes numbers. The program is a version of the 
Sieve of Eratosthenes. It represents lists of numbers as lazy collections. The list 2.3.4 .... 
is transduced to 3.5.7 .... which is transduced to 5.7.11. ... and so on. 

(define-predicate prime;;the second argument is a list of numbers 
( 

• 7 • ) . prime . prime ;;and defaulto to 2.3.4 .... 
lazy-bag-of ?ints ?int (integer-from ?int 2)) 
prime ?prime ?ints)) 

( prime 7prime (?prime. ?))) 
( prime ?prime (?seed . ?rest)) 

lazy-bag-of ?sifted ?not-multiple (not-multiple ?not-multiple ?seed ?rest)) 
prime ?prime ?sifted))) 

(define-predicate integer-from 
( integer-from ?i ?i)) 
( integer-from ?i+ ?i) 

sum ?i+1 ?i 1) 
integer-from ?1+ ?i+1))) 

(define-predicate not-multiple 
( not-multiple ?number ?seed (?number. ?)) 

quotient ?q ?number ?seed) ;;fixnum arithmetics 
cannot-prove (product ?number ?q ?seed))) 

( not-multiple ?number ?seed (? . ?numbers)) 
not-multiple ?number ?seed ?numbers))) 
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8.2.4 Implementation 

There are many opportunities for compile-time optimizations of constructs involving lazy
bag-of or lazy-set-of, which will be covered in the following subsection. Let us cover the 
general case of lazy-bag-of first. Lazy-set-of is similar except for the suppres~ing of copies. 

We use the flavor lazy-collection which has subfl.avors lazy-bag and lazy-set with instance 
variables 

collection the lazy list being built up 

generator a continuation to invoke to get more solutions. The continuation will resume 
a stack group where the state of the lazy collection is kept. Resuming a stack 
group is a relatively expensive operations. 

constructor 
a continuation to invoke to instantiate a solution 

and :unify method defined as 

,·To unify x with a lazy collection, 
;unify x with the :ordinary-term of the collection. 
(defmethod (lazy-collection :unify) (other-term) 

(unify (send self ':ordinary-term) other-term)) 

{defmethod (lazy-bag :ordinary-term) () 
( cond ( ( variable-boundp collection) 

collection) ;;collection has already been comJJuted 
((null (setq generator (invoke generator))) 
( setq collection ())) ;;{) for no more nolutionn 

(t (setq collection 
{prolog-cons ;;a cons of a solution instance 

(invoke constructor) ;;and a new lazy bag 
. ( make-instance-in-area *prolog-work-area* 'lazy-bag 

':generator generator ':constructor constructor)))))) 

Instances of lazy-set have one more instance variable containing list of answers computed 
so far. The flavor's :ordinary-term suppresses solutions already in the list. 

8.2.5 Optimizations 

There are several opportunities to optimize the compilation of a lazy collection. Let S 
stand for 

(LAZY-BAG-OF bag term. predications) 

• If bag is ? , S compiles to nothing and a warning is emitted. 

• If bag is (), S compiles like ( cannot-prove . predications). 

• If bag is (x. ?) or if predications are known to be deterministic, predications are compiled 
with continuation true since only one solution is ever needed. 

• In the general case, S compiles to code using lazy-collection objects as described in the 
previous subsection. 

60 October 26, 1984 



LM•P:rolog • the language and its implementation 

8.3 Eager collections 

8.3.1 Declarative semantics 

(EAGER-BAG-OF bag term. predications) 
{EAGER-SET-OF set term . predications) 

M. Carlsson 

Bag an,d set are, respectively, the list of instantiations of term such that predications hold, 
and the elements of set are unique. 

8.3.2 Operational semantics 

{EAGER-BAG-OF bag term. predications) 
{EAGER-SET-OF set term . predications) 

unify bag or set with the list of all instantiations of term such that predications hold. 
eager-set-of suppresses copies. 

The list is built up in a separate process in parallel with the computation that invoked 
the eager collection. If the list takes part in unification, the unifier ( or rather the proper 
:unify method) synchronizes the processes by causing the current process to wait until the 
collection has terminated. Synchronization is also needed if the list is passed to Lisp or 
printed. ··· 

8.3.3 An example 

The Sieve of Eratosthenes can be run in eager mode, i.e. representing lists of integers as 
eager collections. This r..pplication of eager collections however leads to an explosion of 
resource requirements, since the collections compete for resources. The eager version is 
much less efficient than the lazy version. 

8.3.4 Implementation 

We use the flavor eager-collection which has subflavors eager-bag and eager-set with instance 
variables 

process the Lisp Machine process that this bag will run in 

value the eager list being built up 

status :finished, :running, or :stopped 

inferiors eager bags created by this eager bag 

constructor 
a continuation to invoke to instantiate a solution 

and :unify method defined as 

61 October 25, 1084 



LM·P:rolog • the language and its implementation 

;To unify x with an eager collection, 
,·wait until it has finished its computation, and unify x with 
;the list of instantiated solutions. 
(defmethod (hurried :unify) (other) 

( selectq status 
(:finished /unify value other)) 
(:running process-wait" Eager value" self ':not-hurried-value) 

send self ':unify other)))) 

{defmethod (hurried :not-hurried-value) () 
(neq status ':running)) 

M. Carlsson 

Instances of eager-set have one more instance variable containing list of answers computed 
so far. The flavor's :ordinary-term suppresses solutions already in the list. 

8.3.5 Optimizations 

The same optimizations as for lazy collections apply. 

8.4 Constraints 

8.4.1 Declarative semantics 

The predication 

(CONSTRAIN variable predication) 

is equivalent to just predication. 

8.4.2 Ope:rational semantics 

If variable is bound when the predication (CONSTRAIN variable predication) is encountered, 
predication is invoked. Otherwise, the execution of predication is postponed until variable 
gets bound. This is realized by binding variable to a constraint object which invokes 
predication if subsequently unified with a non-variable. 

8.4.3 An example 

The predicate send-more-money defined below solves the cryptarithmetics equation "SEND 
+MORE= MONEY", where each letter stands for a unique digit. The algorithm amounts 
to setting up six constraints on the unknowns (one for each of the 1-, 10-, 100-, and 1000-

. columns of the additions, and the two constraints S > 0 and M > 0). Finally the eight 
unknowns must be a subset of a permutation of the numbers O ..• 9. 

The control structure of this example can be described as a coroutining relationship be
tween a generator (a producer) (the permutation) and a test (a consumer) (the equation). 
The example illustrates a general technique for writing clear programs that exhibit corou
tining behavior between a generator and a test. We have written a program solving the 8 
Queens problem in the same style. 

In terms of slogans, we have turned "generate and test" into "constrain and generate". 
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( define-predicate send-more-money 
( send-more-money (?s ?e ?n ?d) {?m ?o ?r ?e) (?m ?o ?n ?e ?y)) 

prolog:constrain ?s ( > ?s 0)) 
prolog:constrain ?m ( > ?m 0)) 

M. Carlsson 

prolog:constrain ?e (add-two-with-carry ?c1 ?y ?d ?e 0)) 
prolog:constrain ?r (add-two-with-carry ?c2 ?e ?n ?r ?c1)) · 
prolog:constrain ?o (add-two-with-carry ?c3 ?n ?e ?o ?c2)l 
prolog:constrain ?m (add-two-with-carrx ?m ?o ?s ?m ?c3 ) 
sub-permutation (0 1 2 3 4 5 6 7 8 9) py ?d ?e ?n ?r ?o ·.s ?m)))) 

( define-predicate add-two-with-carry 
( add-two-with-carry O ?sum ?x ?y ?c) 

sum ?sum ?x ?y ?c)) 
( add-two-with-carry 1 ?sum ?x ?y ?c) 

sum ?sum ?x ?y ?c -10))) 

( define-predicate sub-permutation 
( sub-permutation? ())) 
( sub-permutation ?all (?x . ?but-one-perm)) 

extraction ?all ?x ?but-one) 
sub-permutation ?but-one ?but-one-perm))) 

(define-predicate extraction " 
(!extraction l?x . ?I) ?x ?I)) 
( extraction ?x . ?all) ?y (?x . ?some)) 

extraction . all ?y ?some))) 

8.4.4 Implementation 

Constraint objects are implemented as instances of the flavor constraint with instance 
variables 

cell The value cell of the constrained variable. 

COl)Straints 
A list ~f predications constituting the conjunction of the constraints that have 
been put on a variable. 

The :unify method splits into three cases. 

1. Both the current object and the argument of the method are constraint objects with 
unbound cells. 
This means that the new constraint must be combined with the current one. Logi
cally it is the same as adding it to the conjunction of constraints. Constraints can 
be combined more intelligently, however, by the user providing assertions. The con
straint combination mechanism invokes the predication (COMBINE-CONSTRAINTS 
combi'ned current new). If it succeeds and instantiates combined to ((false)), the uni
fication method fails. If it succeeds otherwise, combined is used. If it fails, ( new . 
current) is used. 

2. If the current object is unbound and the argument is a non-variable, its cell is trailed 
and is set to the argument and the constraints are run and must succeed for the 
unification to succeed. Upon backtracking, the cell of the current object is made 
unbound. 
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3. If the current object is bound, the bound value is unified with the argument. 

8.5 Concurrent Prolog 

8.6,1 Introduction 

Concurrent Prolog [Shapiro, 1983] is a concurrent logic programming language with 
guarded clauses to control search, and read-only annotations for data-flow synchronization 
of concurrent subgoals. Guards originate from Dijkstra [1976] and Hoare's CSP [1978] as a 
notation for committed-choice non-determinism. They were subsequently adapted for logic 
pr~gramming in the relational language of Clark and Gregory [1981] and its descendant 
PARLOG !Clark and Gregory, 1983]. 

Shapiro's interpreter was ported to LM-Prolog by Kenneth Kahn. Our codes for source 
terms were extended to support read-only annotations, involving changes to the Unify s 
and Construct algorithms. 

8.6.2 Implementntion of read-only objects 

A read-only object is an instance of the flavor read-only-variable which has the instance 
variable cell. A read-only object unifies with another object Y only if cell is bound to 
a non-variable that unifies with Y or if Y is a variable. Read-only objects are used as 
a synchronization primitive in the language. The·fanguage admits concurrent execution 
of conjuncts, and the primitive is used for letting a conjunct wait for another to bind a 
variable. The implementation re-tries any unification that failed due to read-only variables, 
and so simulates concurrency in a busy-wait fashion. 

8.5.3 Read-only annotations 

Variables may be given read-only annotations written as a postfix '?'. A read-only annota
tion tt? may be considered as syntactic sugar for a newly constructed read-only object with 
u being the value of cell. In the implementation, however, the various uses of read-only 
annotations are optimized so that read-only objects are allocated onl):' when needed. 

8.5.4 Unification 

Shapiro wrote a meta-level unifier in Prolog that recognized read-only annotations as a 
special functor. We have included read-only annotations in the basic unification algorithms 
at tlie firmware level. We use the general flavor mechanism for unifying read-only objects. 
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9. Conclusion and Open Questions 

9.1 Introduction 

We .have implemented the world's second complete Prolog compiler, comparable in per
formance to the first one, the one for DEC-10 Prolog [Warren, 1977, 1980]. Whereas the 
programming environment of DEC-10 Prolog consists of a debugging package only, our im
plementation combines the power of the logic programming formalism with the extremely 
rich and powerful programming environment of personal Lisp machines. We have thus 
achieved a unique tool with which, for the first time, serious problems can be attacked. 

The viability of continuation techniques for implementing logic programming in a func
tional setting has been demonstrated. A new technique based on a 'genetic code' for terms 
has been used for constructing complex terms in a demand-driven fashion during unifi
cation. A microcoded unifier using dispatch hardware makes the genetic code technique 
feasible. The technique has been generalized to handle variable annotations. 

Our implementation is open-ended since ( i) LM-Prolog can easily call Lisp functions and 
( ii) there is a standard protocol for extending unification for user-defined data types. This 
second facility has enabled us to incorporate alternative computational models such as 
demand-driven and parallel computation and constraints without restricting their use to 
the interpreter. 

9.2 Comparison with other work 

DEC-10 Prolog !Warren, 1977, 1980J is the rnost generally known implementation of Pro
log. Warren defines a virtual Prolog machine, "PLM", based on structure sharing and 
especially well suited for the DEC-10 architecture. PLM is a "register" ma.chine incorpo
rating instructions for unification, stack space allocation, indexing, procedure calls, cut etc. 
Our compiler translates Prolog predicates to Lisp procedures. We handle unification and 
term construction in microcode. However, the abstract Lisp machine emulates Prolog's 
control structure. 

In a recent paper !Warren, 1983], a new abstract machine for Prolog called the "New 
Engine" is defined. It is a major revision of the PLM and is based on structure copying. Not 
surprisingly, it has important similarities with LM-Prolog, but also significant differences. 
The following (incomplete) table summarizes a comparison between PLM, New Engine, 
and LM-Prolog. 
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-PLM 
"Register" machine based 
on local and global stacks, 
and trail. 
Variables classified 
as void, temporary, local, 
and global. 

Local and global environ
ments. 

Unify instructions can 
trigger backtracking. 

"Code pointer" into the 
middle of compiled code. 

Head arguments compile 
both to skeleton literals 
and t.o instructions, com
piled code possibly of ex
ponential size. Mode dec
larations reduce the size. 

Co11ditlonal trailing of 
bound variables. 

Body arguments compile 
to skeleton literals. 

Runtime pruning of deter
ministic computations. 

No unfolding of predicates 
and arguments of meta
level predicates are not 
compiled. 

New Engine 
"Register" machine based 
on stack, heap, trail, and 
PDL for unification. 
Variables 
classified as void, tempo
rary, safe permanent, and 
unsafe permanent. 

Local en-
vironment ( not necessar
ily on top of stack), local 
and global value cells. 

Unify instructions can 
trigger backtracking. 

"Code pointer" into the 
middle of compiled code. 

Head arguments compile 
to instructions. Compiled 
code of linear size. No 
mode declarations. 

Conditional trailing of 
bound variables. 

Body arguments compile 
to co~struct instructions. 

Runtime pruning of deter
ministic computations. 

? 
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LM-Prolog 
"Stack" machine based on 
stack, heap, trail, and 
PDL. 
Val'iables clas-
sified as void, temporary, 
and permanent. 

Local environment ( al
ways on top of stack, 
copied if need be), global 
value cells. 

Unify instructions return 
truth value which is tested 
by subsequent code. 

"Code pointer" corre
sponds to a compiled Lisp 
procedure (sometimes em
bedded). 

Head arguments compile 
to encoded source terms 
that are traversed by 
firmware. Compiled code 
of linear size. Mode dec
larations may unfold one 
level of the encoded source 
terms. 
Unconditional trailing of 
bound variables ( except of 
first occurrences). 

Body arg·uments compile 
to construct instructions 
(cons, list etc.). 

Compile-time detect.ion of. 
determinacy. No direct 
access to latest backtrack 
point. 

Optional unfold
ing· of predicates. Argu
ments of meta-level pred
icates are compiled .. 

Since Prolog's control structure is emulated by the abstract Lisp machine, both the PLM 
and the New Engine are more optimal for executing standard Prolog programs. It is not 
so clear, however, how some of the important language extensions of LM-Prolog could be 
imported into the PLM or the New Engine. 

POPLOG [Mellish and Hardy, 1984] is a trilingual programming environment supporting 
Prolog, Lisp, and POP-2. The Prolog part is compiler-based using a variant of the con-

. tinuation passing technique. In particular, their unifier takes a cont.inuation and they do 
not use determinism for compile-time optimization of the control structure. 

The Lisp-based Prolog implementations are too numerous to be treated in detail. We will 
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restrict our survey to those having some outstanding feature: 

o QLOG !Komorowski, 1980] was perhaps the first Lisp-based interpreter. It was based 
orr structure sharing and defined Pro log predicates as Lisp / exp rs. Komorowski was the 
first to point out the potential of inheriting a programming environment by embedding 
Prolog in Lisp. 

• LogLisp !Robinson and Sibert, 1980] is an interpreter incorporating breadth-first and 
heuristic search mode and a notion of reducibility: Every terrn or predication that can 
be interpreted as a Lisp form is evaluated as such before resolution happens. 

• Prolog/KR [Nakashima, 1982] has a number of features in common with LM-Prolog e.g. 
arbitrary arity, multiple worlds, and coroutines. Nakashima has argued for a list-based 
syntax since it provides equivalence between program and data and thus ease of using 
program manipulating programs such as structure oriented editors. 

• Foolog !Nilsson, 1983b] is a beautiful example of a very concise system consisting of an 
interpreter written in MacLisp together with a compiler written in Foolog. 

• Metalog !Dincbas, 1983] uses a meta-program for controlling the execution, rather than 
the default control of Prolog. 

o eu-Prolog [Kohlbecker, 1984] is an interpreter written in Scheme based on failure contin
uations: A successful result of a procedure call is· a pair of an environment and a. failure 
continuation. When invoked, the continuation returns alternatives. The technique of 
failure continuations is discussed in !Kahn and Carlsson, 1984]. 

Bruynooghe !Bruynooghe, 1982a] and Mellish [Mellish, 1982] have made the structure 
copying technology generally known, and have made hnportant contributions to it. The 
typing scheme of the present work enabling ( i) optimization of first and single variable 
occurrences and ( ii) the use of dispatch hardware has however to our knowledge not been 
published before. 

J.F. Nilsson [Nilsson, 1983a] hints at continuation-based compilation of Prolog into Pascal 
including determinacy optimizations and data-flow analysis but does not give any algo• 
rithms. His work concentrates on a polymorphic type system for Prolog. 

9.3 Experiences, trials, and errors 

An early version of the compiler was based on structure sharing .. It used stack groups 
(coroutines) to implement backtracking rather than continuations. Although stack groups 
could be optimized away in deterministic cases, compiled code generally su tfered from 
expensive stack group switches.• 

An early version of the interpreter was also based on structure sharing, H had a typ
ing scheme, different from the present source terms, with separate type codes for special 
objects rather than falling back on message passing to flavor instances. H used failure 
continuations. 

These early attempts are described in more detail in [Kahn a,nd Carlsson, 1984]. 

9.4 Performance 

Since the implementations mentioned in the previous section, performance of compiled 
. code has improved by an order of magnitude and of interpreted by a factor of five. 
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The notorious Prolog benchmark is the "na'ive reversal" of a list 30 long, as defined by the 
program 

( define-predicate concatenate ( :options ( :argument-list ( + + -) )) 
( !concatenate ( ?first . ?rest) ?back (?first . ?all-but-first)) 

concatenate ?rest ?back ? all-but-first)) 
( concatenate () ?back ?back))) 

(define-predicate nai've-reverse (:options (:argument-list(+-))) 
( nai've-reverse (?first . ?rest) ?reverse) 

na'i've-reverse ?rest ?rest-reversed) · · 
concatenate ?rest-reversed (?first) ?reverse)) 

( na'ive-reverse () ()))) 

This. runs compiled in 48 msec and interpreted in 275 msec on a CADR. It takes 498 
inferences to solve the problem suggesting a LIPS (Logical Inferences Per Second) rate of 
just over 101000 for compiled code and 1800 for interpreted. A more comprehensive set of 
Prolog benchmarks is yet to be devised. 

9.5 Future Enhancements 

There is still room for enhancements to the compilation process, for example 

• improved clause selection 

• detection of common subterms 

• functional nesting of computations 

• open compilation of recursive predicates 

• micro-compilation 
0.5,1 Improved clause selection . 

The clause indexing mechanism invoked by the :indexing-patterns option is very accurate 
but incurs too much overhead to be used for predicates that have less than several dozens 
of clauses. For unindexed predicates, one ca.n get some selection by the Incompatible 
Head Detection optimization of the compiler. One problem with the current version of 
the compiler is that all information from the compilation of one clause is forgotten when 
the next clause is compiled. The compiler could probably do better e.g. by factoring out 
tests or subterms that are common to more than one clause head. For predicates with 
variable arity, it cound emit code to index on the number of arguments. Or it could use 
'+ ~ declarations to compile into a sort of discrimination set for selecting clauses. 

In contrast, Dec-10 Prolog has a very eflicient mechanism using special indexing instruc
tions compiled in-line. Those techniques could also be used, but we have the problem that 
most "constants" in the Lisp machine are susceptible to garbage collection, and so there 
is a problem of keeping hash tables and the like up to date. This problem accounts for 
much of the overhead of the present implementation of indexed predicates. 

0.5.2 Detection of common subte:rrns 

This corresponds to the "detection of common subexpressions" problem in compiler design 
theory. See e.g. [Aho and Ullman 1977]. 
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There is an efficiency problem in the adopted structure copying solution: If a non-ground 
cons subterm occurs more than once in a clause, then each source code occurrence of it 
will correspond to a making at run time of an object term, instead of using the term 
constructed at the first occurrence. One would like to construct just one copy and reuse 
it for each occurrence. 

In a structure sharing implementation this is much less of a problem. Not detecting 
common subterms leads only to an increased size of compiled predicates. It does not affect 
the size of run time structures. 

0.6.3 Functional nesting of computations 

Computations like 

(and (sum ?sum ?i ?j) (product ?product ?sum ?k)). 

do not compile very cleverly, even though sum and product compile open. The intermediate 
variable, ?sum, is allocated as a value cell. It is first unified with the sum of ?i and ?j. 
Then its value is multiplied with ?k. Clearly, one would like the compiler to detect this 
situation and compile the construct to something like 

(unify ?product (times (plus ?i ?j) ?k)) 
9,5.4 Open compilation of :recursive procedures 

Currently, only non-recursive predicates can be compiled open. Tail-recursive predicates 
could readily be cornpiled open as well, if knowledge about tail recursion were introduced 
into the compiler. Tail recursion optimization is currently performed in a post-compilation 
step. 

'9.5.5 Micro~compilatio:n 

The Lisp Machine has a micro-compiler that transforms machine code to microcode, al
though with several restrictions and limitations. It was applied to the output of the Prolog 
compiler for the N a"ive-Reverse benchmark, resulting in a factor of 2 speed increase. The 
figure could be improved somewhat since memory allocation does not micro-compile very 
cleverly. 

A much more drastic approach would be to not use Lisp as the intermediate language of 
the translation process, but rather use one of the abstract instruction sets that have been 
proposed in the literature. This instruction set could then be compiled to microcode, or 
emulated, or both. The problem remains as to how the resulting code wotild be able to 
coexist with Lisp-based software. Clearly there would have to be interfaces between the 
two languages. 

Future Research 

The Horn clause subset of predicate logic and its realization as a programming language 
- Prolog - is an extremely powerful computational formalism and language. Indeed, 
Prolog is one of most powerful programming languages ever conceived and is spreading 
rapidly as we are now experiencing a virtual boom of activity in the logic programming 
field. 
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Even though Prolog has been such a success and has so many nice properties, the language 
has its drawbacks, some of which are serious. Fears have even been expressed that Prolog 
might become the Fortran of logic programming exactly because it is spreading so rapidly 
and has drawbacks such as: 

Poor control language. 
The more widely spread dialects of Prolog have but one control directive -
the cut. Several authors have compared the cut with the goto statements of 
imperative languages. Clearly, the cut is very unintuitive and hard to learn. 
Some uses of it can destroy the declarative reading of programs. 

Our extensions to Prolog's control language have rendered cut virtually obso
lete. 

Restricted logic. 
Since Prolog is based on the Horn clause formalism, the language cannot handle 
explicitly quantified or negated statements nor implications. "Forall" computa
tions can awkwardly be rewritten in terms of set-of, and for negations one has 
to resort to the more limited negation as failure. Specifications and definitions 
that are "naturally" formulated in predicate logic have to be transformed to 
Horn clauses. The task of transformation is by no means trivial although there 
exist semi-automatic tools. 

Whether a richer subset of predicate logic is feasible as a programming language is a most 
interesting question for future research. Promising work in that direction has already been 
made. In [Hansson et al., 1981], the viability of natural deduction as opposed to resolution 
is demonstrated as a basis for logic programming. The proposed language is a superclass 
of Horn clauses such that the def ini~ns can contain arbitrary logic formulas. In [Haridi, 
1981], proof strategies for the logic programming system are presented. 

Several questions remain to be solved before the system can be used as a practical language: 

Control strategies. 
Haridi's proof strategies essentially omit the choice of control rules. In order 
for the system to be used as a programming language, most of them must be 
fixed, whereas some should be programmable in a control language. 

Abstract machine. 

Compiler. 

Recently, an abstract machine for the system was proposed [Haridi and Sahlin, 
1983]. The machine resembles the SECD machine for functional programming 
[Landin, 1963] and describes permissible state transitions. The machine is 
rather high-level, treating e.g. unification ( or its equivalent in a natural de
duction setting) as an atomic operation, and needs to be much elaborated if the 
goal is an efficient implementation. 

Related to the previous item is the construction of a compiler for the language. 
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12. Appendix A-The Interpreter 

This is the source code of the interpreter. A few of the definitional forms deserve more 
comment: defun is the normal form for defining a function. defsubst also defines a function, 
but the compiler is notified that calls to the function shall compile open. The variants 
deffun and deffsubst transform bil recursion to iteration in addition to the workings of 
defun and defsubst. 

;Test for the base case of prove-conjunction before calling 
;it as a functi'on 
( defsubst prove-conjunction-if-need-be (predications continuation) 

(cond ((null predications) (invoke continuation)) 
(t (prove-conjunction predications continuation)))) 

;Prove a single predication. Used i·n prove-conjunction 
( defsubst prove (predication interpreter-slot continuation) 

(let ( (prover (interpreter-slot-prover interpreter-slot)) 
( clauses (interpreter-slot-clauses interpreter-slot))) 

(cond ( (null prover) 
(cond (clauses 

(try-each clauses continuation (rest1 predication) *trail*)))) 
· (t (lexpr-funcall prover continuation (rest1 predication)))))) 

(defsubst try-first (clauses try-each-continuation ar~uments) 
(let ( { tern plates ( send (first clauses) ':tern plates) J) 

( and ( %unify-term-with-tern plate arguments ( first templates)) 
(let ((body (%construct (rest1 templates)))) 

(prove-conJunction-if-need-be body try-each-continuation))))) 

,·This version of try-each-da1;1se is used in calls between 
;interpreted predicates to avoid indirection throu,gh provers, 
;and to help prove-conjunction tail-recurse. 
(deffsubst try-each (clauses try-each-continuation arguments mark) 

(cond (!null (resti clauses)} 
try-first clauses try-each-continuation arguments 

( try-first clauses try-each-continuation argumentsB 
(t (untrail mark) 

( try-each ( rest1 clauses) try-each-continuation arguments mark)})) 

,·The same as the above but calls compile closed. 
(deffun try-each-interpreted-clause (clauses continuation arguments mark) 

(cond ((null clauses) nil) 
((let ((templates ( send (first clauses) ':templates))) 

(and (%unify-term-with-template arguments (first templates)) 
(let ((body (%construct (rest1 templates)))) 

(prove-conJunction-if-need-be 
body continuation))))) 

(t (untrail mark) 
(try-each-interpreted-clause 

(rest1 clauses) continuation arguments mcirk) )) ) 
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;Discussed in Secti'on 6.4. 
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(defun invoke-continuation (continuation *cut-tag*) 
(invoke continuation)) 

;Discussed in Chapter 6. 
(deffun try-each-clause (clauses continuation arguments mark) 

(cond l(null clauses) nil) 
(send (first clauses) ':resolve continuation arguments)) 
t (untrail mark) 

(try-each-clause (rest1 clauses) continuation arguments mark)))) 

;Discussed in Chapter 6. 
( deffun prove-conjunction (predications continuation) 

(let* ( (predication (first predications)) 
(interpreter-slot 

( definition-interpreter-slot ( current-definition ( first predication))))) 
( cond ( {interpreter-slot-deterministic interpreter-slot) 

( cond ( (prove predication interpreter-slot ( continuation (true))) 
{prove-conjunction-if-need-be (rest1 predications) 

continuation)))) 
((null (rest1 predications)) 
(prove predication interpreter-slot continuation)) 

(t (let ((continuation-1 
( continuation (funcall #'prove-conjunction 

(rest1 predications) 
continuation)))) 

(prove predication interpreter-slot continuation-1}))))) 
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13. Appendix B-Built-in predicates of LM-Prolog· 

Built-in predicates have their own methods for determining truth values of predications 
pertaining to them, and constitute the main part of LM-Prolog's runtime system. This 
Appendix constitutes an incomplete list of the built-in predicates of LM-Prolog-a com
plete list can be found in [Carlsson and Kahn, 1983]. 

The built-in predicates can roughly be divided into the following classes: Interface to Lisp, 
List Processing, Control and Meta-level, Input/Output, Arithmetic, and Database. 

13.1 Interface to Lisp 

LM-Prolog's internal representation of terms have been designed in a way that often elim
inates any overhead in calling out to Lisp. But due to LM-Prolog's storage management, 
terms containing uninstantiated variables, and the semantics of noncanonical term the 
data to be passed to Lisp may need some conversion. 

The Lisp interface is implemented by three built-in predicates: lisp-value, for calling a Lisp 
function with some arguments and getting a value back; lisp-predicate, for calling a Lisp 
"truth valued" function with some arguments and succeeding if it returned non-nil; and 
lisp-command, for telling Lisp to execute a side-effe~t. 

They all take an optional control argument specifying what conversion, if any, is needed 
for the particular case. The value of the control argument can be 

:copy 

:invoke 

All noncanonical terms are invoked, and the Lisp form is to be copied out of 
LM-Prolog's temporary area before evaluation. This could be needed in lisp-
command if the function called stores its argument somewhere as a side-effect. 

Noncanonical terms are invoked, but the result may still point into Prolog's 
temporary area. This is often used for printing. 

:query Each noncanonical term encountered asks the user whether to invoke it or not. 
This mode of interfacing is used e.g. in the Prolog top levels-they display 
answers to user queries, but if the answers contain noncanonical terms, the user 
is queried about how they should be handled. 

:dont-invoke 
Lazy collections are not run, eager collections are not waited for, and constraints 
are not run. Arguments are passed directly to Lisp functions without conver
sion. In particular, uninstantiated variables will be passed as lo~atives. This 
mode is safe to use if the arguments are known to be ground, do not contain 
collections or constraints, and will not be stored anywhere. 

13.2 List Processing 

This subsection introduces some list processing predicates of LM-Prolog. 
(APPEND appended . parts) 

succeeds if appended is formed by appending parts. 
(REVERSE reversed list) 

succeeds if reversed is formed by reversing list. 
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(LENGTH length list) 

succeeds if list is a list length long. 
(SORT sorted-list unsorted-list P) 

succeeds if sorted-list is a permutation of unsorted-list such that P imposes a total ordering 
over sorted-list. 

13.3 Control and Meta-Level 

This subsection introduces some control and meta-level primitives of LM-Prolog. 

The predicates 

always succeed. The predicates 

(TRUE) 
(COMMENT . ignore) 

(FALSE) 
(FAIL) 

always fail. A conjunction is written as 
(AND . predications) 

In the body of a clause this is implicit and need not be given. A disjunction of predications 
is written 

(OR . predications) 

The pr,edicate 
(BAG-OF bag term. predications) 

unifies bag with the list instantiations of term in the solutions found by exhaustively ex
ecuting predications. Set-of is like bag-of but suppresses copies in bag. Both bag-of and 
set-of puts the instantiations in the same order as they were found in. Prefixing Set-of 

. and bag-of with lazy- gets lazy collections. A prefix of eager• gets eager collections. These 
control variants of sets and bags are discussed in more detail in Chapter 8. The predicate 

(PROVE-ONCE . vredications) 

finds just the first proof of predications. The predicate 
(CAN-PROVE . predications) 

is the "existential" variant of the above in that no bindings are made. The predicate 
(CANNOT~PROVE . predications) 

is the negative of above where negation is treated as failure to prove [Clark, '1978]. 

Within a clause, LM-Prolog's principal conditional construct is cases: 
(CASES . alternatives) 

where each alternative is a conjunction written as a list of conjuncts, This construct is 
equivalent to the conjunction of the elements of the firs~ alternative whose first conjunct 
is provable. If there is no such alternative it is false. 

There is a predicate that guarantees that predications are executed upon backtracking, 
mainly to ensure cleaning up of side-effects and the like: 

(UNWIND-PROTECT predication . undo•,vredications} 
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is logically equivalent to just 

predication 
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but als'o finds all solutions to undo-predications upon backtracking. This is guaranteed to 
eventually happen, regardless of the use of control primitives, errors, or even hitting the 
abort button. 

The cut ( "P' or "/" in other references) is lexically scoped in LM-Prolog i.e. it will cut out 
. all alternatives up to and including the predication that invoked the predicate containing 
it. It is written as 

(CUT) 

Predicates for inspecting the current instantiation of terms include 
(IDENTICAL . terms) 

(ATOMIC term) 
(SYMBOL term) 
(NUMBER term) 
(VARIABLE term) 
(GROUND term) 
(FINITE term) 

identical succeeds iff all its arguments are identical. atomic, symbol, number, and variable 
check the datatype of the current instantiation of the argument. ground succeeds iff its 
argument is fully instantiated i.e. variable-free in the run time sense. finite checks the 
acyclicity of its argument. 

Some of these have negative counterparts by prefixing the predicator with not-. 

13.4 Input/Output 

This subsection introduces the commonest 1/0 predicates of LM-Prolog. 
(READ term stream) 

unifies term with a term read from stream. Stream is optional and defaults to the terminal. 
Read may be prefixed with global- to cause the term being read to be read in the same 
lexical environment as the top-level query that recursively invoked the global-read. I.e. 
global-read will recognize variable names that are identical with those occurring in the 
top-level query or between global reads. 

(FORMAT stream control-string . terms) 

This prints terms according to the formatting information in control-string onto the stream 
stream. A stream of t denotes the terminal. For details, consult [Moon et al., 1983], 
function format. 

(OPEN-FILE stream file-·name . options) 

This opens the file named file-name as a stream and unifies it with stream. Ovtions may 
include :direction to indicate whether the file is being opened for :input or :output. It is 
guaranteed that the stream is closed upon backtracking. For details, consult [Moon et al., 
1983], function open. 
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13.5 Arithmetic 

The arithmetical predicates include just a few very common operations. By the Lisp escape 
mechanism, it is extremely simple to define more. 

These arithmetical predicates are "uni-directional" i.e. "input" arguments must be in
stantiated. More general predicates can readily be defined using constraints, see section 
8.4. 

(SUM sum. addends} 
(PRODUCT product . multiplicands) 

unify sum or product with the sum or product of numbers, respectively. 
(DIFFERENCE difference subtrahend subtractor) 

(QUOTIENT quotient dividend divisor) 

unify difference or quotient with the difference or quotient, respectively. 
( < . numbers) 
(> . numbers) 
(5 . numbers) 
(~ . numbers) 

are the obvious ordering predicates on numbers. 

13.6 Database 

The principle means of creating, redefining, and modifying predicates is through the use 
of define-predicate. Its syntax is one of 

(DEFINE-PREDICATE predicator (:options . options) . clauses) 
(DEFINE-PREDICATE vredicator . clauses) 

Each clause in clauses must have a head whose first element is predicator. Each option in 
options is a list beginning with an option keyword. The following options are relevant: 

(:type type) 
where type is :static ( default) or :dynamic, declares whether clauses may subse
quently be added to or removed from the definition; 

(:world world) 
where world defaults to :user, says what world the predicate is to be added to; 

( :if-another-definition action) 
controls what happens if a predicate is defined in more than one world in the 
universe. At run time, the other definition will be tried before ( action = 
: try - before) this one, after (action = : try~ after) this one, or be :ignored 
(the d~fault); 

(:if-old-definition action) 
controls what happens if there is already a predicate defined in the same world 
as this one. If action is :flush ('.:he default), the new one supersedes the old. If 
it is :keep, the new clauses are added to the old predicatei 

(:place-clauses where) 
controls, when adding new clauses to a predicate, where those clauses go. 'They 
can go :before or :after the other ones, or :anywlH}re, letting LM-Prolog decide; 
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( :indexing-patterns . patterns) 
adds indexing to the search mechanism for matching clauses. Each pattern is a 

search pattern and will add one index. A search pattern is a cons of predicator 
and an argument pattern. In the argument pattern there should be exactly 
one symbol beginning with a '+' specifying what the key is for that particular 
index. At run time, the first index whose key is bound will be used. 

(:deterministic when) 
This option may be used to force a predicate to have at most one solution 
( when = :always). The default is to not be deterministic. The compiler often 
determines on its own that a predicate is deterministic, and if so, emits this 
declaration to the benefit of subsequent compilations of predications. 

(:execution mode) 
This option controls whether a definition is :interpreted or :compiled. 

(:compile-method method) 
This is used for compiled predicates for controlling the subsequent compilation 
of predications pertaining to it. The default is :closed, ordinary out-of-line 
compilation. Method= :open causes in-line compilation of predications. Method 
= :intrinsic is for code generation of built-in primitives. 

Let us consider some examples of definitions: 

( define-predicate a 
~:-~rions (:type :dynamic) (:world :jupiter)) 

This defines a predicate a which is assertable. It is added to the world :jupiter. If there is 
an old predicate a in :jupiter, the old one flushed first. 

(define-predicate b 
~ ~~rions (:deterministic :always) ( :if-another-definition :try-before)) 

This defines a non-assertable predicate b which is added to the default world {initially 
:user). Now, assume that the universe is (:user :jupiter :system) at run time. Assume also 
that there is another predicate b in :jupiter. If b is called, the semantics is like appending 
the clauses of b in :jupiter in front of those of b in :user. Moreover, b is forced to become 
determ.inistic. 

(define-predicate c 
(:options (:if-old-definition :keep) (:place-dauses :after)) 
... ) 

Some clauses are added to the predicate c, which must be dynamic. The new clauses are 
appended after the old ones. 

Other database predicates include 

for adding a clause to a world, 

(ASSERT clause world) 
(ASSERT clause) 
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for removing matching clauses, 

(RETRACT clause world) 
(RETRACT clause) 

(ADD-WORLD world) 

for adding a world to the universe, 
(REMOVE-WORLD world) 

for removing a world from the universe, 
(PRINT-DEFINITION predicator) 

for viewing a definition. 

.• ,., ., 

M. Carlsson 
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14. Appendix C-Sample compilations 

This- chapter contains samples of compiled LM-Prolog predicates. The are taken from a 
list of benchmarks included in [Warren, 1977]. See [Moon et al., 1983] for details about 
the Lisp Machine instruction set. 

14.1 Concatenate 

(DEFINE-PREDICATE CONCATENATE 
(:OPTIONS (:WORLD :BENCHMARKS) (:EXECUTION :COMPILED) (:ARGUMENT-LIST (+ + -))) 
((CONCATENATE (?FIRST . ?REST) ?BACK (?FIRST . ?ALL-BUT-FIRST)) 
(CONCATENATE ?REST ?BACK ?ALL-BUT-FIRST)) 

((CONCATENATE () ?BACK ?BACK))) 

Mapping of variables: 

: ?FIRST -+ (CAR G0634), source term 202 
: ?REST .... (CDR G0634) 
: ?BACK .... 7VARIABLE1 
: ?ALL-BUT-FIRST_, ?VARIABLES, source term 200 

Compiled code: 

(DEFFUN CONCATENATE-IN-BENCHMARKS-PROVER •• 
(.CONTINUATION, 7VARIABLE0 7VARIABLE1 ?VARIABLE2 &AUX ?VARIABLES) 

(LET ((G0364 (¾DEREFERENCE 7VARIABLE0))) 
(COND ((AND (AND (CONSP G0m) T T)) 

(AND (¾UNIFY-TERM-WITH-TEMPLATE 7VARIABLE2 
(LET ((G0365 (CAR G0364))) '(3 (2. 202) 1 . 200))) 

(FUNCALL 'CONCATENATE-IN-BENCHMARKS-PROVER 
(CONTINUATION (INVOKE .CONTINUATION.)) 
(CDR G0364) 7VARIABLE1 7VARIABLE5))) 

((AND (EQ G0364 NIL)) 
(AND (UNIFY (¾DEREFERENCE 7VARIABLE1) (¾DEREFERENCE 7VARIABLE2)) 

(INVOKE .CONTINUA~ION.)))))) 

which further compiles to 

20 DEREFERENCE D-PDL ARGl1 ;?VARIABLE0 
21 POP LOCALl1 
22 BR-ATOM 37 
23 MOVE D·PDL ARGl3 :7VARIABLE2 
24 CAR D-PDL LOCAL!t 
25 POP LOCALl2 
26 MOVE D-PDL FEFl6 :'(3 (2 . 202) 1 . 200) 
27 (MISC) %UNIFY-TERM-WITH-TEMPLATE D-PDL 
30 BR-NIL-POP 35 
31 CDR D-PDL LOCALl1 
32 MOVE D·PDL LOCALI0 :?VARIABLES 
33 POP ARGl3 ;7VARIABLE2 
34 BR 21 
35 MOVE D-RETURN PDL-POP 
36 MOVE D-IGNORE LOCAL 11 
37 BR-NOT-NIL 47 
.110 DEREFERENCE D-PDL ARGl2 :?VARIABLE! 
41 DEREFERENCE D-PDL ARGl3 :?VARIABLE2 
42 (MISC) %UNIFY-TERM-WITH-TERM D-PDL 
.113 BR-NIL-POP 46 
44 MOVE D-PDL ARGI0 :.CONTINUATION. 
45 (MISC) ¾INVOKE D-RETURN 
46 MOVE D-RETURN PDL-POP 
47 (MISC) FALSE D-RETURN 
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Instruction 26 references the source term for (?first . ?all-but-first). 

Tail recursion was transformed to iteration (instructions 31-34). In performing that trans
formation, the compiler noted that dereferencing ?VARIABLEO is only needed initially since 
CDR (instruction 31) subsumes dereferencing. 

Note the efficient compilation of the matching of ?VARIABLEO (instructions 22 and 37). 

14.2 N a:ive-reverse 

(DEFINE-PREDICATE NAIVE-REVERSE 
(:OPTIONS (:WORLD :BENCHMARKS) (:EXECUTION :COMPILED) (:ARGUMENT-LIST(+-))) 
((NAIVE-REVERSE (?FIRST • ?REST) ?REVERSE) 
(NAIVE-REVERSE ?REST ?REST-REVERSED) 
(CONCATENATE ?REST-REVERSED (?FIRST) ?REVERSE)) 

((NAIVE-REVERSE () ()))) 

Mapping of variables: 

: ?FIRST __, (CAR G0366) 
: ?REST _, (CDR G0366) 
; ?REVERSE -, ?VARIABLEi 
: ?REST-REVERSED ..... 7VARIABLE4 

Compiled code: 

(DEFFUN NAIVE-REVERSE-IN-BENCHMARKS-PROVER 
(.CONTINUATION. 7VARIABLE0 ?VARIABLEi &AUX ?VARIABLE4) 

(LET ((G0366 (%DEREFERENCE 7VARIABLE0))) 
(COND ((AND (AND (CONSP G0366) T T)) 

(AND (PROGN (SETQ ?VARIABLE4 (%CELLO)) 
(AND (FUNCALL 'NAIVE-REVERSE-IN-BENCHMARKS-PROVER 

(CONTINUATION (TRUE)) (CDR G0366} ?VARIABLE4) 
(FUNCALL (CURRENT-ENTRVPOINT 'CONCATENATE) • 

(CONTINUATION (INVOl<E .CONTINUATION.)) 
7VARIABLE4 (PROLOG-LIST (CAR G0366)) 7VARIABLE1))))) 

((AND (EQ G0366 Nil)) 
(AND (UNIFY (%DEREFERENCE ?VARIABLE1) Nil) (INVOKE .CONTINUATION.)))))) 

which further compiles to: 
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30 DEREFERENCE D·PDL ARGl1 ;?VARIABLE0 
31 POP LOCAL Ii 
32 BR·ATOM 57 
33 (MISC) %CELLO D·PDL 
34 POP LOCAL I0 ;7VARIABLE4 
35 CALL D·PDL FEFl7 ;'NAIVE·REVERSE·IN·BENCHMARKS-PROVER 
36 MOVE D·PDL FEFl8 ;'(TRUE) 
37 CDR D·PDL LOCALli 
40 MOVE D-LAST LOCALI0 ;?VARIABLE4 
41 BR·NIL·POP 55 
42 MOVE D·PDL FEFl9 ;'CONCATENATE 
43 MOVE D·PDL FEFlt0 ;'#<DTP-LOCATIVE 14304536> 
44 (MISC) %CURRENT·ENTRVPOINT D·PDL 
45 CALL D-RETURN PDL·POP 
46 MOVE D-PDL ARGI0 ;.CONTINUATION. 
47 MOVE D-PDL LOCALI0 ;?VARIABLE4 
50 CAR D-PDL LOCALl1 
51 REFERENCE D·PDL PDL·POP 
52 MOVE D·PDL '1 
53 (MISC) ¾PROLOG-LIST D-PDL 
54 MOVE D-LAST ARGl2 ;?VARIABLE1 
55 MOVE D·RETURN POL-POP 
56 MOVE D•IGNORE LOCALl1 
57 BR-NOT-NIL 67 
60 DEREFERENCE D·PDL ARGj2 ;?VARIABLE1 
61 MOVE D·PDL 'NIL 
62 (MISC) %UNIFY-TERM-WITH-TERM D-PDL 
63 BR-NIL-POP 66 
64 MOVE D-PDL ARGI0 ;.CONTINUATION. 
65 (MISC) ¾INVOKE D-RETURN 
66 MOVE D·RETURN PDL-POP 
67 (MISC) FALSE D·RETURN 

M. Carlsson 

Tail recursion optimization is not applicable here. One variable has to be initialized by an 
explicitly allocated value cell (instructions 33-34). Instructions 42-44 show an example of 
the JoCURRENT-ENTRYPOINT instruction. The locative in instruction 43 is a pointer to 
the definitions of CONCATENATE. The pointer is installed at load time. 

In the call to CONCATENATE, a list t' long is constructed by our %PROLOG-LIST instruc
tion (instructions 50-53). 

14.3 Partition 

(DEFINE-PREDICATE PARTITION 
(:OPTIONS (:WORLD :BENCHMARKS) (:EXECUTION :COMPILED) (:ARGUMENT·LIST (+ + · ·))) 

((PARTITION (?X . ?L) ?V (?X • 7L1) ?L2) 
(> ?V ?X) 
(CUT) 
(PARTITION ?L ?V 7L1 ?L2)) 

((PARTITION (?X . ?L) ?V ?Lt (?X. 7L2)) 
(PARTITION ?L ?V ?Lt 7L2)) 

((PARTITION () 7 () ()))) 

Mapping of variables: 

; 1X -> (CAR G0367), source term 203 
: 7L -• (CDR G0367) 
; 7V ..... 7VARIABLE1 
; ?Lt __, 7VARIABLE6 and source term 200 in clause 1, 7VARIABLE2 in clause 2. 
; 7L2-. 7VARIABLE3 in clause l, 7VARIABLE6 and source term 200 in clause 2. 

Compiled code: 
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(DEFFUN PARTITION-IN-BENCHMARKS-PROVER 
(.CONTINUATION. ?VARIABLEO ?VARIABLE1 ?VARIABLE2 ?VARIABLE3 &AUX ?VARIABLE6) 

(LET ((G0367 (%DEREFERENCE ?VARIABLE0))) 
(LET ((MARK *TRAIL•)) 

(COND ((AND (AND (CONSP G0367) T T) 
(%UNIFY-TERM-WITH· TEMPLATE ?VARIABLE2 

(COND (NIL) 

(LET ((G0368 (CAR G0367))) 
'(3 (2 . 203) 1 . 200))) 

((AND (AND (LEXPR-FUNCALL #'> 
(%DEREFERENCE ?VARIABLE1) 
(PROLOG-LIST (CAR G0367))) 

(INVOKE (CONTINUATION (TRUE)))))))) 
(COND ((FUNCALL 'PARTITION-IN-BENCHMARKS-PROVER 

(CONTINUATION (INVOKE .CONTINUATION.)) 
(CDR G0367) ?VARIABLE! ?VARIABLE6 ?VARIABLE3)))) 

((PROGN (UNTRAIL MARK) NIL)) 
((AND (AND (CONSP G0367) T T)) 
(AND (%UNIFY-TERM-WITH-TEMPLATE ?VARIABLE3 

(LET ({G0369 (CAR G0367))) 
'(3 (2 . 203) 1 . 200))) 

(FUNCALL 'PARTITION-IN-BENCHMARl<S-PROVER 
(CONTINUATION (INVOKE .CONTINUATION.)) 
(CDR G0367) ?VARIABLEt ?VARIABLE2 ?VARIABLE6))) 

((AND (EQ G0367 NIL)) 
(AND (UNIFY (%DEREFERENCE ?VARIABLE2} NIL} 

(UNIFY (%DEREFERENCE ?VARIABLE3) NIL} 
(INVOKE .CONTINUATION.))})))) 

The Lisp function further compiles to 
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22 DEREFERENCE D-PDL ARGJt ;?VARIABLEO 
23 POP LOCALJ1 
24 MOVE D-PDL FEFJ6 ;•TRAIL • 
25 POP LOCALJ2 ;MARK 
26 MOVED-IGNORE LOCALJ1 
27 BR-ATOM 47 
30 MOVE D·PDL ARGJ3 ;?VARIABLE2 
31 CAR D-PDL LOCAL Ji 
32 POP LOCAL l3 
33 MOVE D-PDL FEFl7 ;'(3 (2 . 203) i . 200) 
34 (MISC) %UNIFV•TERM•WITH-TEMPLATE D-IGNORE 
35 BR-NIL 47 
36 DEREFERENCE D-PDL ARGl2 ;?VARIABLEt 
37 CAR D-PDL LOCALl1 
40 DEREFERENCE D-PDL PDL·POP 
41 > PDL-POP 
42 BR-NIL 47 
43 CDR D-PDL LOCALl1 
44 MOVE D-PDL LOCALJ0 ;7VARIABLE6 
45 POP ARGl3 ;?VARIABLE2 
46 BR 23 
47 MOVE D-PDL LOCALl2 ;MARK 
50 (MISC) %UNTRAIL D-IGNORE 
51 MOVE D-IGNORE LOCALl1 
52 BR-ATOM 67 
53 MOVE D-PDL ARGl4 ;7VARIABLE3 
54 CAR D-PDL LOCALl1 
55 POP LOCAL J3 
56 MOVE D-PDL FEFJ7 ;'(3 (2 . 203) 1 . 200) 
57 (MISC) %UNIFV·TERM-WITH-TEMPLATE D·PDL 
60 BR-NIL-POP 65 
61 CDR D-PDL LOCALl1 
62 MOVE D·PDL LOCALJ0 ;?VARIABLE6 
63 POP ARGl4 ;7VARIABLE3 
64 BR 23 
65 MOVE D•RETURN POL-POP 
66 MOVED-IGNORE LOCALJ1 
67 BR-NOT-NIL 103 
70 DEREFERENCE D-PDL ARGl3 ;?VARIAJ3LE2 
71 MOVE D·PDL 'NIL 
72 (MISC) %UNIFV·TERM-WITH-TERM D-PDL 
73 BR-NIL-POP 102 
74 DEREFERENCE D-PDL ARGl4 ;7VARIABLE3 
75 MOVE D-PDL 'NIL 
76 (MISC) %UNIFY-TERM-WITH-TERM D-PDL 
77 BR-NIL-POP 102 
100 MOVE D-PDL ARGI0 ;.CONTINUATION. 
101 (MISC) %INVOKE D·RETURN 
102 MOVE D·RETURN POL-POP 
103 (MISC) FALSE D-RETURN 
104 MOVE D·RETURN PDL-POP 

M. Carlsson 

The compiler is not clever enough to notice that the pattern for the first argument is the 
same in the first two clauses. It duplicates the test (instructions 26-27 and 51-52). 

Instructions 33 and 56 reference the source term for (?x . ?11) and ('?x . ?12). 

Tail recursion optimization was applicable (instructions 43-46, 61-64). 

Instructions 36-41 illustrates the compilation of e.g. arithmetic tests. The predicate > is 
defined as 
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(define-predicate> 
(:options (:compile-method :open)) 
((>)) 
((> ?x. ?arguments) (lisp-predicate (lexpr-funcall #'> '?x '?arguments)))) 

and so the predication 

(> ?Y 7X) 

expands into 

(or (fail);;since the first head doesn't match 
(lisp-predicate (lexpr-funcall ff.'> '?y '(?x)))) 

which corresponds to the following segment of the Lisp function: 

(COND (NIL) 
((AND (AND (LEXPR-FUNCALL #'> 

(%DEREFERENCE ?VARIABLE1) 
(PROLOG-LIST (CAR G0367))) 

(INVOKE (CONTINUATION (TRUE))))))) 

Various compiler optimizers transforms the code segment to: 

(> (%DEREFERENCE ?VARIABLE!) (CAR G0637)) 

which compiles to instructions 36-41. 

79 
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15. Appendix D-Instruction set extensions 

The-CADR Machine features writeable control store and moreover has 38 unused opcodes 
and more than 4000 unused control memory locations. 

This has been exploited in the implementation by adding 12 new instructions occupying 
383 words of control store, 27 dispatch memory locations and 3 "A" memory words. A 
comparison with a version of LM-Prolog that does not use an extended instruction set 
suggest a factor of 3 speed difference. Moreover, the version without microcode support 
has to emit much more in-line code in order to not further deteriorate performance of 
compiled code. 

(%untrail mark) 
This unwinds the trail stack until its stack-pointer is mark. Value cells are 
made unbound and continuations are invoked. Occurrences of this instruction 
correspond to "backtrack points". It is typically emitted between code for 
subsequent clauses in compiled code. 

(%unify-term-with-term x y) 
This unifies the object terms x and y. It is used in compiled code and by all 
parts of the runtime system that want to unify object terms. 

(%unify-term-with-template x y) 
This unifies the object term x with the source term y. There is typically one 
occurrence of this instruction for each non-variable argument of each clause of 
a compiled predicate. In the interpreter, this instruction is applied to source 
terms for heads of clauses. 

(%construct source-term) 
This constructs a term out of source-term. The principal occurrence of this 
instruction is in the interpreter, which uses it to construct instances of bodies of 
clauses. The compiler emits inline code for constructing instances of arguments 
of predications instead. 

(%cell name) 
This makes a named value cell two words long. Named value cells are created by 
the interpreter. The instruction occurs at a few places in·the runtime system. 

(%cell0) This makes an unnamed value cell one word long. Unnamed value cells are 
created by compiled code. The instruction is emitted when a vojd variable is 
an argument of a predication inside a compiled predicate. 

(%reference term) 
This turns term into a forwarding pointer if it is a value cell. Its ma,in use is 
in inline code for constructing instances of arguments of predica.tions. It also 
occurs at a few places in the runtime system. 

(%dereference term) 
This dereferences term if it is a value cell. The rationale for having it is that 
when unbound variables are first passed as arguments, then bound, and then ac
cessed, there is no automatic following of forwarding pointers, since the accesses· 
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don't go via car or cdr. %dereference does it instead. Previously, %dereference 
was commonly used together with %unify-term-with-template but the latter in
struction now dereferences its first argument, thus saving many instructions 
from being emitted. The main use of %dereference is now·in interfacing to Lisp 
functions. 

(%prolog-list element... length) 
This instruction substitutes for the Lisp function list-in-area, which needs full
fledged function calls, for memory allocation in *prolog-work-area*. The mo
tivation for this instruction is to avoid the overhead of function calls when 
constructing terms. 

(%prolog-list* element... length) 
This instruction substitutes for the Lisp function list*-in-area. Analogous to the 
above. 

(%invoke continuation) 
This invokes continuation ( currently, applies its car to its cdr) after checking 
for two common cases first. If the function is true, a common case due to 
determinacy optimizations, or if it is false, a common case due to sets and bags, 
t or nil is returned, respectively. Otherwise, a function call t.akes place. Again, 
the motivation is to avoid function calls, however the motivation is somewhat 
weak here since calls to true and false are fast anyway. But then this instruction 
takes one macro-instruction less than the obvious sequence using apply. 

(%current-entrypoint predicator defs-location) 
This implements the cached search for predicator's prover. Defs-location is a 
locative to predicator's definition alist. The instruction opti1nizes the most com
mon case where there is a hit. Without it, there would be 10 more instructions 
of inline code associated with each predicate-to-predicate call, for covering the 
hit and miss cases. 

The occur check is a microcoded function, not invoked as an instruction though. 

The microcode has direct access to the special variables *trail-array*, *prolog-work-area*, 
and *vector*. "Direct access" means that the variables reside in internal processor memory 
"A" so that the microcode can get at their values without virtual memory read cycles. 
The macrocode consequences are ( £) these variables cannot be closure variables, and ( ii) 
accessing these variables becomes a trifle slower for the part of the runtime system 1ihat is 
not microcoded. 

Using the ordinary virtual memory mechanism, the microcode also has access to the vari
able *universe*, to the function array-push-extend, to some of its own dtp-u-entries which 
it needs when it runs out of microcode subroutine stack and so has to recurse "slowly", 
and finally to the definition of read-only-variable. 
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