
UPMAIL Technical Report No. 140

A Grammar Kit In Prolog

Kenneth M. Kahn
revised by Mats Carlsson

February 2 1085

UPMAIL
Uppsala Programming Methodology and Artificial Intelligence Laboratory

Department of Computing Science, Uppsala University
P.O. Box 2059

S-750 02 Uppsala Sweden
Domestic 018 155400 ext. 1860

International +46 18 111925
Telex 76024 univups s

The research reported herein was supported by the National Swedish Board for·
Technical Development (STU) and Atari Research Cambridge, Massachusetts.

l{eywo:rds: Prolog, Logic Programming, Natural Language, Education, Arti
ficial Intelligence, Dynamic Graphics

Grammar Kit Kenneth M. Kahn

Table of Contents

1. Computers and Children 1
2. Prolog and Language, ... " o ••• .,, • 2
3. An Imaginary Scenario o 0 •••• 0 • 3
4. Children and Natural Language 7
5. Implementation Issues o •••••••••••• o •••••••••••••••••••••• e •• 7
6. References o ... 9
7. Appendix - Source code of the Grammar Kit 10

i :revised February 2 1085

Grammar Kit Kenneth M. Kahn

Abstract

Prolog was originally developed as a programming language for writing natural
language parsers. This paper presents a prototype of a "grammar kit" written
in Prolog. The kit consists of tools and examples intended to be used by children
interested in exploring language. A grammar written in Prolog using this tool
kit can be used not only to parse, but also to generate, sentences. A serious
shortcoming of Prolog for children is that when a program misbehaves one must
understand its complex operational semantics. A major tool in the grammar
kit to alleviate this problem is a dynamic graphical tracer. This allows the
user to see a parse tree as it is being built. This tool, in turn, depends heavily
on a mechanism for delaying goals built into LM-Prolog. A rather significant
side-effect of using the graphical tracer is a better understanding of Prolog's
chronological backtracking.

1. Computers and Children

The major goal of this research is to provide children with a rich computational
environment for doing interesting natural language projects. While this envi
ronment is built upon Prolog, the methodology and philosophy is closer to that
of SmallTalk (Goldberg and Ross, 1981) and Logo (Papert, 1980). In other
words, children are encouraged to do relatively long-range projects in a very
rich and powerful environment, and in the process, learn about the domain of
the project (languages, translation, and grammar in this case), computational
concepts such as variables, recursion, representation, process, etc. and learning
itself.

This research, in contrast with other projects dealing with Prolog and children
(Ennals, 1982), is based upon the belief that the children should understand
how Prolog works in order to use it. The pragmatic reason for this so that
the children can cope with programs that don't behave properly. To some
extent this problem is a consequence of the fact that Prolog does not live up
to the ideal of logic programming very well. The order of clauses and goals
matters. Shortcomings of the language are filled by extra-logical primitives. It
may be the case that the most important thing that a child can get from using
a computer is an understanding of process. A more powerful and cleaner logic
programming language which comes closer to declarative programming than
Pro log may actually be inferior from this point of view.

There are at least three ways of helping children to understand the procedural
interpretation of Prolog programs.

• Develop a clear and simple operational model of Prolog and a methodology
for introducing children to it.

• Translate "troublesome" Prolog programs into a notation which the children
can already understand procedurally. For example, the program could be
automatically translated into Logo and studied in that form.

1 :revised February 2 1985

Grammar Kit Kenneth M. Kahn

• Provide tools for observing Prolog in action. This is the approach presented in
this paper. The major tool is a dynamic backtracking graphical trace facility.

2. Prolog and Language

For doing projects such as building parsers, generators, translators, question
answering systems and the like Prolog has the following advantages.

• A parser can be used as a generator or visa versa. A translator works in either
direction.

• A program can be run on partial inputs. A sentence can be parsed with a few
words unknown or generated where it is constrained to be a certain length or
contain certain words.

• The grammar can be described relatively declaratively without using a special
parser.

rt An "ask about" facility which asks the user if something cannot be found in
the database and then adds the answer to the database is important for being
able to use a system before it is complete. The sample parser presented in
this paper, for example, has no vocabulary at all, it just knows enough to ask.

• The Prolog database provides a natural and uniform way of connecting a
natural language system and a database.

• Pattern matching makes it easier to deal with structures such as lists and
parse trees.

On the negative side the implicit control does not always do the right thing. An
expert Prolog programmer knows how to anticipate or detect such situations
and to transform the program to fix the problem. A child cannot be expected to
do that, at least without some simple yet powerful tools. An always up-to-date
graphical image of the current state of computation is one such tool.

There has been much work within the Prolog community on devising grammars
that translate straight-forwardly into Prolog programs (Pereira and Warren,
1980). The grammar kit contains a predicate called ---1- which transforms its
arguments into an ordinary Prolog clause and adds it to the database. Consider
the LM-Prolog (Carlsson and Kahn, 1983) definitions of the rule that a verb
phrase can consist of a verb followed by a noun phrase, first with, then without,
--+. (An LM-Prolog statement is a non-atomics-expression where variables are
distinguished by beginning with a ?).

(--+ !verb-phrase (vp ?verb ?np))
verb ?verb)
noun-phrase ?np))

In DEC-10 Prolog, the above rule would, modulo Prolog syntax and placement
of arguments, translate into a clause extending the verb-phrase predicate which
is a relation between a tree structure and a part of a list of words:

2 :revised February 2 1085

Grammar Kit

(assert (!verb-phrase ?words0 ?words (vp ?v ?np))
verb ?words0 ?words1 ?v)
noun-phrase ?words1 ?words ?np)))

Kenneth M. Kahn

Our grammar predicates are actually relations between tree structures, parts
of a list of words, and parts of lists of graphics commands. Our _. predicate
translates the above rule into the following:

(assert
((verb-phrase ?words0 ?words

((:here ?x ?f ?) (:place-turtle ?x ?y 240.0) . ?coms0) ?coms
(vp ?v ?np)J

(display-constituent ?coms0 ?coms1 verb)
(verb ?words0 ?words1

?coms1 ((:place-turtle ?x ?y 120.0) ?coms2)
?v)

(display-constituent ?coms2 ?coms3 verb)
(noun-phrase ?words1 ?words ?coms3 ?coms ?np)))

The predicate display-constituent is responsible for generating graphics com
mands for displaying a constituent. It is discussed in Chapter 5.

3. An Imaginary Scenario

Consider the following scenario of a child working on a simple project using the
grammar kit. The child begins by loading the small sample grammar which is
presented below. He or she begins by making up a simple sentence and having
the machine parse it. The student enters the LM-Prolog goal (parse (Prolog
parses this sentence)). The system then asks a series of questions such as
Is (WORD PROLOG NOUN) true? and Is (WORD PARSES VERB) true? Both
positive and negative answers are stored so that a question is only asked once.
The ability to start with an empty dictionary and build it up interactively as
needed is very useful in this application. The child can begin to use his or her
grammar immediately without putting a large effort into typing in a dictionary
The alternative of providing a ready-made dictionary to the children strongly
constrains the sort of grammars they can write.

As questions are being asked a parse tree is being drawn on the screen as
depicted below, It is important to note that the tree is grown as Prolog searches
for parses and when it backtracks a part of the tree disappears ..

3 :revised February 2 1985

Grammar Kit

SENTENCE
I\

I \
I \

NP VP
I I

NOUN VERB

I I
prolog parses

SENTENCE
I\

I \
I \

NP VP
I /\

NOUN / \
I VERB NP
I I I

prolog I NOUN

par!es I

Kenneth M. Kahn

SENTENCE
I\

I \
I \

NP VP
I /\

NOUN / \
I VERB NP
I I /\

prolog I / \
I I I

parses I I
DET NOUN

I I
this sentence

Three Snapshots of the Display

At this point the child is encouraged to try a few more sentences, such as
(the big girl loves the silly boy) and (star trek lives). Then the
system is asked to generate sentences by entering (parse ?s). It gener
ates (prolog parses), (sentence parses), (girl parses), (boy parses),
(trek parses) and then asks the user Is there another ?WORD such that
(WORD ?WORD NOUN) is true?. If the child answers no, then more sentences
such as (prolog loves), (sentence loves) and (sentence parses pro log)
are generated. These are rather dull sentences, but the child can partially
specify the desired sentences. Fqr example, (and (length 7 ?s) (member
pro log ?s) (member silly ?s) (parse ?s)) will generate sentences seven
words long containing the words prolog and silly.

Looking at the generated sentences one notices that some .of them are not
quite right. For example, (Pro log lives silly star star star trek) is
generated. The parse tree reveals that lives trek is considered a verb
phrase. At this point the sample grammar might be presented to the child and
its rules explained if they haven't been already. The child can then perhaps be
lead to see a point in distinguishing between transitive and intransitive verbs
and can go back and edit the grammar accordingly.

revised February 2 1085

Grammar Kit

The entire sample grammar follows:

(-+ !sentence (sentence ?np Np))
noun-phrase ?np)
verb-phrase ?vp))

noun-phrase (np ?noun)) (noun ?noun))
noun-phrase (np ?det ?noun))
determiner ?det)
noun ?noun))
noun-phrase fop (adjectives . ?adjs) ?noun))
adjectives ?adjs)
noun ?noun))
noun..;phrase (np ?det (adjectives . ?adjs) ?noun))
determiner ?det)
adjectives ?adjs)
noun ?noun))

(-+ !adjectives (?adj)) f adjective ?adj))
(-+ adjectives (?adj . ?more-adjs))

adjective ?adj)
adjectives ?more-adjs))

(-+ (adjective (adjective ?word))
(is-word ?word adjective))

(-+ (determiner (determiner ?word))
(is-word ?word determiner))

(-+ (noun (noun ?word))
(is-word ?word noun))

verb-phrase (verb-phrase ?verb))
verb ?verb))
verb-phrase (verb-phrase ?verb ?np))
verb ?verb)
noun-phrase ?np))

(~ (verb (verb ?word))
(is-word ?word verb))

While genera.ting sentences, one notices that we often get adjectives re,
pea.ted such as (the silly silly silly silly Prolog parses big sen
tences). An interesting exercise is how to prevent this. One can place a
restriction on a rule by "calling" Prolog directly. We can restrict the rule for
adjectives as follows:

Grammar Kit

(-+ !adjectives (?adj . ?more-adjs))
adjective ?adj)
adjectives ?more-adjs)
call (not (member ?adj ?more-adjs))))

Kenneth M. Krum

This not only prevents the system from generating sentences with the same
adjectives occurring twice in the same noun phrase but prevents the system
from generating any sentence with more than two adjectives in a phrase. This
is far from obvious by inspecting the program. Running it causes it to loop
after generating sentences with just one adjective. What is wrong is apparent
as one watches the tree being grown as it loops. A few snapshots of the screen
illustrate this.

SENTENCE
I\

NP

I
NOUN

I
Trek

I \
I \

VP
I\

I \
I \

VERB NP
I /

I Ives /
I

ADJS
I\

I \
ADJ ADJS

I /\
I / \

star I I
I I

ADJ ADJS
I /
I /

star I
ADJ

I
si I ly

SENTENCE
I\ . .

I \
I \

NP VP
I /\
I / \

NOUN / \
I VERB NP
I t I

Trek livH /
I

ADJS
I\

I \
ADJ ADJS

I /\
I / \

star I I
AbJ AbJs

I /
star I

I
ADJ

I
big

SENTENCE
I\

NP

ooL
I

Trek

I \
I \

VP
I\

I \
I \

VERB NP
I /

I ivH /
I

AOJS
I\

I \
ADJ AOJS

I /\
I / \

star I I
I I

ADJ ADJS
I /\
I / \

star I I

AbJ AbJS
I /
I /

big I
ADJ

I
otar

It keeps looking for longer and longer lists of adjectives in the hope that some
will pass the constraint (not (member ?adj ?more-adjs)). The problem is that at
this point the first two adjectives are the same so adding more adjectives will
never help. The solution to this problem is left as an exercise to the reader.

Except for this attempt to prevent duplicate adjectives, we have not made use
of the argument that was in the sample grammar for building a list structure
corresponding to the parse tree. The graphics facility does not use it, so one
may wonder why one needs the parse tree since it is displayed on the screen.
It is useful for translation, searching for ambiguous sentences, and building a

6 revised February 2 1085

G:ramma:r Kit Kenneth M. Kahn

natural language interlace. A parser must build structures appropriate to its
use and the sample grammar provides an example of how to do this.

4. Children and Natural Language

One may wonder how a child could be expected to build natural language inter
faces when researchers in the field find it difficult. A simple natural language
interlace to a simple program can be very exciting to build and use. I once
worked with a not especially gifted 13 year-old using a grammar kit I had writ
ten in Logo to build a system that could accept and execute English commands
like "Draw me a big house" or "Put a long house in the middle" (Kahn, 1975
and 1977) . .I am confident that the system we constructed would have been
simpler, more powerful, and easier to build if it used the Pro log grammar kit
described here.

In the interests of simpli½ity, the sample grammar presented here is a.context
free grammar. The basic mechanism with its arguments to the rules allows one
to build up and use during parsing arbitrarily complex structures. It is impor
tant that children do not bump into the limitations of a system too quickly.
Older or clever children might want to pass beyond simple grammars and deal
with more sophisticated grammatical concepts (such as number or tense) or
move into semantics. Or very special purpose grammars may be most appro
priate. For example, in Kahn (1975) a grammar for greetings was built by a
13 year-old. Definite clause grammars are well-suited for these kinds of experi
mentation.

5. Implementation Issues

The grammar kit is very small since it builds upon some generally useful LM
Prolog utilities, especially the "freeze", "ask about", and "backtracking turtle
graphics" packages. The code is presented in the Appendix.

The implementation of the tree-drawing trace facility was not simple. The
graphics had to work without touching the user's code. The tree had to be
drawn (and undrawn) as the processing was being performed. A much simpler,
but much less useful, system would just draw the parse tree after a success
ful parse. The tree-drawing facility exploits LM-Prolog's multiple databases.
Predicates such as display-constituent exist in one version with graphics and
one dummy version without.

A problem in drawing the tree is to keep it readable. Without special pre
cautions, its very easy to get labels written on top of each other, to get arcs
crossing, and to go off the edge of the display. An earlier implementation of
the grammar kit was based upon the idea that the tree drawing should be non
deterministic and that these sorts of resthetic problems should cause failures.
This often produced good-looking trees but lead to insurmountable problems of

7 :revised Peb:ruu-y 2 1085

G:ramma:r Kit Kenneth M. Kahn

separating the non-determinism of the tree-drawing from the non-determinism
of the application. If one wanted another parse of a sentence, one saw first a
large number of alternative ways of displaying the current parse before another
one would be generated. The current implementation checks only for label col
lisions. When one is detected it simply makes the arc involved longer and tries
again. A good topic for further research is to find a more elegant solution to
this problem. Another is to generalize the tree-drawing facility to support other
depictions of the current state of the computation. A maze searching program
could draw the current path through the maze, an arbitrary Prolog program
could be depicted as an "and-or" tree, etc ..

The practical difficulty with the grammar kit presented here is that it requires
a powerful computer environment. The kit is implemented in LM-Prolog which
runs only on Lisp Machines (Moon et al. 1983). A fast machine is needed for
the dynamic graphics. A large address space is needed for the entire system.
Consequently this kit has not been tested with children. It is only a matter of
time, however, before personal machines of sufficient power are widely available
to children.

This paper has attempted to convey three ideas about natural language pro
cessing and children.

• That much of the work being done on natural language processing within the
Prolog community is both ve:ry powerful and well-suited for children.

• That dynamic graphics is ve:ry valuable as a tool for observing and debugging
complex processes.

• That one should provide kits for children, so that they can do exciting large
scale projects without having to start from scratch.

:revised Peb:rua:ry 2 1985

G:ramma:r Kit Kenneth M. Kahn

6. References

Carlsson M., Kahn K.M., "LM-Prolog User Manual", UPMAIL, Uppsala Uni
versity, Technical Report No. 24, October 1983.

Ennals, R., "Teaching logic as a computer language in schools", Proceedings
of the First International Logic Programming Conference, Marseille, France,
September 1982.

Goldberg, A. and Ross, J., "Is the Smalltalk-SO System for Children?", Byte
Vol. 6, No. 8, August 1981.

'
Kahn, K., "A LOGO Natural Language System", LOGO Working Paper 46,
MIT AI Laboratory, December 1975.

Kahn, K., "Three Interactions between AI and Education" in Machine Intel
ligence 8, Machine Rep~esentations of Knowledge, eds. Elcock E. and Michie,
D., Ellis Horwood Ltd. and John Wylie & Sons, 1977.

Papert, S.,Mindstorms - Children, Computers, and Powerful Ideas, Basic
Books, Inc., New York, 1980.

Pereira, F. and Warren, D., "Definite Clause Grammars for Language Analysis
- A Survey of the Formalism and a Comparison with Augmented Transition
Networks", Artificial Intelligence, Vol 13. No. 2, May 1980.

Moon D., Stallman R.M., Weinreb D., "Lisp Machine Manual", MIT AI Labo
ratory, Cambridge MA, 1983.

:revised February 2 1985

Grammar Kit Kenneth M. Kahn

7. Appendix - Source code of the Grammar Kit

The syntax of LM-Prolog differs from other Prolog implementations. Variables
are symbols beginning with ? . Terms are Lisp s-expressions. Define-predicate is
used to group together different clauses for the same predicate. Comments are
preceded by ; .

Given a grammar rule,~ adds four extra arguments, as discussed in Chapter 1,
and asserts it as an ordinary Prolog clause. The extra arguments are added to
the head of the clause and to each statement in the body unless it is an explicit
call to Prolog.

;;; -*- Mode: Lisp; Package: Puseri Base: 10.; Options: {(World Grammar)) i -*
iii {CJ Copyn'ght 1983,1981,,1985, Uppsala University

iii Cleaned up using the Turtle stream by Mats Carlsson.

;;; Compiler.

(define-predicate define-rules
(:options (:lisp-macro-name define-rules))
(!define-rules ?name . ?rules)

define-predicate ?name :(options (place-clauses after) (type dynamic)))
and . ?rules)))

(define-predicate ~
(:options (:lisp-macro-name~))
(,~ (?part-of-speech . ?arguments) . ?constitutentsl

translate~ ?new-constitutents ?constitutents ?SO ?S ?PO ?P)
assert ((?part-of-speech ?SO ?S ?PO ?P . ?arguments) . ?new-constitutents))))

(define-predicate translate~ .
(!translate~ ?new-constituents ?constituents ?sO ?s ((:here ?x ?y ?) . ?pO) ?p)

length~ ?I O ?constituents)
trans-clause~ ?new-constituents ?constituents ?sO ?s ?pO ?p O ?I ?x ?y)))

;;Count no. of constituents, don't count explicit Prolog calls.
(define-predicate length~

(length~ ?I ?I ()~I)
(length~ ?I ?10 (call . ?) . ?rest))

length~ ?I ?10 . restv
(length~ ?I ?10 (? . . rest))

sum ?11 ?IO 1)
length~ ?I ?11 ?rest)))

10 revised February 2 1985

G:ramma.:r Kit Kenneth M. Kahn

(define-predicate trans-clause-+
((trans-clause-+ () () ?s ?s ?p ?p ?n ?n ? ?))
((trans-clause-+ ;;Translate a general predicate call

!?call . ?new-rest)
(CALL ?call) . ?rest)

. sO ?s ?pO ?p ?nO ?n ?x ?y)
(trans-clause-+ ?new-rest ?rest ?sO ?s ?pO ?p ?nO ?n ?x ?y))

((trans-clause-+ ;;Translate a word class occurrence
(lword ?word . ?args)

display-terminal ?pO ?p1 ?word) . ?new-rest)

I IS-WORD ?word . ?args) . ?rest)
. word . ?sO) ?s
(:placeturtle ?x ?y ?theta) . ?pO) ?p

?nO ?n ?x ?y)

!angle-+ ?n ?nO ?n1 ?theta)
trans-clause-+ ?new-rest ?rest ?sO ?s ?p1 ?p ?n1 ?n ?x ?y))

(trans-clause-+ ;;Translate a terminal occurrence

!
{display-terminal ?pO ?p1 ?word) . ?new-rest)
~TERMINAL ?word . ?) . ?rest)

· . word . ?sO) ?s
(:placeturtle ?x ?y ?theta) . ?pO) ?p

.no ?n ?x ?y)

!

angle-+ ?n ?nO ?n1 ?theta)
trans-clause-+ ?new-rest ?rest ?sO ?s ?pt ?p ?n1 ?n ?x ?y))

(trans-clause-+ ;;Translate a non-terminal occurrence
(!display-constituent ?pO ?p1 ?rule\

?rule ?sO ?st ?p1 ?p2 . ?args) . fnew-rest) i ?RULE . ?args) . ?rest)
.sO ?s i (:placeturtle ?x ?y ?theta) . ?pO) ?p
.no ?n ?x ?y)

(angle-+ ?n ?nO ?n1 ?theta)
(trans-clause-+ ?new-rest ?rest ?s1 ?s ?p2 ?p ?n1 ?n ?x ?y)))

(define-predicate angle-+

sum ?n1 ?nO 1)
(!angle-+ ?n ?nO ?n1 ?theta)

lisp-value ?theta (compute-theta '?nO '?n) :dont-invoke)))

(defun compute-theta {n out-of)
(cond ((> out-of 1) {*120. (- 2 (// (float n) (float (1- out-of))))))

(t 180.)))

The predicate word is by default defined to query the user.

(define-predicate is-word
((is-word (?word . ?left) ?left ?word . ?arguments)
(word ?word . ?arguments)))

(ask-about word) ;;this is the definition of the dictionary!!

The addition of extra arguments can be confusing to a novice. Using the pred
icate parse the extra arguments are taken care of automatically.

11 :revised Pebrm.u·y 2 1085

Gramn1ar Kit

(define-predicate parse
(parse ?sentence)

parse ?sentence ?))
(parse ?sentence ?tree)

parse ?sentence ?tree ?))

Kenneth M. Kahn

(parse ?sentence ?tree ?graph0)
turtle-stream ?graph0)
= ?graph0 ((:hideturtfe) (:placeturtle 0.0 500.0 180.0) . ?graph1))
display-constituent ?graph1 ?graph sentence)
sentence ?sentence () ?graph () ?tree)))

The following is the tree-drawing facility of the grammar kit. Graphics is a way
of turning on and off the tree drawing· facility by changing the list of current
worlds (databases). One can also "bind" the change by saying (wi tliout-world
:graphics (parse ...)) or (with-world :graphics (parse ..•)).

(define-predicate ~raphics
((graphics on} add-world :graphics))
((graphics off) remove-world :graphics)))

The graphics is built upon a mechanism for delaying goals and a backtracking
turtle. A backtracking turtle ~s like a Logo turtle (Papert, 1980) but any change
to its state is undone upon backtracking. The grammar continuously instanti
ates a list of graphics commands for the turtle, which executes them as they
are instantiated. · This is handled by the predicate turtle-stream. Should the
program backtrack, commands that are not instantiated any more are undone.
This provides an ideal mechanism for drawing parse trees. The tree is drawn
from the top of the screen downward.

To carefully display some text, we see first if the turtle is near some text already
placed. If it is, the turtle goes forward and we try again. Otherwise, the text is
displayed and the current turtle position is added to the database. Assume is
an LM-Prolog predicate which adds its argument to the database and removes
it upon backtracking or if processing is aborted.

(define-predicate display-constituent
((display-constituent ((:forward 40) . ?p0) ?p1 ?name)
(display-terminal ?p0 ({:forward 40) . ?p1) ?name)))

(define-predicate display-terminal
;;Dummy version without graphics
((display-terminal ?p ?p ?)))

(define-predicate display-terminal
:\options (world graphics))
(display-terminal ((:here ?x ?y ?l . ?p0) ?p ?name)

cases (near-some-text ?name 1x ?y)
= ?p0 ((:forward 40) . ?p1J)
display-terminal ?p1 ?p ?name))

(= ?p0 ((:markv ?name) . ?pl)
assume ((text-displayed-at (?x ?y) ?name)) :graphics)))))

12 :revised February 2 1085

Grammar Kit Kenneth M. Kahn

(define-predicate text-displayed-at) ;;maintained by CAREFUL-DISPLAY above

(define-predicate near-some-text
(near-some-text ?text ?x ?y}

size-of-text (?height ?length-of-text) ?text);;N.B. TV units.
text-displayed-at (?others-x ?others-y . ?) ?other-text)
lisp-value ?y-distance (*0.34 (abs (- · ?y · ?others-y))) :dont-invoke)
< ?y-distance ?height) .
lisp-value ?x-distance (*0.68 (abs (- · ?x · ?others-x))) :dont-invoke)
size-of-text (? ?length-of-other-text) ?other-text)
sum ?2width ?length-of-text ?length-of-other-text)
< ?x-distance ?2width)))

13 revised February 2 1085

