
Upmail Technical Report no. 35

Compilation for Tricia
and its Abstract Machine

Mats Carlsson'

UPMAIL
Uppsala Programming Methodology and Artificial Intelligence Laboratory

Department of Computing Science, Uppsala University
P.O. Box 2059

S-750 02 Uppsala, Sweden

1 Author's prrsrnt. addrrss:

Swedish Instit.ntl' of Compntl'r Scil'ncr

P.O. Box 1263

S-163 13 Spang11, Swrdrn

Compilation for Tricia

Table of Contents

Abstract

1. Introduction

2. Abstract Machine Architecture
2.1 Data objects ...

2.1.1 Logical Variables
2.1.2 Terms

2.2 Data Areas
2.3 Registers

3. Tricia Instructions and Basic Operations
3.1 Control Instructions .
3.2 Put Instructions
3.3 Get Instructions
3.4 Unify Instructions
3.5 Indexing Instructions
3.6 The Cut Operator
3.7 Utility Instructions
3.8 Basic Operations

4. Kernel Predicates .
4.1 The Interpreter .
4.2 Delay Primitives

5. Overview of Compilation
5.1 Introduction
5.2 Collect mode declaration and clauses
5.3 Convert source code to record structures .
5.4 Spawn internal predicates
5.5 Allocate permanent variables . . .
5.6 Process mode declarations and cut
5.7 Emit instructions
5.8 Analyze lifetimes of temporary variables
5.9 Allocate temporary variables
5.10 Emit linkage instructions
5.11 Peep hole optimization and final editing

6. Conclusions

7. Acknowledgments

Appendix A. References

Table of Contents

1

2

3
3
3
3
4
5

6
6
7
8
9

11
12
13
14

15
15
15

18
18
18
19
19
21
21
22
23
23
24
24

25

26

27

Compilation for Tricia 1 Abstract

Abstract

An elaboration of the Warren Abstract Ma.chine for Prolog is described along with
its compiler. The elaborations include arithmetic, cut and delay operators, and constraints
imposed by a garbage collector. Various compiler optimizations have been introduced and
are discussed.

Compilation for Tricia 2 Introduction

1 .. Introduction

This paper describes the abstract machine and front-end compiler of a compiler-based
Prolog implementation effort nicknamed Tricia.. The motivation behind the effort is

1. To develop expertise in compiler technology for Prolog.

2. To build a Prolog system with high performance and high functionality to serve as a
basic software tool.

3. To explore whether new control structures such as coroutines can be included without
performance penalty in standard Prolog implementations.

The abstract machine is a derivative of the Warren Abstract Ma.chine [War83]. It
elaborates issues not treated in [Wa.r83], such as arithmetic, the cut opera.tor, and con
straints imposed by a garbage collector. We have also introduced delay primitives [Nai85]
in the implementation, which includes a. compiler, a back-end for genera.ting Digital PDPlO
ma.chine code (KLlO processor with Extended Addressing) and a runtime system for it.

Compilation for Tricia 3 Abstract Machine Architecture

2 .. Abstract Machine Architecture

The architecture is substantially the same as in [War83]. This chapter describes
the main registers, main data areas, main data structures, and memory word format. It
corresponds to Chapters 2, 3, and 4 in [War83]. The level of detail is chosen to suit the
description of the various instructions.

2.1 Data objects

A Prolog object is represented by a word containing a tag and a pointer. The pointer
is usually a memory address, however for some data.types the pointer contains data.

2.1.1 Logical Variables

The following three tags are used in the representation of logical variables:

$var
This represents a heap variable. The pointer points to a heap word

<value>
where value is a self-reference if uninstantiated.

$sva
This represents a stack variable. The pointer points to a stack word

<value>
where value is a self-reference if uninstantiated.

$clo
This represents a goal which is suspended on a variable, aka a constrained variable. The
pointer points to a heap vector

<value, $lst(prev), goal>
where value is a self-reference if uninstantiated, goal is the suspended goal, and prev is
a reference to the most recent $clo object.

2.1.2 Terms

The following tags are used for representing terms in programs, i.e. objects that have
a syntax in the language. ·

$ch:r
A character object, including font information and meta bits.

$int
An integer (actually small integers have a special tag but this is invisible).

$nil
The empty list.

Compilation for Tricia 5 Abstract Machine Architecture

where CE is the continuation environment, CL is the continuation program address, Yi are
variables that need to be saved over procedure calls.
NB. At procedure calls, the size of the vector is accessible at an offset from the machine
word referred to by L. This size is decremented for each procedure call by Warren's "trim
ming" mechanism.

A choice point is a stack vector
<P', A', TR', H', E', L', XO', ... , Xm'>

where Xj ' are saved argument registers, and the other fields correspond to previous values
of machine registers.

2.3 Registers

p

program pointer (to the code area)

L
continuation p:rogram pointer (to the code area)

E
last environment (on the environment stack). Actually points to last word before it. $sva
is currently zero, which is optimal for creating variables on the environment stack.

B
last choice point (on the choicepoint stack). Points to first word of it.

A
Top of stack.

TR
Top of trail.

H
Top of heap.

s
Structure pointer (to the heap).

xo .. xn
Argument/temporary registers

F
General event register. One of the bits is on if there are goals to wake up. One of the bits
is on if an abort has been signalled. One of the bits is on if the heap need to be garbage
collected. Etc.

w
Holds a goal to be woken iff the corresponding F flag is raised. Resides in memory.

Compilation for Tricia 4

$1st
A non-empty list. The pointer points to a vector

<car, cdr>

containing head car and tail cdr of the list.

$sym

Abstract Machine Architecture

This represents a symbolic constant. It is considered atomic for the purposes of this
paper. Symbols are unique, i.e. two symbols have the same machine address iff they
have the same names.

$str
A structure, i.e. an n-ary function (n > 0). The pointer points to a vector

<functor, arg.1, ... , arg.n>

$sst
A string, i.e. a compact list of ascii characters. It is considered atomic for the purposes
of this paper. Strings are not unique.

The tag $0th is used for special terms of some kind (array, hash table, or the like),
which do not have syntax.

2.2 Data Areas

The different data areas are laid out in memory as follows:
<code area, heap, environment stack, choicepoint stack, trail>.

The various areas are used as follows:

code o.rea
Contains compiled code and structure-sJiared constants and pure data. Should be garbage
collectable.

heap
Contains all data created by unification. It shrinks upon backtracking and is garbage
collected when full.

envh·onment stack
Contains environments (continuation + vector of value cells). Also used as PDL in
unification etc. There is no garbage collection in this area.

choicepoint stack
Contains choice points (saved machine states). There is no garbage collection in this
area.

trail
Contains pointers to variables that we might unbind. Other side-effects are occasionally
trailed too. Things to do "upon backtracking" are pt! t here too.

An environment is a stack vector
<CE, CL, YO, ... , Yn>

Compilation for Tricia 6 Tricia Instructions and Basic Operations

3. Tricia Instructions and Basic Operations

This chapter corresponds to Chapter 8 in [War83].

The semantics of each instruction is given in a pseudo C notation. In particular,
the constructs case_mode of, case_tag(T) of, if_var(T), if_sva(T) denote dispatch
ing on mode or tag, testing whether T is instantiated to a variable or a stack variable,
respectively. * is the memory reference opera.tor, ++ is the postincrement operator, - is
the predecrement opera.tor.

The linear functions I and J perform trivial mappings from operand fields to word
offsets, and are included for clarity.

3.1 Control Instructions

alloca t~ (k)
This appears at the beginning of a clause which contains a procedure call followed by
other instructions. Must be matched by a deallocate instruction. Space for a new
environment is allocated on the stack.

CL := L; CE := E; E := A; A := A+I(k)

deaJlocate
This appears after computing the arguments of the last goal in a clause that. has an
allocate (k) instruction.

if A'~E then A := E;
L := CL; E := CE

init(Xn)
This initializes Xn to a heap variable.

Xn := *(H++) := $va:t(H)

init(Y:u)
This initializes Yn to a stack variable. The compiler emits these to guarantee that the
cunent environent is fully initialized before the first call instruction of a clause. 'I'his
measure is for protecting the garbage collector from dangling pointers.

Y :~ $sva(E+I(n)))

call (Ln be] ,lt)
This corresponds to a procedure call that does not terminate a clause. The argumeu! k
is the number of variables in the environment at this point, and will be accessed by cute
and cutne instructions where it is denoted by env _size (L).

if A'~E then A := E+I(k)
L :~ P; P := Label

Compilation for Tricia 7 Tricia Instructions and Basic Operations

execute (Label)
This corresponds to a procedure call that terminates a clause.

P := Label

proceed
This terminates a clause not terminated by a procedure call.

p := L
fail

This backtracks to the latest choicepoint.

P :== $fail

3.2 Put Instructions

put_ variable(Yn,Xi)
This represents a goal argument that is an unbound variable which occurs in the first
genera.I procedure call and later. After the first ca,ll instruction of a clause, the compiler
emits put_ value Yn instructions rather than put_ variable Yn.

Xi := Yn := $sva(E+I(n)))

put_ variable(Xn,Xi)
This represents a goal argument that is an unbound variable which does not occur after
the next procedure call.

Xi :== Xn := t(H++) := $var(H)

put_ value(Vn,Xi)
This represents a goal argument that is a bound variable which cannot point (even before
dereferencing) to a portion of the stack which is about to be deallocated.

Xi := Vn

put_ unsafe_ -value(Yn,Xi)
This represents a goal argument that is a bound variable which might point to a portion
of the stack which is about to be deallocated.

ti := sderef(Yn);
if _sva (t 1) then

then if ti >= E
then (if A'>E

* (ti)
Xi := t1;

put_constant(C,Xi)

then *(TR++) :=ti);
*(H++) := $var(H):

This represents a goal argument that is a constant.

Compilation for Tricia

Xi := C

put_nil(Xi)

8 Tricia Instructions and Basic Operations

This represents a goal argument that is nil.

Xi := $nil(O)

put_structure(F ,Xi)
This represents a goal argument that is a structure.

Xi := $str(H); *(H++) := F; Mode := W

put_list(Xi)
This represents a goal argument that is a list.

Xi := $lst(H): Mode := W

8.8 Get Instructions

get_ variable(Xn,Xi)
This represents a head argument that is an unbound variable.

Xn := Xi
get_ variable(Yn,Xi)

This represents a head argument that is an unbound variable. The trail measure is
necessary to prevent dangling pointer problems in garbage collection.

if A'>E then *(TR++) .- Yn;
Yn := Xi

get_ value(Vn,Xi)
This represents a head argument that is a bound variable.

unify(Vn ,Xi);

get_constant(C,Xi)
tfhis represents a head argument that is a constant.

unify(C ,Xi)

get_nil(Xi)
This represents a head argument that is ni 1.

unify($nil(O),Xi)

get_st:ructure(F ,Xi)
This represents a head argument that is a structure.

Compilation for Tricia

t1 := deref(Xi);
case_tag(t1) of

9 Tricia Instructions and Basic Operations

$var,$sva,$clo: unify(t1,$str(H));
*(H++) := F;
Mode := W

$str: if *(t1++)=F
then S := t1++1; Mode := R
else fail

otherwise: fail

get_list (Xi)
This represents a head argument that is a list.

ti:= deref(Xi);
case_tag(t1) of

$var,$sva,$clo: unify(t1,$lst(H));
Mode := W

$1st: S := ti;
Mode := R

otherwise·: fail

3.4 Unify Instructions

unify_ void(k)
This represents a sequence of k structure arguments that are singleton variables.

while k>O do
k !"" k-1;
case_mode of

R: t1 := *(S++);
W: *(H++) := $var(H);

urtify _ variable(Xn)
This represents a structure argument that is an unbound variable.

case_mode of
R: Xn := *(S++);
W: Xn := *(H++) := $hva(H);

unify_ variable(Yn)
This represents a. structure argument that is an unbound variable. The trail measure is
necessary to prevent dangling pointer problems in garbage collection.

if A ' > E then * (TR) : = Y n ;
case_mode of

R: Yn := *(S++);
W: Yn := *(H++) := $hva(H);

Compilation for Tricia 10 Tricia Instructions and Basic Operations

unify_ value(Vn)
This represents a structure argument that is a bound variable which cannot (even before
dereferencing) be pointing to the stack.

case_mode of
R: unify(Vn,*(S++));
W: *(H++) := Vn

unify _local_ value(Xn)
This represents a structure argument that is a bound variable which could be pointing
to the stack.

case_mode of
R: ti := Xn; Xn := *(S++); unify(t1,Xn);
W: ti := sderef(Xn);

if _sva (ti)
then (if A'>E then *(TR++) ti);

Xn := $var CH++);
e 1 s e Xn : = (H ++) : = ti ;

The final deref~rencing step is necessary since the compiler trusts the instruction to "glob
alize" its argument. Note that this cannot generally be clone for permanent variables,
because of backtracking. This instruction therefore has a slightly different semantics for
perma11ent variables.

unify _local_ value(Yn)
This represents a structure argument that is a bound variable which could be pointing
to the stack.

case_mode of
R: unify(Yn,*(S++));
W: t1 := sderef(Yn);

H_sva(ti)
then (if A'>E then *(TR++) ti);

*(t1) := $var(H++);
else *(H++) := ti

unify _constant(C)
This represents a structure argument that is a consbnt.

case __ mode of
R: unify(C,*(S++));
W: *(H++) := C

unify _nil
This represents a structure argument that is nil.

case_mode of
R: unify($nil(O) ,*(S++));
W: *(H++) := $nil(O)

Compilation for Tricia 11 Tricia Instructions and Basic Operations

unify _structure(F)
This represents a last structure argument that is a structure.

case_rnode of
R: get_structure(F,*(S++));
W: put_structure(F,*(H++))

unify _list
This represents a last structure argument that is a list.

case_rnode of
R: get_list(*(S++));
W: put_list(*(H++))

3.5 Indexing Instructions

try (P:roc ,k)
This represents a first clause of arity k whose code starts at label Proc. The arity field
will be accessed at backtracking, where it is denoted ari ty _of (P ').

Create a new choicepoint; P := Proc.

retry (Proc ,k)
This represents a subsequent clause of arity k whose code starts at label Proc.

P' := P; P := Proc.

t:rust(Proc,k)
This represents a last clause of arity k whose code starts at label Proc.

B := B-J(k); P := Proc.

labels(VJ,Ll)
This represents a point in the code where one can branch to. At VJ, it is asserted that XO
is dereferenced to a variable. At Ll, it is asserted that XO is dereferenced to the correct
type matching the following get instruction.

switch_ on_ type(Va,Sy,St,Ni,Ls,In,Ch,Sg,Ot)
XO is dereferenced, then a 9-branch switch is performed, depending on whether its tag is
Variable, Symbol, Structure, Nil, List, Integer, Character, String, or Other.

switch_on_constant(Table,Default)
The Table is an a.list of constants and labels. This instruction indexes on XO to the
appropriate label. If no value matches, branches to Default.

sw Heh_ on_s tructure ('.ra ble,Default)
The Table is an alist of functots and labels. This instruction indexes on XO to the
appropriate label. If no value matches, branches to Default.

Compilation for Tricia 12 Tricia Instructions and Basic Operations

3.6 The Cut Operator

The cut operator is a notorious problem for implementors. Its operational semantics
is yet to be laid clown firmly [Mos85].

We adopt the semantics of compiled DEC-10 Pro log, as formulated in [Per79]: "The
cut operation commits the system to all choices made since the parent goal was invoked,
and causes other alternatives to be discarded". By "the parent goal" we interpret the
predicate in which the cut textually appears. Uses of cuts inside of meta-calls etc. are left
undefined here, although it seems sensible to let such a cut be local to the meta-call.

Other variants of cut semantics include cuts that are local to disjunctions etc. We
do not treat these, as they seem not strictly necessary, and less powerful than the DEC-10
version.

Achieving the desired semantics of cut is straightforward. The choicepoint register
is saved away at procedure entry, and is restored by the cut operator.

Maintaining stack space economy is not as straightforward, however. The cut op
erator renders parts of the stack containing backtracking information inaccessible. These
parts shmtld preferably be reclaimed before the next environment or choicepoint is allo
cated. There could be dangling references into these parts from the trail, such references
must be deleted too.

The problem with tidying the sta.ck (in Warren's design) is tha.t the garbage a.rea is
not always visible, i.e. a contiguous area. at the sta.ck top. It is not visible for cases when
a predicate first allocates a choicepoint, then allocates an environment, then executes
cut before deallocating. Now, the choicepoint is garbage but it is buried underneath an
environment. The situation is even more complicated for cuts inside of disjunctions, where
several environments can be active.

A partial answer to the deallocation problem is to have two separate stacks, one
for environments and one for choicepoints. The answer is only partial, since garbage
environments may still be buried after a cut. However, the split stack architecture causes
other problems, and the tradeoffs a.re difficult to evaluate. For a more comprehensive
discussion of the issues involved, see [Bar8Gc] or [Car8Ga].

choice(Vu)
This saves away the current choicepoint.

Vn : = $sin (8)

cute(Vn)
This restores the current choicepoint, and tidies the trail.

B • -- $sva (Vn)

i .- j : = TR'
while i < TR do

Compilation for Tricia

ti := *Ci++);
case_tag(ti) of

13 Tricia Instructions and Basic Operatiomi

$sva: if ti<A' then *(j++) := ti;
$var: if ti<H' then *(j++) := ti;
$clo: if t1<H' then *(j++) := ti

else if ti=*ti then *(j++) := ti;
otherwise: *(j++) := ti;

TR := j

cubrn(Vn)
This variant is used when no environment is active. It does all that cute (Vn) does, and
adjusts the stack top:

cute(Vn);
A := max(A 1 ,E+env_size(L))

Note: cute and cutne first test whether the wake-flag has been raised, indicating
tha..t a delayed goal is pending, in which case the cut itself is dela.yed since the delayed goal
could fa.ii or introduce backtracking choices.

3. 7 Utility Instructions

nrnd!l:l Functor(Modes
) 'rhe compiler simply passes mode declarations on to the code generator. A mode can
be one of

'+': the corresponding argument is instantiated

'•': the corresponding argument is uninstantiated

'P: if the corresponding argument is uninstantiated, then delay on it

''?': (default), no information is given

order(Op,V1;v2)
VJ and V2, which are temp(i) or perm(i), are compared acc. to op which is==,\= ,
~<, ©=<, ©>, or ©>=. The instruction causes failure if the test doesn't succeed. No
argument registers are altered.

cotnpute_:6x_ value(Vn,Expr,live-X-vars)

compnte_fix_ va:riable(Vn,Expr,live-X-vars)

compute_fix_constant(C,Expr,live-X-vars)
Vn, which is temp (i) or perm (i), or C is set to or unified with the value of expression
Expr, which is built up from perm(_), temp(_), constant (C), structure (Op, ArglisO.
The live argument registers, listed in the third arGument, are not altered.

compare_flx(Op,Args,Jive-X-vars)
Op is a binary arithmetic operator. Args are Expressions as in compute. 'l'he instrudio11

Compilation for Tricia 14 Tricia Instructions and Basic Operations

causes failure if the test doesn't succeed. The live argument registers, listed in the third
argument, are not altered.

This last instruction is not strictly necessary since it can be expressed in terms of com

pute_f ix_ variable and order.

3.8 Basic Operations

p:rocedu:re call
At each procedure call, the F register is tested, and if nonzero, different actions are ta.ken
depending on its bits. Currently, the following actions are defined:

11 waking delayed goals

• garbage collection when the heap is full

i11 tracing each predicate call

• countiing each predicate call

deref(tt)
Follow variable pointers from u until a fixpoint or a non-reference pointer is reached.

sderef(u)
Follow stack variable pointers from u until a fixpoint or a non-stack reference poi11ter is
reached.

foil
Unwind trail as far as TR'. Reset wake-bit of F. Restore H, E, L, A, and X0 .. Xm, where
m=ari ty _of (P '). Branch to P' which is asserted to be a retry or a trust instruction.

while TR>TR' do
·ti : = t (- -TR) ;
if _var(t1)

then *(ti) := ti
otherwise: "handle exception"

F<wake> :~ O; H := H'; E E'; L := L'; A:= A';
XO .. Xm : = XO ' .• Xm 1

; P : = P'

unJ~y(x,y)
Del'eference x and y and unify them. Variable-variable instantiations obey the conventio11
to always instantiate the variable with the higher address.

If a $clo variable is instantiated, the following action is taken:

Let G he the suspended goal.
if F<wake>

then W := (W,G)
else W := G;

F<wake> := true

Compilation for Tricia 15 Kernel Predicates

4. Kernel Predicates

4.1 The Interpreter

Although the implementation is based on compilation, we have included an inter
preter to support program debugging. The interpreter consists of a meta-interpreter in
Prolog and certain built-in primitives. The meta-interpreter exists in a basic version, for
normal interpretation, and in an extended version, for debugging.

Every functor points to executable code: $fail ($error, eventually) for undefined
predicates, compiled code for compiled predicates, and an interface to the interpreter
for interpreted predicates. This interface packs the functor and arguments into a term
and executes the toplevel predicate of the meta-interpreter, whose pre-defined name is
$interpret_goal/1.

The predicate call/i spreads the argument and just executes the code pointed to
by the functor. For interpreted predicates, it just executes $interpret_goal/1.

Every interpreted predicate points to a list of clause objects. A clause object is
conceptually a byte code representation of abstract machine code for a unit clause of the
predicate clause/2.

The interpreter consists of a meta--interpreter which is supported by built-in prim
itives which insert or delete clause objects under functors, retrieve the list of clauses for
the proper functor, and emulate coded clause objects.

4.2 Delay Primitives

The machinery for delaying goals is largely implemented by special code emitted
by mode declarations and by unification. Suspension objects are created by the built-in
primitive $geler. They are trailed at creation time, so that all suspensions can be found
by traversing the trail.

$geler
(XO: variable, Xl: goal).

case_tag(XO)
$var:

$clo:

of:
*(H++) := t1 := $clo(H);
* (H++) : = Xi;
t(TR++) := ti;
unify(XO,tj_):

t(H++) .-- ti := $clo(H);
t(H++) $str(H++i);
:f:(H++) ,- $fnt(' I '/2);
t(H++) *(XO++i);
* (H++) ·- Xi;
t(TR++) := ti;

Compilation for Tricia

unify(X0,t1):

oterwise: fail.

16 Kernel Predicates

The toplevel checks the list of suspensions to see whether any suspensions still have
not been run. This check should be done in other situations as well, in particular by
negation and all solution predicates.

The $geler mechanism delays a goal until a variable binding occurs, but a more
useful behavior is to delay until the principle functor of the variable is known. This is
easily built upon $geler as follows:

freeze (Var, Goal) : -
var(Var), syscall('$geler' ,[Var,freeze(Var,Goal)]);
nonvar(Var), Goal.

or, equivalently:

·- mode freeze(!,?).
freeze(_,G) :- G.

The choice of $geler rather than freeze/2 as the underlying primitive is motivated
by the implementation of sound inequality as

X-:j:.Y : -
syscall('$dif', [X,Y,Z1,_]),
(var(Z1), ! , sysca11('$geler', [Z1,XfYJ);
true).

where $dif succeeds unless XO and Xl are identical terms, returning in X2 and X3
the first subterms of XO and Xl where a_ difference is established, and X2©<X3.

Delaying on more than one variable is achieved as follows:

freeze_list(Vas,Goal) :
freeze_list_1(Vas,freeze_list_2(_,Goal)), !;
Goal.

freeze_li st __ 1 ([], _).
freeze_list_1 ([Va I Vas] ,Goal) · -

var(Va), freeze(Va,Goal), freeze_list_i(Vas,Goal).

freeze_list_2(M,Goal)
nonvar(M);
var(M), M=1, Goal.

Delaying until a term is ground (upon which sound negation is built) is implemented
as follows:

freeze (Goal) · -

Compilation for Tricia 17 Kernel Predicates

contains_variable(Goal,Var), !, sysca11('$geler', [Var,freeze(Goal)]);
Goal.

contains_variable(X,X) :- var(X).
contains_variable(Struct,X) :

arg(l,Struct,Arg),
arg_contains_variable(Struct,X,1,Arg).

arg_contains_variable(Struct,X,I,Arg) ·
contains_variable(Arg,X);
I1 is I+i,
arg(Il,Struct,Argi),
arg_contains_variable(Struct,X,Ii,Argi).

Compilation for Tricia 18 Overview of Compilation

5. Overview of Compilation

5.1 Introduction

The compilation proceeds in two file-to-file steps:

PLWAM
The Prolog source code is compiled to machine-independent WAM (Warren Abstract
Machine) code.

WAMTQL
The WAM code is compiled to native machine code, stored in TQL (Tricia Quick Load)
format.

The PLWAM step has the following phases (roughly), repeated for each predicate:

1. Collect mode declaration and clauses

2. Convert source code to record structures

3. Spawn internal predicates

4. Allocate permanent variables (per clause)

5. Process mode declarations and cut (per predicate)

6. Emit instructions (per clause)

7. Analyze lifetimes of temporary variables (per clause)

8. Allocate temporary variables (per clause)

9. Emit linkage instructions (per predicat~)

10. Do peep hole optimization and final editing

Each phase is discussed in more detail below.

5.2 Collect mode declaration and clauses

The clauses that comprise a predicate, optionally preceded by a mode declaration,
are compiled together. This causes a space problem for large predicates, which could be
solved by having a separate clause compiler.

The mode declaration affects the semantics as follows:

With a'+' declaration on the first argument, the predicate will fail if called with the
argument uninstantiated.

With a '-' declaration on the first argument, the predicate will fail if called with the
argument instantiated.

With a'!' declaration on any argument, the predicate will suspend if called with the
corresponding argument uninstantiated.

Compilation for Tricia 19 Overview of Compilation

5.3 Convert source code to record structures

In order to minim,ize the use in the compiler of meta-logical predicates, the source
code is converted to more manageable records.

var(X)
This record type denotes a source variable.

constant(C)
This record type denotes a ground source term.

nil
This record type denotes the source term [].

list(X,Y)
This record type denotes the source list [x I y]. X and Y are records denoting the argu
ments x and y.

structure(S,L).
This record type denotes a source structure. S is the functor and L is a list of records
denoting the arguments of the structure.

This phase specially recognizes cuts, and transforms them to calls $cut (B), where it
is arranged so that B is the current choicepoint at procedure entry.

5.4 Spawn internal predicates

This phase recognizes certain situations where pieces of code are broken off as internal
predicates and are replaced by calls to these. The situations are:

sub-,11rgument indexing ,
Groups of clauses where the first argument have the same principa.l functor are broken
off as a predicate indexed on the first sub-argument. The process is repeated recursively.

Example. The predicate:

p(:f (X)) :- f1(X).
p([1IX],X).
p((2IX] ,Y) :- q(X,Y).
p(:f(a,X,Y) ,X,Y).
p(f(b,X,Y),Y,X).
p(g(X)) :- g1(X).

This is transformed to:

p (f (X)) : - f i(X) .
p([X!Xs] ,Y) :- p' (X,Y,Xs).
p (f (A, B, C) , D, E) : - p" (A, D, E, B, C) .
p(g(X)) : - gi (X).

p' (1, X ,X) .

Compilation for Tricia

p'(2,Y,X) :- q(X,Y).

p"(a,X,Y,X,Y).
p"(b,X,Y,Y,X).

disjunction

20 Overview of Compilation

A disjunction of N disjuncts is broken off as a predicate with N clauses. However, a clause
which contains materially nothing but a disjunction is replaced by N clauses.
Example. The predicate:

p([AIB] ,C) :- f(C,D), (gi(A,D); g2(B,D)).
p(A,B) :- hi(A); h2(8).

This is transformed to:

p([AIB] ,C) :- f(C,D), p' (A,B,D).
p(A,_) :- hi(A).
p(_,B) :- h2(B).

p'(A,_,D) ·- gi(A,D).
p' (_, B, D) : - g'.2 (B, D) .

negation
Negation as failure is always broken off as an internal predicate.

Example. The predicate:

p([AIB] ,C) :- f(C,D), \+ g(A, [BID]).

This is transformed to:

p([AIB] ,C) :- f(C,D), p' (A,B,D):

p'(A,B,C) :- g(A,[BIC]), !, fail.
p'(_,_,_).

if_then_else
ILthen_else by test and commitment is always broken off as an internal predicate.

Example. The predicate:

p([AIB] ,C) :- f (C,D), (t(A) -> q(B); q(D)).

This is transformed to:

p([AIB].C) :- f(C,D), p'(A,B,D).

p' (A,B,_) ·- t(A), ! , q(B).
p'(_,_,C) :- q(C) .

., @

lSCUSSIOll

Compilation for Tricia 21 Overview of Compilation

Each spawned internal predicate is treated by the compiler just as a user predicate.
This strategy of compiling disjunctions has the advantage that there are no branches in the
code for a clause, which greatly simplifies lifetime analysis. Updating variable descriptors
becomes straightforward also.

This is in contrast to the approach taken e.g. in Van Roy's compiler [Roy84], where
disjunctions are coded in-line. Van Roy avoids sometimes having to allocate extra environ
ments, but the compile time analyses become complicated by the code being non-linear,
and the implementation of cut runs into some extra trouble.

In general, transformations such as the above are perhaps better handled by a pre
compiler. A precompiler could do more extensive transformations such as partial evaluation
in a more comprehensive manner.

Of course, the above variants of negation and if_then_else are not sound. Sound
versions using delay primitives should be provided as well.

5.5 Allocate permanent variables

A variable is permanent if it has next use after a procedure call, otherwise it is
temporary.

Warren additionally classifies a variable which occurs first as an argument in a pro
cedure call and occurs last in the same call as permanent.

Permanent variables are arranged such that they can be discarded as soon as possible.
This is done by walking each clause from right to left but each goal from left to right, and
assigning ectch new permanent variables numbers in increasing order.

Permanent variables that have disjoint lifespans could be allocated t,o the same en
vironment slots if (;he code is determinate. Cut (!) could act as a fence between lifespans
in such cases. This extra optimization ha,s not yet been added.

5.6 Process mode declarations and cut

The code for each internal predicate starts with a prelude of up to 2 instructions:
mode Modes

if there is an explicit mode declaration,
choice(Xn)

if the predicate lexically contains a cut. Xn is the first free argument register. The arity of
th~ predicate is effectively increased by one.

Example: The predicate

p(X,Y) :- s(X), ! , t(Y).

is effectively treated as:

p(X,Y) :- $choice(Z), p"(X,Y,Z).

Compilation for Tricia 22 Overview of Compilation

p"(X,Y,Z) :- s(X), $cut(Z), t(Y).

although here p" is not broken off as a separate internal predicate.

5. 7 Emit instructions

Ea.ch clause is translated to a sequence of instructions in a fairly naive way. No
allocate or deallocate instructions are emitted here, for simplicity. Temporary variables
are left unallocated.

The head arguments are not compiled in textual order. Instead, temporary variables
are compiled first. Voids are ignored altogether. The motivation behind this heuristic is
twofold. First, try to free machine registers for use as temporaries which the code for
complex arguments might need. Second, try to condense sequences like

unify_variable(Xm)

get_value(Xm,An)

into

get_variable(Xm,An)

unify_local_value(Xm)

In the latter sequence, Xm and An can always be assigned to the same temporary
register, rendering the get_ variable instruction superfluous.

Conversely, goal arguments are not compiled in textual order. Complex arguments
are compiled first. The rationale is that complex arguments may need temporary registers,
therefore these are kept free as long as possible.

Descriptors are maintained for X register contents. They are cleared by call instruc
tions, and updated by all other instructions. References to constants and to temporary
variables are replaced by references to X registers, when the X register is known to contain
the right value. X register assignments are omitted when the X register is known to already
contain the correct value. This is not always optimal, since not all temporary variables
reside in machine registers. Replacing references to constants or permanent variables by
references to temporary variables may also extend the lifespans of temporary variables.

Descriptors are maintained for all variables. A variable can be in one of the followi11g
states:

uninHialized
The variable does not have a value yet.

local
The variable could point to the current environment.

remote
The variable could point to the stack, but only below the current environment.

Compilation for Tricia 23 Overview of Compilation

global
The variable cannot point to the stack.

These descriptors are consulted when deciding whether unify_local_value is re
quired or unify_value (which is cheaper) suffices, and whether put_unsafe_value is
required or put_value (which is cheaper) suffices, and whether *_variable or *_value
instructions should be emitted.

The descriptors are updated by certain instructions. The updating scheme must
be very carefully tuned to the exact semantics of un:ify_local_value, unlfy_value,
put_unsaf e_ value, and put_ value instructions for correctness to be preserved.

5.8 Analyze lifetimes of temporary variables

For each instruction in a translated clause, a list of the temporary variables with next
use after the instruction is computed. This is done by the standard technique of walking
the code in reverse order, adding or deleting such temporaries from the current list that are
used or defined, respectively. Calls are to considered to 'use' argument registers up to the
arity of the called predicate. Calls are considered to destroy i.e. 'define' all temporaries.
This is certainly overkill for calls to built-in predicates. For simplicity and modularity,
such calls are not presently treated specially.

5.9 Allocate temporary variables

Temporary variables must be allocated such that all next_ use lists are free from
duplicates. A duplicate would correspond to an overloaded temporary variable. This
forms a simple correctness criterion on temporary variable allocation.

It is desirable to identify null operations such as

get_variable Xi,Ai
put_value Xi,Ai

since such vacuous instructions can be deleted. This forms a quality measure on
variable allocation.

It is desirable to maximize the use of such X registers that reside in machine registers.
This forms another quality measure on variable allocation.

The compiler does not attempt to achieve an optimal allocation. The following
algorithm is used:

L For each get __ variable or put_ value instruction, equate its arguments unless this creates
a duplicate in some next_use list.

2. For each yet unallocated temporary variable, assign it to the lowest possible X register
number which does not create a duplicate in any next_use list.

This abstract algorithm actually proceeds in smaller steps to avoid as much search
of next_use lists as possible. Specializations of the algorithm are di::;cussed in [Car86b].

Compilation for Tricia 24 Overview of Compilation

Similar algorithms have been developed by Van Roy [Roy84] and by Debray [Deb86],
although .in Debray's compiler, code generation and register allocation are intertwined.

5.10 Emit linkage instructions

Linkage instructions provide pathways from a preclicate's entrypoint to individual
clauses using indexing on the first argument where possible.

In Warren's original design, clauses are arranged in groups, where a group is either a
collection of clauses with a non-variable first argument, or a single clause with a variable
first argument. The indexing instructions try each group in turn. For non"variable groups,
indexing is performed on the principal functor of the first argument. Thus the method
may create two choicepoints before entering a clause.

In our method, all clauses are treated as a single group, and indexing is done at once
on the principal functor of the first argument yielding a set of potentially matching clauses
whose first argument is either the same principal functor or a variable. A fuller description
of the method and a comparison with other methods can be found in [Car86a].

5.11 Peep hole optirr1ization and final editing

This phase traverses the entire code for all internal predicates and does necessary
final editing as follows:

1. allocate and deallocate instructions are inserted where appropriate. allocat;e in
structions are inserted as late as possible, i.e. just before the first call or permanent
variable reference in a clause in order to possibly fail before allocating.

2. ini t Yn instructions are emitted before_ the first call, to ensure that the environment is
fully initialized. This measure is necessary to prevent the possibility of dangling pointers
in the garbage collector, since it will traverse all environments in its mark phase. The
measure also enables the strength reduction of put_variable Yn instructions aft.er the
first call to put_value Yn instructions.

3. Vacuous get_ variable U, U and put_ value U, U instructions are deleted.

4. Next_use information is filled in for instructions which require H, for the sake of generating
machine code for arithmetic expressions.

Some other optimizations could be performed here as well, like condensing sequences
of unify_ vo1d instructions. This is presently done already while emitting insf;ructions for
unification.

Compilation for Tricia 25 Conclusions

6. Conclusions

We have described an elaboration of the Warren Abstract Machine for Prolog along
with its compiler. The elaborations include arithmetic, cut and delay operators, and con
straints imposed by a garbage collector. Various compiler optimizations were introduced
and discussed.

We conclude that it is hard to generate optimal sequences of abstract machine code,
but that a few heuristics yield very reasonable code.

The Warren abstract machine is an extremely good target language for a Prolog
compiler. Operationally, howen,r, the various instructions differ wildly in complexity:
some are mere transfers of values, others are unbounded in time. An interesting issue
for future research is to try to find an instruction set which bridges over the semantic
gap betweeen Warren's abstract machine code, and the native machine code of typical
processors.

Compilation for Tricia 26 Ack now ledgmen ts

7,, Acknowledgments

The work reported herein was carried out in part at UPMAIL, in part during a
visit at the Weizmann Institute of Science, Israel, and in part at the Swedish Institute
of Computer Science (SICS). The Computing Science department of Uppsa.la University
supplied the computer resources. The work was supported in part by the National Swedish
Board for Technical Development (STU).

The results reported herein would not have been possible without the unique research
environment at UPMAIL. We stress that the final design of the instruction set is the result
of a team work and several iterations involving J. Barkluncl's code generator [Bar8Ga] and
H. Millroth 's garbage collector [Bar8Gb,Bar86cc]. Many aspects of the instruction set,
especially those involving arithmetic and clause indexing, were worked out in (sometimes
heated) discussions with J. Barklund.

Intellectually, we owe a lot to David H. D. Warren who invented the origin,d "New
Engine" concept, upon which this work builds.

1t is difficult to give a precise account of each person's contribution to the implemen
tation, but the following is a close approximation:

,J. Barklund implemented the PDP-10 code genera.tor, the interpreter, rebted parts
of the runtime system, the system kernel and wrote the garbage collection algorithm.

M. Carlsson wrote the c'· 11 1piler and adapted pa.rt of the Prolog runtime system,
obtained from public domain sources, to Tricia.

H. Millroth implemented the garbage collector and substantial parts of the runtime
system.

Lenna.rt Gidlund, Bo Arvidson, Torbjorn Ahs, Asa. Hugosson, Ma.ts Nylen and Lars
Oestreicher contributed substantial parts of the implementation and documentation.

Thanks also to Sverker Janson, Tho'nrns Sjola.nd, Seif Haricli, Jaakov Levy, Lee Naish,
and Ross Overbeek for useful criticism, numerous discussions, and sharing important in
sights.

Compilation for Tricia 27 References

Appendix A. References

[Bar86a] Barklund J., Millroth H., "Code Generation and Runtime System for Tricia",
UPMAIL Technical Report no. 36, 1986.

[Bar86b] Barklund J., Millroth H., "A Garbage Collection Algorithm for Tricia" UPMAIL
Technical Report no. 37, 1986.

[Bar86c] Barklund J ., Millroth M., "Garbage Cut for Garbage Collection of Iterative Pro log
Programs", IEEE Symposium for Logic Programming, Salt Lake City, Utah, 1986.

[Car86a] Carlsson M., "On Indexing and Cut in the WAM", SICS Research Report,
Swedish Institute of Computer Science, 1986 (in preparation).

[Car866J Carlsson M., "Temporary Variable Allocation for the WAM", SICS Research
Report, Swedish Institute of Computer Science, 1986 (in preparation).

[Deb86J Debray S., "Register Allocation for a Prolog Machine", IEEE Symposium for Logic
Programming, Salt Lake City, Utah, 1986.

[Mos85J Moss C., "Investigating implementations of cut", Prolog Digest, Vol. 3 #30,
Usenet, 1985.

[Nai85] Naish L., «Negation and Control in PROLOG", Ph.D. Thesis, Department of
Computer Science, University of Melbourne, 1985.

[Per79J Pereira L., Byrd L., Pereira F., Warren D.H.D., "User's Guide to DECsystem-to
Prolog", DAI Occasional Paper 15, Department of Artificial Intelligence, University of
Edinburgh, Edinburgh, Scotland, 1979 ..

[Roy84] Van Roy, «A Prolog Compiler for the PLM", M.Sc. Thesis, Department of Com
puter Science, University of California at Berkeley, 1984.

[War83] Warren D.H.D., "An Abstract Prolog Instruction Set", SRI International #309,
1983.

