
UpmaU Technical Report no. 5

Revised December 8 1983

On Implementing Prolog In Functional Programming

Ma.ts Carlsson

December 8 1983

Keywords: Prolog, Logic Programming, Unification, Lisp, Functional Programming, Con
tinuations

UPMAIL
Uppsala Programming Methodology and Artificial Intelligence Laboratory

Department of Computing Science, Uppsala University
P.O. Box 2059

S-750 02 Uppsala Sweden
Domestic 018 155400 ext. 1860

International +46 18 UHl25
Telex 76024 univups s

Note: This paper is a slight revision of a paper presented at the 1984 International Sym
posium on Logic Programming, Atlantic City NJ USA

The research reported herein was sponsored by the National Swedish Board for Technical
Development (STU).

Upma.il Technlea.l Report no. 5

Revised December 8 1983

On Implementing Prolog In Functional Programming

Mats Carlsson

December 8 1983

Keywords: Prolog, Logie Programming, Unification, Lisp, Functional Programming, Con
tinuations

UPMAIL
Uppsala Programming Methodology and Artificial Intelligence Laboratory

Department of Computing Science, Uppsala University
P.O. Box 2059

S-750 02 Uppsala Sweden
Domestic 018 155400 ext. 1860

International +46 l8 111925
Telex 70024 univups 11

Note: This paper is a slight revision or a paper presented at the 1984 International Sym
posium on Logie Programming, Atlantic City NJ USA

The research reported herein was sponsored by the National Swedish Board for Technical
Development (STU).

On Implementing Prolog In Functional Programming

Table of Contents
M. Carlsson

1. Abstract . 2
2. Achieving Backtracking . 2
2.1 Success Continuation Scheme . 2
2.2 Proof Stream Scheme .. 2
2.3 Interpreters o •• o • • • • • • • • • • • • • • • • • • 2
2.4 Comparison 5
3. Structure Sharing vs. Structure Copying . 5
3.1 Structure Copying Interpreter .. 6
4. Adding Builtin Predicates . 7
5. Adding Cut o • 8
6. Prolog . 9
7. Conclusions . 9
8. Appendix I: Proof Streams With Continua.tiomt . 10
9. Appendix II: A Complete Interpreter . 10
10. References . 12

1 Deeember 8 1083

On Implementing Prolog In Functional Programming M. Carlsson

1. Abstract

This report surveys techniques for implementing the programming language Prolog. It f o
cuses on explaining the procedural semantics of the language in terms of functional programming
constructs. The techniques success continuations and proof streams are introduced, and it is
shown how Horn clause interpreters can be built upon them. Continuations are well known
from denotational semantics theory, in this paper it is shown that they are viable constructs in
actual programs.

Other issues include implementation of logical variables, structure sharing w. structure
copying, builtin predicates, and wt.

2. Achieving Backtracking

Several authors 4
1

11 , 7 have proposed abstract machinery to implement the backtracking
behavior of Prolog. Typically the abstract machine includes a set of registers and various stacks
carrying the state of the machine. Backtracking amounts to restoring parts of this state u it
was at some previous time.

In this section, we will give a more abstract implementation of backtracking using concepts
from functional programming. Continuations II are the workhorse for achieving the desired
control structure. Recursion is used instead of manipulation of explicit sb.cb, and parameter
passing is used instead of assignments to machine registers.

There are at least two fundamentally different techniques for achieving backtracking and we
will call them proof streams and success continuations. In this paper, the word "continuation"
denotes any function that is either passed as an argument or returned as a value.

2.1 SucceBS Continuation Scheme

The idea here is that the theorem prover receives an extra argument, the sut:cess continua
tion. If the theorem prover succeeds in proving its goal, it calls this continuation. If it fails, it
simply returns. Backtracking is achieved by the possibility that the theorem prover finds several
proofs of its goal, in which case it calls the continuation for each proof found.

2.2 Proof Stream Scheme

Here, the theorem prover returns a proof stream, which conceptually is a lazily evaluated
list of environments, corresponding to the possible proofs of the given query. In a concrete ·
implementation, a proof stream could be either

()

for failure i.e. no more proofs, or a pair

(environment . continuation)

for success i.e. a proof was found. Continuation is a function that returns a new proof stream.
Environment could be the set of variable substitutions involved in a particular proof. Backtrack
ing is achieved by calling the continuation of successive proof streams until failure eventually

2 December 8 1083

On Implementing Prolog In Functional Programming M. Carlsson

results. To our knowledge this idea was first conceived by Abelson 1 • It has been used later by
Kornfeld 6 •

2.3 Interpreters

We present here running implementations of the two techniques written in pure Lisp.

A continuation is implemented as a Lisp function consed to an incomplete argument list.
The continuation is called with additional arguments that complete the argument list, which is
then passed to the Lisp function.

Prolog data.types used are atoms, pairs, and variables. Variables are implemented as symbols
that begin with a "7".

Variable bindings are kept in an association list consisting of pairs

((variable . indezl) . (term . indez2))

where the indexes are used to distinguish between synonymous variables belonging to different
uses of the same assertion. The index is increased once per resolution step. This is essentially
the structure ,haring technique of Boyer and Moore 2 • It is discussed in more detail in chapter
3.

The database is only indexed on predicate symbols. The :astJertion, property of a symbol
contains a list of assertions.

Success Continuation Interpreter

This is a MacLisp implementation of the above ideas. It defines a Horn clause interpreter
and includes predicates about appended and reversed lists.

(defun prove (env j goals i cont)
;;Proves wgoals• seen through index wi" and calls
;; wcont" . . w J" is next available indez.
(cond ((null env) nil)

;;An impossible environment is empty.
((null goals) (invoke cont env j))
(t (resolve (car goals) i (assertions (car goals)) j '(prove ,(cdr goals) ,i ,cont) env))))

(defun resolve (goal i assertions j cont env)
;;For each proof of "goal" with respect to «assertions",
;; "cont• is called.
(cond ((null assertions) nil)

((prove (unify goal i (caar assertions) j env) (1+ j) (cdar assertions) j cont.))
(t (resolve goal i (cdr assertions) j cont env))))

(defun unify (x i y j e)
;;Returns a non-empty environment upon success.
(unifyl (ult (cons x i) e) (ult (cons y j) e) e))

3 December 8 1083

On Implementing Prolog In Functional Programming

(defun unifyl (xi yj e)
(cond ((null e) e)

((and (eq (car xi) (car yj)) (eq (cdr xij (cdr yj)))
e)

((and (consp (car xi)) (consp (car yj)))
(unify (cdar xi) {cdr xi) (cdar yj) (cdr yj)

(unify (caar xi) (cdr xi) (caar yj) (cdr yj)
e)))

((variable-symbol-p (car xi)) (cons (cons xi yj) e))
((variable-symbol-p (car yj)) (cons (cons yj xi) e))
((equal (car xij (car yj)) e)))

{defun ult (x e)
;;Follows chain of linked variables.
{let ((pair (assoc x e)))

(cond ((null pair) x)
((eq x (cdr pair)) x)
(t (ult (cdr pair) e)))))

A predicate to append two lists could for example be represented as

(defprop append
(((append (?X . ?XS) ?Y (?X . ?ZS)) (append ?XS ?Y ?ZS))
((append O ?X ?X)))

:assertions)

M. Carlsson

Auxiliary functions include invoke for invoking continuations, variable-symbol-p for recogniz
ing variables, assertions for retrieving appropriate assertions from the database, and a toplevel
function.

Proof Stream Interpreter

To arrive at an interpreter based on proof streams, the functions prove and resolve above
should take proof streams instead of continuations as arguments, and should return proof
streams as values.

The following code implements streams as ordinary lists. Under lazy evaluation this would
result in the desired backtracking. The environment in the above discussion of proof streams is
actually implemented as a pair of (i) the variable binding a.list and (ii) next available index.

(defun prove (stream goals i)
;;Each goal "filters11 the proof stream.
(cond ((null stream) 0)

((null goals) stream)
(t (prove (resolve stream (car goals) i (assertions (car goals)))

(cdr goals) ·
i))))

4 December 8 1083

On Implementing Prolog In Functional Programming

(defun unify1 (xi yj e)
(cond ((null e) e)

((and (eq (car xi) (car yj)) (eq (cdr xQ (cdr yj)))
e)

((and (consp (car xi)) (consp (car yj)))
(unify (cdar xi) (cdr xi) (cdar yj) (cdr yj)

(unify (caar xi) (cdr xi) (caar yj) (cdr yj)
e)))

((variable-symbol-p (car xi)) (cons (cons xi yj) e))
((variable-symbol-p (car yj)) (cons (cons yj xi) e))
((equal (car xij (car yj)) e)))

(defun ult (x e)
;;Follows chain of linked variables.
(let ((pair (assoc x e)))

(cond ((null pair) x)
((eq x (cdr pair)) x)
(t (ult (cdr pair) e)))))

A predicate to append two lists could for example be represented as

(defprop append
(((append (?X . ?XS) ?Y (?X . ?ZS)) (append ?XS ?Y ?ZS))
((append O ?X ?X)))

:assertions)

M. Carlsson

Auxiliary functions include invoke for invoking continuations, variable-symbol-p for recogniz
ing variables, assertions for retrieving appropriate assertions from the database, and a toplevel
function.

Proof Stream Interpreter

To arrive at an interpreter based on proof streams, the functions prove and resolve above
should take proof streams instead or continuations as arguments, and should return proof
streams as values.

The following code implements streams as ordinary lists. Under lazy evaluation this would
result in the desired backtracking. The environment in the above discussion or proof streams is
actually implemented as a pair of (i) the variable binding a.list and (ii) next available index.

(defun prove (stream goals i)
;;Each goal afilters• the proof stream.
(cond ((null stream) 0)

((null goals) stream)
(ti (prove (resolve stream (car goals) i (assertions (car goals)))

(cdr goals) ·
i))))

4 December 8 1083

On Implementing Prolog In Functional Programming

(defun resolve (stream goal i assertions)
;;Each stream element is replaced b,; a new .stream
;; incorporating the proofs of «goaP.
(cond ((null stream) 0)

(t (append (resolvel goal i assertions (cdar stream) (caar str•am))
(resolve (cdr stream) goal i assertions)))))

(defun resolve! (goal i assertions j env)
(cond ((null assertions) 0)

((null env) 0)
(t (let ((envl (unify goal i (caar assertions) j env)))

(append (prove «(tenvl . ,(1+ j))) (cdar 1ssertions) j)
(resolvd goal i (cdr assertions) j env))))))

M. Carlsson

A concrete implementation along the lines in Section 2.2 is given in Appendix I.

2.4 Comparison

It is fairly obvious that using success continuations recurses deeper and so consumes more
stack space, whereas using proof streams constructs more delayed objects and so consumes
more cons space. However, by introducing in the code special cases for e.g. last conjunct or last
disjunct, the behavior of both schemes improves significantly.

Moreover both interpreters contain · plenty or direct and indirect tail recursion, which of
course is transformed to iterative form in "production" versions of the algorithms.

3. Structure Sharing vs. Structure Copying

A major source of inefficiency in the above interpreters is the implementation of the binding
environment. It is implemented as an association list without any indexing. To get the bound
value of a variable one may have to search the whole list. Worse, one may have to do repeated
searches in case there are variable-to-variable bindings. This means that execution times become
at least O(n2), where n is the number of nodes of the and-tree of a proof.

In structure sharing implementations such as Warren's 11 every use of an assertion has its own
activation-record like binding environment. There is then no need to search the environment
for a binding. Warren lets a base register point to the activation record and assigns offsets to
variables. He is then able to get a variable binding in just one machine instruction. Structure
sharing is typically implemented to let unify destructively update the binding environments.

Another method is structure copying in which one uses copies of assertions. A new copy
is constructed in each resolution step. The copies contain value cells, and unify is allowed to
destructively update these. Whether it is worth while to recycle the copies is an open question.

A more sophisticated variant is unification driven structure copying, where "pure code" is
copied only when it is unified with a variable. This variant is used in ·the systems described by
Mellish 8 and by Carlsson and Kahn 11•

5 December 8 1083

On Implementing Prolog In Functional Programming M. Carlsson

With destructive changes, the need to undo these arises. Structure sharing and structure
copying implementations typically use a reset list or trail to record all variable bindings, in order
to know what to undo upon backtracking.

The cost of constructing copies of assertions should be weight~d against the relative com
plexity of structure sharing implementations where terms always 1hiust be "seen" through an
index (a pointer to a binding environment). This means that twice as many arguments have to
be passed around in the inner loop of the interpreter.

On computers with indirect addressing support in Lisp one can even make pointers to value
cells totally transparent. This is a very attractive feature since it drastically reduces the cost
of interfacing Prolog to Lisp, which one typically wants in a Lisp-based Prolog system. An
extensive comparison of structure sharing vs. structure copying has been done by Mellish 11•

We will now further refine the success continuation technique to use structure copying. It
is left as an exercise to the reader to implement indexed structure sharing.

3.1 Structure Copying Interpreter

Value cells are represented here as pairs
(h111r$. value)

The value field of an unbound value cell points to the cell itself.

The following is the central parts of a success continuation interpreter that uses "naive"
structure copying. Note here that an assertion is represented as code to construct a copy of the
assertion in question.

(defun prove (go111ls cont)
;;Proves «goala16 and calla «cont16

•

(cond (goals (resolve (car goals) '(prove ,(cdr goals) ,cont)))
(t (invoke cont))))

(defun resolve (goal cont)
;;For all proof a of «goal", «cont11 is called.
(try-Hsertions goal (assertions go111I) •trail"' cont))

(defun try-111ssertions (goal assertions mark cont)
(cond (assertions

(cond ((try-assertion goal (car assertions) cont))
(t (reset mark)

;;Reset trail back to •marlt:11
•

(try-111ssertions goal (cdr assertions) mark cont))))))

(defun try-assertion (goal 111ssertion cont)
(cond ((unify go111I (funcall (car assertion)))

(prove (fum::aU (cdr assertion)) cont))))
6 December 8 1083

On Implementing Prolog In Functional Programming

(defun unify (x y)
(cond ((eq x y))

((and (consp x) (consp y))
(and (unify (dereference (car x)) (dereference (car y)))

(unify (dereference (cdr x)) (dereference (cdr y)))))
((variable-p x) (unify-variable x y)) ·
((variable-p y) (unify-variable y x))
((equal x y))))

(defun unify-variable (x y)
;;Unifies a variable with a term.
(progn (push x •trail*) (rplacd x y)))

(defun dereference (x)
;;Follows chain of linked variables.
(cond ((variable-p x)

(cond ((eq x (cdr x)) x)
(t (dereference (cdr x)))))

(t x)))

M. Carlsson

The global variable •trail* holds the reset stack. The function cell creates a value cell. The
function reset restores value cells to the unbound state. Variable-p is a predicate for recognizing
value cells.

Each assertion in the database is represented by a pair of functions, where the first ele
ment constructs the head of an assertion and the second element const:ruc:b the body. This is
exemplified by the database entry for append:

'

(def prop append
((app-1-1 . app-1-2) (app-2-1 . app-2-2))
:assertions)

(defun app-1-1 0
(setq ?X (cell)) '(append O ,?X ,?X))

(defun app-1-2 0 10)
(defun app-2-1 0

(setq ?X (cell) ?XS (celQ ?Y (cell) ?ZS (cell))
'(append (,?X . 0?XS) ,?Y (,?X . ,?ZS)))

(defun app-2-2 0 «((append ,?XS ,?Y ,?ZS)))

A Note on Determinacy

It should be noted that the stack space consumption of the above interpreter can be much
reduced if prove can test whether a goal is determinate, viz.

(defun prove (goals cont)
(cond ((null goals) (invoke ·cont))

((determinate (car goals))
(and (resolve (car goals) '(true)) (prove (cdr goals) cont)))'

(t (resolve (car goals) '(prove ,(c:dr goals) ,cont)))))
7 December 8 1083

On Implementing Prolog In Function~l Programming M. Carlsson

4. Adding Builtin Predicates

In addition to the pure Horn clause theorem proving capabilities, any Prolog implementation
needs builtin predicates. This can be done e.g. in the following way: Let the :assertions property
of the predicate symbol be the pair

(:builtin . function)

where function accepts two arguments: a goal and a continuation, Resolve needs to take care of
this case. AB an example, we show here how to implement bagof with this technique.

(defun resolve (goal cont)
(let ((assertions (assertions goal)))

(cond ((eq ':builtin (car assertions))
(fum::all (cdr assertions) goal cont))

(t (try-assertions goal assertions *trail* cont)))))

;;(bagof ?t ?p ?b}: ?b is the bag of all ft such that Pp holds

(defprop bagof (:builtin . bagof-prover) :assertions)

(defun bagof-prover (goal cont)
(let ((mark *trail*)

(reslist (list Q)) ((?t ?p 7b) (cdr goal)))
;;Reslist collects the result.

(resolve ?p '(bagof-aux ,?t ,reslist))
(reset mark)
(cond ((unify (dereference ?b)

(nreverse (car reslist)))
(invoke cont)))))

(defun bagof-aux (term reslist)
(push (instantiate (dereference term)) (car reslist))
nil)

where instantiate is a function that copies its argument, removing bound value cells and replacing
unbound value cells by fresh ones. This is necessary since different proofs of fp may assign
different values to value cells in ?t.

Note that bagof-aux always returns nil. This is to force the theorem prover to really find
all proofs of 7p. In try-assertions, the value returned from the non-tail-recursive call to prove is
tested, and if non-nil, no more assertions are tried. This is used by the toplevel function prove
so that the user can stop the search at a particular proof. It also prepares for the issue coming
up in the next section.

5. Adding Cut

The cut control primitive needs extra machinery. The test in try-assertions mentioned
above offers the control alternatives "find all proofs" vs. "find first proof" for a given goal.
Cut, however, is more complex because it is lexically scoped, and so at run time one needs
some device that can mimic lexical scoping. One such device is to keep track of the ancestor
depth of the current and-tree node. Instead of returning nil for failure, the theorem prover and

8 Deeember 8 1083

On Implementing Prolog In Functional Programming M. Carlsson

builtin functions can return an integer specifying an ancestor depth to return. to. These ideas
are implemented as follows.

(defun prove (goals contd)
;;Proves /ligoals111 at depth •d111 and calls •cont111

•

(cond (goals (resolve (car goals) •(prove ,(cdr goals) ,cont ,d) d))
(t (invoke cont))))

(defun resolve (goal cont d)
(let ((assertions (assertions goal)))

(cond ((eq ':buiitin' (car assertions))
(fum:all (cdr assertions) goal cont d))

(t (try-assertions goal assertions •trail"' cont d)))))
(defun try-assertions (goal assertions mark cont d)

(cond (assertions
(let ((msg (try-assertion goal (cir assertions) contd)))

;;This code returns «msg111 to the right level.
(cond ((> msg d)

(reset mark)
(try-assertions goal (cdr assertions) mark contd))

((= msg d) "'failure"')
(t msg))))

(t *failure"')))

(defun try-assertion (goal assertion cont d)
(cond ((unify (fum::all (car assertion)))
;;The depth is increased in each resolution step.

(prove (funcall (cdr assertion)) cont (1+ d)))
(t *failure*)))

(defprop cut (:builtin . cut-prover) :assertions)

(defun cut-prover (ignore contd)
;;Upon backtracking, cut fails the parent goal.
(invoke cont) (1- d))

The constant *failure• contains a large integer.

6. Prolog

To extend the toy interpreters of this paper into full-fledged Prolog systems is straight
forward and has been done. The resulting system is comparable in speed with interpreted
DECsystem-10 Prolog and is listed in Appendix II.

7. Conclusions

We have surveyed techniques for implementing Prolog interpreters in Lisp. We have ac
counted for the procedural semantics of the language in terms of functional programming con
structs which can be considered a very high level abstract machine.

9 December 8 1083

On Implementing Prolog In Functional Programming M. Carlsson

Related work includes Komorowski 6 • He gives a denotational semantics for Prolog involv
ing configurations and stacks to hold the state of his abstract machine. He made no use of
continuations. This is surprising considering how well they suggest themselves for defining the
operational semantics of Prolog as we have tried to show in this paper.

8. Appenqix I: Proof Streams With Continuations
I

The following is the central part of a proof stream interpreter a:s wu discussed in section
2.2. All of these functions return proof streams which are either

()

for failure i.e. no more proofs, or a pair

(environment . continuation)

for success i.e. a proof was found. Continuation is a function that returns a new proof stream.
Environment is a pair of (i) the variable substitutions involved in a particular proof and (ii) next
available index. Backtracking is achieved by calling the continuation of successive proof streams
until failure eventually results. All of these functions return proof streams.

(defun prove (env newi goals oldi)
;;Returns the proofs of "goal15119 in "ent1119

•

(cond ((null env) 0)
((null goals) '((,env . ,newi) . (false)))
(t (invoke-in-each

(resolve (car goals) oldi (assertions (car goals)) newi env)
'(prove ,(cdr goals) ,oldi)))))

(defun resolve (goal oldi assertions newi env)
;;Returns the proofs of "goal" in "envw.
(cond ((null assertions) 0)

(t (invoke-after
(prove (unify goal oldi (caar assertions) newi env)

(1+ newi)
(cdar assertions)
newi)

"(resolve ,goal ,oldi ,(cdr assertions) ,newi ,env)))))

(defun invoke-after (streaml cont)
;;Appends «cont" onto the stream "tJtream1119

•

(cond ((null streaml) (invoke cont))
(t (cons (car streaml) "(invoke-after* ,(cdr streaml) ,cont)))))

(defun invoke-in-each (streaml cont)
;;Invokes "cont119 in each element of a proof dream
(cond ((null streaml) 0)

(t (invoke-after (invoke cont (c1111r streaml) (cdar streaml))
'(invoke-in-each* ,(cdr streaml) ,cont)))))

10 Deeember 8 1083

On Implementing Prolog I.n Functional Programming

(defun invoke-after* (delayed continuation)
(invoke-after (invoke delayed) continuation))

(defun invoke-in-each* (delayed continuation)
(invoke-in-each (invoke delayed) continuation))

M. Carlsson

9. Appendix II: A Complete Interpreter

We give here the source listing of a complete structure copying Prolog interpreter.

11 December 8 1983

-*- Mode: Lisp; Base: 10.; -*-
A structure copying Prolog written In MacLlep. 1200-1500 LIPS unlese GC.
Written by Mata Carlsson, UPMAIL, Uppsala University, 1983.

;Thie ie an Interpreter for "naked" Prolog, It has very few bulltln predicates.

;It's free to use by anyone but If you make money out of It I would llke eome.

;A lot of direct and indirect tail recursion to be transformed to Iteration
;by someone who has a good source to source optimizer.

;Syntax: Terms and predications are lists (<functor>. <arguments>),
assertions are lists (<consequent>. <antecedents>),
variables are symbols beginning with"?".

:
;Toplevel functions:
;(yaq) Read-prove-print top loop.
: (define <name>. <assertions>) Defines predicates,
;
;Bui I tin predicates:
; (cut)
; (cal I ?goal)
; (bagof ?t ?goal ?b)
; (lisp-predicate ?form)
; (lisp-command ?form)
;(lisp-value ?var ?form)
;(cl ?clause)
; Caddel ?clause)
; (addcl ?clause ?n)
;
; (delcl ?clause)
; (delcl ?predicate ?n)

(declare (flxsw t) (special
(defvar l!Ctrai '* ())
(defvar *inferences* 0)
(defvar sfallure* 32767)

Infamous control primitive.
Tries to prove ?goal,
?B la a bag of instances of ?T that satisfy ?goal,
?Form is lisp-evaluated and must return non-NIL.
?Form is lisp-evaluated, may return whatever,
?Var le the lisp-value of ?form,
?Clause la an assertion in the knowledge base, Backtracks.
?Clause le added to the knowledge base.
?Clause is added after the ?n-th clause of lte
procedure.
Clauses matching ?clause are deleted. Backtracke.
Deletes ?n-th clause of ?predicate.

(defmacro cell O '(let ((x (cone • lvarl nl I))) (rplacd w w)))

(def macro conap he) • (not (atom , w)))

(defmacro variable-p (w) '(and (conep ,><) (eq 'lvarl (car ,w))))

(defmacro unify-variable (w y) '(progn (push ,w 111trail111) (rplacd ,w ,y)))

(defmacro aaaertione (goal) '(get (car ,goal) '1aea0rtions))

(defmacro head (assertion) '(funcal I (car ,aeeertion)))

(defmacro body (assertion) '(funcal I (cdr ,a!!Bertlon)))

(defmacro Invoke (x) '(apply (car,><) (cdr ,w)))

(defmacro defbul ltln (name &rest body)
(let ((g (genaym)))

'(progn 'compl le
(defun ,g (goal continuation depth) ,ebody)
(defprop ,name C:builtin. ,g) :assertions))))

ldefun instantiate (x generator)
;;create a copy of>< where unbound variables are handled by generator
(I et (*ce II sill) Cl na tant I a te-1 w generator)))

(defun lnetantiate-1 (x generator)
(cond ((variable-p x)

Ccond ((aseq w l!Cce 11 a$) (cdr (aeeq >< l!Cce 110111)))
(t (let ((c (funcall generator w)))

(push (cons>< c) l!Ccel le*) c))))
((conep ,d (cone (Instant i ate-1 (dereference Ccar w)) generator)

(lnetantiate-1 (dereference (cdr w)) generator)))
(t x)))

(defun copycell (Ignore)
;;this generator just makes a new value cell
Cce II l l

(de fun ?ce 11 (i gnorel .
11this generator creates a symbol ?0 ?1 •••
(maknam '(#/? ,(+ #/0 (length 111cells111)))))

11---------------------~----KERNEL OF INTERPRETER --------------------------11

(head-name (gensym))
(body-name (gensym)))

(push (cons head-name body-name) toplist)
'((defun ,head-name ()

, o (mapcar • (I ambda (v) • (11etq , v <ce 11))) headvars)
,headcode)

(defun ,body-name ()
,•!mapcar '(lambda(v) '(setq ,v (cell)))

(diffq bodyvars headvars))
,bodycode))))

aseertione)
(defprop ,name ,(nreverse toplist) sassertlons))))

(defun yaq 0
(do ((mark 111tra i I 111)) (0)

(format t "N%YA0>")
(let* ((sexpr (read))

((eexprvars sexprcode) (variables-and-constructor eexpr))
(eel Is
Cmapcar '(lambda(x) (set x (cell))) eexprvars)))

(gc)
(unwind-protect
(prove
'(, (eval eexprcode)

(liep-predicate-?vare
(display ',eexprvare ',eel le ',ll!inferences* ',(runtime))))

• (+) 0)
(reset mark)))))

(defmacro gprinl (x) '(funcall (or prinl 'prinl) ,w))

(defun display (names eel le Inf time)
(let ((dt (- (runtime) time)))

(format t ",-,%Jt took .,s microseconds, .,s LIPS." dt
(// (II! 1000000, (- ll!inferenceell! inf)) dt))

(mapc #'(lambda (n c) (format t ",,,%--S .. "n) (gprinl c)) namH calls)
(progn (format t ",-,%Ok?") (y-or-n-p))))

(setatue linmode nil)
(eetq base 10. ibase 10. !l(nopoint t)
(a 11 oc ' (Ii et (65536. 131072. 0. 25)) I

;;------------------------··--- BUILTIN PREDICATES ---------------------------11
(define lisp-command

((lisp-command ?X) (lisp-predicate (progn ?X ti)))

(define lisp-value
((I iep-value ?X ?YI (lisp-predicate (unify '?X ?Y))))

(define cl
((c I ?c I) (I c I -de I c I I ?c I n 11) II

(define addc I
((addc I ?c I) (I addc 11 ?c I))
(Caddel ?cl ?n) (laddcll ?cl ?n))) ;;after nth, 1-lndexed

(define delcl
lldelcl ?cl) (lcl-delcl I ?cl tll
((delcl ?pred ?n) (ldelcl-11 ?pred ?n))) ;;delete nth, I-indexed

(t ll<fa i I urell<)))

(defbui I tin ldelcl-11
(letll< !!name (dereference (cadr goal)))

In (dereference (caddr goal)))
(assertions (get name ':assertlone)))

!putprop name (delq !nth !1- n) aeeertione) aeeertlone) •:aeeertlone)
!invoke continuation)})

(defbui I tin laddcl I
(letll< !!clause !instantiate !dereference (cadr goal)) '?cell))

In (dereference (caddr goal)))
(name (caar clause))
(eave (get name ':aeeertione)))

!eval '(define ,name ,clause))
(cond ((and (numberp n) (nthcdr n eave))

(let ((x (nthcdr n eave)))
(rp I acd x (cons (car x) (cdr x)))
(rplaca x (car (get name ':aeeertlone)))
(putprop name eave ':aeeertlonel))

(t (putprop name (nconc eave (get name ':aeeertlone)) 'aaeeertlone)))
(invoke continuation)))

(defbui I tin bagof
(let ((mark ll<trai Ill<) (resl iet (I let Oil ((?t ?p ?b) (cdr goal)))

(resolve (dereference ?p) '(bagof-aux , ?t ,reel let) depth)
(reset mark)
(cond ((unify (dereference ?b) (nreverl!IC!I (car reo 11 at)))

(invoke continuation))
(t itcfailureitc))))

(defun bagof-aux (term reel let)
(push (instantiate (dereference term) 'copucell) !car resllet))
itcfai lureitcl

(defbulltln call (resolve (dereference (cadr goal)) continuation depth))

(def bu i It in cut (invoke cont I nuat I on) (1- depth))

(defbul I tin lisp-predicate
(cond ((eval (instantiate lcadr goal) 'progl)) (invoke continuation))

(t ll<failurell<)))

(defbuiltln I lsp-predicate-?vare
(cond (!eval (instantiate (cadr goal) '?cell)) (Invoke continuation))

(t itcfallurell<l)l

;;------------------------- DEFINE MACRO & TOP LEVEL ------------------------aa
(eval-when (compile eval load)
(defmacro syntactic-variable-p (x)

;;an ugllJ way of saying (eq '? (getchar x lll
'(and (sumbolp ,x) (e #/? (leh (car (pnget ,x 7)) -29.))))

(defun variables-and-constructor (x)
;;returns variables occurring in x and a form that MIii create x
(let* (($variables$) (code (conetructor x)ll

(liet (nreveree itcvariablesitc) code)))

(defun conetructor (x)
11returne code that wll I create x
(cond ((eq x '?) '(ce II) l

((syntactic-variable-p x)
(or !memq x itcvariables*l (push x itcvarlablee*))
x)

((ground xl '', x)
(t 'Icons ,(constructor (car xll ,(conatructor (cdr x))))))

,defun ground (x)
(cond ((syntactic-variable-p x) nlll

((atom xl tl
((ground (car x) l (ground (cdr xl))))

(defun diffq (x y)
(mapcan '(lambda (xl) land !not (memq xl y)) (llet xll)) x)))

(defmacro define (name &rest aeeertionel
(let (ltopllet))
'(progn 'compl le

,1111(mapcan
' II ambda (al

(let (((headvars headcode) (variables-and-constructor (cdar a)))
((bodyvare boducodel (varlablee-and-conetructor (cdr a)))

(defun dereference (x)
;;followe a chain of linked variables
(cond ((variable-p xi

(cond ((eq x (cdr x)) x) (t (dereference (cdr x)))))
(t x)))

(defun unify (x y)
(cond ((varlable-p x) (unify-variable x y))

((varlable-p y) (unify-variable y x))
((conep x)
(and (consp y)

(unify (dereference (car x)) (dereference (car y)))
(unify (dereference (cdr ,c)) (dereference lcdr y)))))

{(aqua I x y))))

(defun reset (mark)
(cond ((not (eq mark *trail*))

(let ((cell (pop *trai I*))) (rplacd cell cell) (rHet 111ark)))))

(defun prove (goale continuation depth)
(cond ((cdr goa Is)

(reso Ive
(car goals) '(prove, (cdr goal•> ,continuation ,depth) depth))

(goals
(resolve (car goals) continuation depth))

(t (Invoke continuation))))

(defun resolve (goal continuation depth)
(eetq *inferences* (1+ $inferences$))
(let ((assertions (assertions goal)).)

(cond ((eq ':builtin (car aesertione))
(funcal I (cdr assertions) goal continuation depth))

(t (try-assertions goal aeeertione *trail* continuation depth)))))

(defun try-assertions (goal assertions mark continuation depth)
(cond ((cdr assertions)

(let ((mag (try-assertion goal (car assertions) continuation depth)))
(cond ((> mag depth)

(reset mark)
(try-a seer t I one
goal (cdr assertions) mark continuation depth))

((. mag depth) *fal lure*)
(t Hg))))

(assertions (try-assertion goal (car aeeertlone) continuation depth))
(t 111fallure*)))

(defun try-assertion (goal assertion continuation depth)
(cond ((unify (cdr goa I) (funca 11 (car assert I on)))

(prove (funcal I (cdr assertion)) continuation U+ depth)))
(t $fa I lurell,:)))

11---------------------------- BUILTIN PRIMITIVES ---------------------------gg
(defbul ltln lcl-delcl I

(let111 ((clause (dereference (cadr goal)))
(delcl-p (dereference (caddr goal)))
(name (caar clause}))

{lcl-delcl-clausesl
clause delcl-p name *trai I* (assertions (car clause)) continuation depth)))

(defun lcl-delcl-clausesl
(clause delcl-p name mark aaaertlone continuation depth)
(cond ((cdr assertions)

(let ((mag (lcl-delcl-clausel
clause dalcl-p name (car assertions) continuation)))

(cond ((> mag depth)
(reset mark)
{lcl-delcl-clauseel clause delcl-p name mark (cdr aaaertlone)

continuation depth))
{(m mag depth) *failure*}
(t mag)))}

(assert lone
(lcl-delcl-claueel clause delcl-p name (car aeeertlona» continuation))

(t *failure*)))

(defun lcl-delcl-clausel (clause delcl-p name assertion continuation)
(cond ((and (unify (cdar clause) {head assertion))

(unify (cdr clause} (body assertion)))
(cond (delcl-p

(putprop name
(delq assertion (get name ':aeeertlone))
'iaeaer t I one)))

(invoke continuation))

On Implementing Prolog In Functional Programming M. Carlsson

[1]

[2]

[3]

[41

(5]

[6]

[71

[8]

10. References

Abelson H., Sussman, G.J., Course note, of MIT EECS 6.001 Structure and lnterpretatfon
of Computer Prograffl', Problem Set 9, D~c.ember 1981 ·

Boyer, R.S., Moore, J.S., The sharing of d~ucture in theorem ·prouing program,, Machine
Intelligence 7, (ed. Meltzer and Mitchie), Edinburgh UP, 1972

Carlsson, M., Kahn, K.M., LM-Prolog User Manual, UPMAIL Technical Report No. 24,
Computing Science Department University of Uppsala, Sweden, 1983

van Emden, R.H., An Interpreting Algorithm For Logic Programs, Proc. ht. International
Logic Programming Conference, Marseille, 1982

Komorowski, H.J., A Specification Of An Abstract Prolog MaeAine And lb Applit:tdion To
Partial Evaluation, Ph.D. Thesis, Linkoping University, ·
Linkoping, Sweden, 1981

Kornfeld, W.A., Equalit11 for Prolog, Proc. 8th IJCAI, l(arlsruhe, Germany, 1Q83

McCabe, F., Abstract PROLOG machine w a specification, Department of Computing,
Imperial College, London, 1983

Mellish, C.S., An Alternative To Strudure Sharing In The Implementation Of A Prolog
Interpreter, in 10 •

[9] Strachey, C., Wadsworth, C.P. Continuations w A Mathematical Semantics For Handling
Full Jumps,, Programming Research Group, Oxford University, 1974

[10] Tarnlund, S.-A., Clark, K.L. (eds.), Logic Programming, Academic Presa, London, 1982

[llj Warren, D.H.D., Implementing Prolog - compiling predicate logic program,, Department of
Artificial Intelligence, University of Edinburgh, 1Q77

12 December 8 1083

