
UPMAIL Technical Report No. 15B

·unique Features of Lisp Machine Prolog

Kenneth M. Kahn
revised by Mats Carlsson

2

UPMAIL
Uppsala Programmiug Methodology and Artificial Intelligence Laboratory

Department of Computing Science, Uppsala University
P.O. Box 2059

S-750 02 Uppsala Sweden
Domestic 018 155400 ext. 1860

International +46 18 111925
Telex 76024 univups s

The research reported herein was supported by the National Swedish Board for
Technical Development (STU).

Prolog, Logic Programming, Unification, Embedded Language!l,
Lisp, Partial Evaluation, Virtual Objects.

Table of Contents

1. An Overview of the Lisp Machine Prolog Project 1
20 Design Strategies o o o ••• 2
3. Syntax and the Representation of Terms 2
3.1 Handling of Cyclic Structures 4
4. Evaluable Predicates ... o ••••••••••••••••• o ••••••• o •••••• o •• o 4
4.1 Control Primitives . o ••••• ., •••• ., •• o " •• o ••••••••••••• o ••••• o G 4
4,2 Collection Primitives o •••••••••••••••••• o •• o • o ••••••••• 7
4.3 Database Primitives " o •• o o o •• o •• 8
4.4 Interface between Lisp and Prolog 9
4.5 Recursive Prologs••. o • o •••••••••••••• ~ •••••• o 9
4.6 Mutable Arrays .. 10
5. Directions for Future Research 10
6. Appendix - Benchmarks . o •••••••••••• o ••••••••••• " •• o •• o •• 11
7. References • • • . . • • • • . • • • . . e •• " • • o • • • 11

revised :February 2 1085

Abstract

The unique features of a Prolog implemented in Zeta.Lisp are presented, The
language features variable arity of predicates, user definable objects, mutable
arrays, unification with or. without occur check or handling cyclic structures,
multiple databases, user-controllable database indexing, efficient conditionals,
declarative determinacy, virtual sets and bags, mechanisms for delaying goals,
the ability to re-enter Prolog recursively, turtle graphics, several debugging aids,
and various interfaces between Lisp and Prolog.

The implementation is fully integrated in the Lisp Machine programming envi
ronment and features a translator from Edinburgh Prolog programs, an inter
preter, an optimizing compiler, and microcode support.

This report is intended to describe the aspects of LM-Prolog that differ from
the Prolog implementations in wide spread use and assumes that the reader is
familiar with Prolog,

A user manual [Carlsson and Kahn, 1983] and an implementation description
[Carlsson, 1984b] are available.

L An Overview of the Lisp Machine Prolog Project

LM-Prolog (Lisp Machine Prolog) was initially developed with one purpose in
mind, namely to support a partial evaluator capable of partial evaluating the
Prolog. A partial evaluator is a program which takes in programs and generates
more efficient, less general, versions of them ([Haraldsson, 1977] [Emanuelson,
19801), The theorem prover inside· the Prolog interpreter can be specialized
with respect to a particular database of assertions thereby compiling the Prolog
to Lisp. In fact, LM-Prolog's compiler translates Prolog predicates to Lisp
procedures, which are further compiled to machine code by the Lisp compiler.

The partial evaluator for Lisp programs is written in LM-Prolog and is described
in [Kahn, 1982b].

That the implementation is to be partial evaluated constrains it to be as sim
ple, modular, and free of side-effects as possible. In addition, in order to partial
evaluate it most effectively it must use the Lisp stack for control. That the im
plementation should support a partial evaluator constrains it to be fast enough
to run a large program on difficult problems. In addition, all the evaluable
;m!dicates need to be implemented in a clean way for the partial evaluator to
partial evaluate their use.

Another aspect of this project is to develop a partial evaluator for Prolog (writ 0

ten in Prolog). This program transforms and specializes Prolog programs, The
pfan is that the output of this program will be feed into the partial evaluator
for Lisp programs together with the Prolog interpreter to produce very high
quality Lisp code which can be further compiled down to machine language,

1 revised 2

Satisfying these constraints would be impossible without very rich computa
tional resources. TheLisp Machine, a single-user, large address space computer,
which supports a powerful modern Lisp dialect has been instrumental in this
research [Moon et al. 1983]. Running a slow interpreter in another interpreter
on a time-shared machine with a limited address space would be too painful to
attempt.

An important aspect of this project is of course to have a production quality
Prolog available on Lisp machines. A high-performance implementation of a
logic programming language is for the first time available in such a powerful
programming environment.

2. Design Strategies

LM-Prolog uses copying as the means for constructing complex terms, as this
greatly simplifies the interlaces between Lisp and Prolog and otherwise seems
advantageous over structure sharing on the present machine architecture. The
database contains coded representations of program clauses. The codes are
designed to be maximally suitable for the microprograms that are responsible
for unifying with and constructing complex terms.

Unification contains an escape mechanism for user-defined objects, upon which
a mechanism for delaying goals, lazy and eager collections, and mutable arrays
are based. This design facilitates user experimentation and extensions with new
data types. Unification capitalizes on invisible pointers for variable to variable
links and for unifying cyclic structures.

Continuation passing is used as the rµeans for having Lisp procedures compute
relations rather than functions. A predicate is translated to a procedure taking
one extra argument - a continuation corresponding to the remainder of the
current computation. Similarly, the interpreter accepts an extra argument, See
[Carlsson, 1984a) for details.

Interpreted and compiled predicates may call each other freely.

3. Syntax and the Representation of Terms

The syntax of LM-Prolog resembles the syntax of Lisp rather than logic or other
Prologs. A predicate is defined as follows:

(define-predicate predicate-name options
clause1

clausen)

Options are optional and discussed later. A clause is a list of predications.
predication is a cons of a symbol or variable and a list of arguments. A clause
is interpreted as its head (the first element) is implied by its body (the rest).

2 revised

LMmProlog Kenneth. M.

Variables are distinguished from symbols by beginning with '?'. For example,
the definition of append in LM-Prolog is:

(define-predicate append
(append ()))) ;;zero lists concatenate to the emptu list
(append ?total (} . ?back) ;;an emptu list can be simplified awau

append ?total . ?back))
(append (?first . ?rest-of-total} (?first . ?rest-of-front) . ?back)
;;a non-emptu list contribute, one element to the concatenation
(append ?rest-of-total ?rest-of-front . ?back)})

LM-Prolog allows only one functor symbol '.', i.e. Lisp's cons. This may seem
a strong restriction, but it is, in fact, a generalization of the concept of terms.
Predicates can accept an arbitrary number of arguments as a consequence.
This convention facilitates the application of a predicate to a list. For example,
append may be used with in many different ways:

(append ?list ?x ?differer:u::e)
subtracts the list ?x from the beginning of ?list to obtain ?difference.

(append ?list ?difference ?x)
subtracts the list ?x from the end of ?list to obtain ?difference.

(append ?list ?x ?y)
generates pairs of lists ?x ?y which append to ?list.

(append ?list? (?term) ?)
decides whether ?term is a member of ?list.

(append ?list ? (?x) ?)
generates elements of ?list called ?x.

(append ?list ? (?x))
finds ?x which is the last element of ?list.

(append ?list ? (?term-1 ?term-2) ?)
asks if ?term-1 and ?term-2 are successive elements of ?list.

(append ?a-list ? ((?key ?value)) ?)
asks if ?value is associated with ?key in ?a-list.

(append ?list ? ?sub ?)
asks if ?sub is a sub-list of ?list.

(append ?list? (?term) 7 (?term) ?)
asks if ?term occurs twice in ?list.

(and (append ?list ?before (?term) ?after) (append ?remaining ?before ?after))
removes ?term from ?list to obtain ?remaining.

(append ?list ?a ?b)
where ?list, ?a, and ?bare bound will answer the question of whether
?a and ?b append to ?list.

And so on.

revised February 2

Kenneth. M. Kahn

In order to exploit the variable-arity of LM-Prolog predicates the convention in
all system provided predicates is, contrary to other Prologs, that typically the
first argument is the output and the rest of the arguments the input.

Another consequence of the use of the'.' functor symbol is LM-Prolog's second
order "predicate call" feature. For example, a valid way of appending two lists
is (?predicate ?x ?list-1 ?list-2) provided ?predicate was previously unified with
append.

Handling of Cyclic Structures

The unification algorithm computes most general unifiers, i.e. minimal substi
tutions that make its arguments equal. When the only bindings which could
make them equal describe two cyclic structures, we have a problem. We can
have the unification procedure perform an occur check so that it detects such
situations and fails. Sometimes this is the desired behavior. Other times the
cyclic structure is desired. Yet other times, the programmer is confident that
they will not appear and does not want the system to waste time looking for
circularities. LM-Prolog allows the user to control whether the occur check is
done or not, or whether cyclic structures should be anticipated. In the lat
ter case, LM-Prolog succeeds in printing, instantiating (when making bags and
sets) and unifying such structures. The user specifies whether circularity should
be prevented, handled, or ignored. It is also possible to bind tb.e mode over the
scope of some computation.

4. Evaluable Predicates

These correspond to the primitive .functions of other languages. The current
list of them are

• Control primitives for conditionals, delaying goals, guaranteeing actions upon
failure, cutting out non-determinism, sound and unsound versions of negation
by failure.

• Collection primitives for generating lazy and eager sets and bags of items
satisfying given conditions.

• Database primitives for asserting, retracting, and assuming clauses, defining
and tracing predicates, and naming databases.

~ An interface to Lisp which is used by the system to define i/ o, arithmetic,
graphics, and the like.

• Metering facilities to time the execution of goals.

• Debugging tools for tracing and stepping, like in Edinburgh Prolog.

1 Control Primitives

Negation is a problem in logic programming, because a logic program cannot
contain rules for deducing negative information. However, it is often sensible to

4 :revised February 2 1985

LM-Profog

regard the predicate definitions of a logic programB as complete definitions, i.e.
to regard them as giving not only sufficient but also necessary conditions for the
predicates to be true. If one i~ prepared to do so, the negation as failure [Clark,
1978] rule becomes valid. This rule consists in deducing ,p from a failure to
prove P, and is the usual treatment of negation in Prolog. In LM-Prolog, this
rule exists as the evaluable predicate cannot-prove.

Another problem with negation is that of free variables. A predication P(X)
with a free variable X is in Prolog procedurally understood as a goal "find an
X such that P(X) is true". However, the negation as failure rule is not faithful
to the intended use of free variables. A negative predication ,P(X) procedu
rally becomes a goal "there is no X such that P(X) is true". Th'WJ, negated
predications containing free variables violate the semantics of the language and
can cause bizarre results. Cannot-prove does not check for such situations. One
solution for this problem is to delay the predication in hope that its free vari
ables will eventually become bound, and execute it only then. In LM-Prolog,
this rule exists as the evaluable predicate not, and is recommended (except for
efficiency reasons) over cannot.;.prove.

The conditional of LM-Prolog is called Cases and resembles Lisp's cond. It is
equivalent to the disjunction of the conjunction of the elements of a clause and
the negation of the first element of each of the previous clauses. For example,
(cases (at a2 a3) (a4 a5) (a6)) is logically equivalent to (or (and at a2 a3) (and
(cannot-prove at) a4 a5) (and (cannot-prove a1) (cannot-prove a4) a6)). This
predicate cannot be implemented within Prolog itself without either unneces
sary re-computation when tests fail or restricting the test to its first solution.
(recomputing at and a4 in the example above).

IC-Prolog [Clark et al. 1982] has a.conditional similar to LM-Prolog's which
can be defined in terms of Cases as follows:

(define-predicate if
((if ?test ?then ?else)
(cases (?test ?then) (?else))))

The controversial cut or slash of Prolog is also provided, it is implemented
as a predicate called cut. There is another means of cutting out unwanted
backtracking from LM-Prolog programs, which is generally recommended over
cut: Predicates can be declared to be deterministic, i.e. to never backtrack to
find more solutions. This is done by adding a declaration to the options part
of the predicate.

LM-Prolog provides a primitive for guaranteeing that something is executed
upon backtracking: (unwind-protect ?goal ?cleanup ...) is equivalent to just ?goal
but also guarantees that ?cleanup ... is executed upon backtracking.

LM-Prolog provides primitives for delaying computations. One is called con
strain and is similar to geler of Prolog II [Colmerauer 1982]. A predication
(constrain ?x (p ?x)) succeeds immediately but binds ?x to a delayed computa
tion of (p ?x), so that if ?xis later unified with a non-variable, the delayed goal

5 revised February 2 1985

Kenneth M. Kahn

is executed. A limitation of the implementation is the fact that the delayed goal
becomes deterministic. Another primitive is freeze, which delays the execution
of its arguments until it is ground. For example, Not is defined as

(define-predicate not
((not ?predication)
(freeze (cannot-prove ?predication))))

To illustrate constrain with a classical example, we implement the Sieve of
Eratosthenes for generating the list of prime numbers (compare with [Hansson
et al. 1982] and [Kahn, 1982a]}. The algorithm repeatedly takes the first
element of a list, adds it to the list of primes, and deletes all multiples of it
from the original list. The list is initially the integers beginning with 2.

(define-predicate integers-beginning
(!integers-beginning ?n (?n . ?rest)) ·

sum ?n+1 ?n 1)
constrain ?rest (integers-beginning ?n+ 1 ?rest))))

(define-predicate primes
(!primes ?primes)

integers-beginning 2 ?integers)
sift ?primes ?integers)})

(define-predicate sift
(!sift (?first . ?rest-sifted) {?first . ?rest-integers))

no-multiples ?rest-left ?first ?rest-integers)
constrain ?rest-sifted (sift ?rest-sifted ?rest-left))))

(define-predicate no-multiples
((no-multiples ?filtered ?n (?int0 . ?int))
(cases (!lisp-predicate {zerop ('?intO '?n)))

no-multiples ?filtered ?n ?int)) .
(= ?filtered (?intO . ?rest-filtered))

constrain ?rest-filtered (no-multiples ?rest-filtered ?n ?int))))))

Running (primes ?p) binds ?p to (2 . <delayed object # 11>) which in all ways
behaves like the list of primes. (If one maps print down ?p the primes wilf be
printed out one by one until the machine is stopped.)

Clearly, the constrain facility has lots of applications in logic programming,
e.g. to implement sound versions of inequality and negation, to implement I/O
streams, to write "generate and test" problems in a clear yet efficient way, to
solve equations, and to compute with infinite lists.

An output stream that prints a list of characters on an output device as the list
becomes instantiated is easily programmed:

:revised February 2 1086

Kenneth M. Kahn

(define-predicate output-stream
(output-stream () ?)

output-stream (?elt . ?rest) ?device)
lisp-command (send '?device ':tyo · ?elt))
constrain ?rest (output-stream ?rest ?device))})

,·;Initial goal:
(and (constrain ?list (output-stream ?list ?device) (compute ?list))

A more comprehensive stream interface exists between LM-Prolog and a Turtle
graphics program [Lieberman, 1980]. This interface also insures that drawn
parts are undrawn, should the program backtrack.

Collection Primitives

Sets and bags in LM-Prolog are made using the predicates set-of' and bag
of. For example, given the predicate grandparent we can construct the list of
grandchildren of Cele as (set-of ?grandchildren ?gc (grandparent cele ?gc)). A
unique feature of LM-Prolog is the lazy versions of sets and bags. Lazy sets
and bags create lists, whose elements are computed only to the extent necessary.
This is very useful when the sets involved are large and only some aspect of
them is of interest. For example, in many Prolog solutions to the problem of Mr.
S and Mr. P [Warren 1981] there is code which uses Edinburgh Prolog's setof
predicate to determine whether there is exactly one solution. Prolog creates the
set of solutions and then unifies it with a term describing the set. In LM-Prolog,
the set is only created to the extent to which it is "looked at" in the process
of unification. In the case where one desires to know if the solution is unique,
LM-Prolog fails after the second solution is found. In the case where one desires
to know if there are more than one solution, LM-Prolog succeeds after finding
the second one. The difference in efficiency when using lazy sets is greatest, of
course, if the sets are infinite. There is also an experimental version of bags
and sets which are "eager" and are computed in parallel processes. See [Kahn,
1983] for a detailed discussion of lazy and eager collections.

The following is a version of the Sieve of Eratosthenes implemented with lazy
bags:

(define-predicate primes
((primes ?primes)
(lazy-bag-of ?primes ?prime (prime ?prime))))

(define-predicate prime
(prime ?prime)

lazy-bag-of ?ints ?int (integer-from ?int 2))
prime ?prime ?ints))

(prime ?prime (?prime . ?)))
(prime ?prime (?seed . ?rest})

lazy-bag-of ?sifted ?not-muftiple (not-multiple ?not-multiple ?seed ?rest))
prime ?prime ?sifted)))

'1 :revised February 2 U)85

(define-predicate intef er-from
(integer-from ?i ?i)
(integer-from ?i+ ?i)

sum ?i+1 ?i 1)
integer-from ?1+ ?i+1)))

K.e:nneth M. Kahn

(define-predicate not-multiple
(not-multiple ?number ?seed (?numb.er . ?))

quotient ?q ?number ?seed) ;;fixnum arithmetics
cannot-prove (product ?number ?q ?seed))}

(not-multiple ?number ?seed (? . ?numbers))
not-multiple ?number ?seed tnumbers)))

4.3 Database Primitives

There are two types of Prolog predicates that can be defined. The default is
:static which means that the list of clauses in the body of the define-predicate
are all that exist or eve! will exist. H there is an attempt to add or delete
any new clauses, an error is signaled. Various optimizations apply to static
predicates and they are the default. Another type is :dynamic which allows
subsequent addition or deletion of clauses. The predicate assert adds a new
clause to a dynamic predicate. The predicate retract deletes a clause from a
dynamic predicate.

Since this is a side-effect operation without a logical meaning, it is good pro
gramming practice to use it at top-level and in files and to minimize its use in
programs.

A more acceptable way for programs to change the database is by using the As
su me predicate. Assume inserts a clause in the database but upon backtracking
restores the original predicate definition. This guarantees that the predicate is
restored even in the case of abnormal return due to the use of control primitives
or if the user aborts the computation.

The clauses in a database ar~ automatically indexed by their predicate name.
The options list of define-predicate can be used to specify additional indexing to
speed retrieval. The system creates and uses hash-tables the keep access time
down to a small constant regardless of the number of clauses associated with a
predicate. The option :indexing-patterns is followed by a list of patterns. Each
pattern should have exactly one symbol beginning with'+' in them. IC-Prolog
has a similar indexing facility, but it cannot index on parts of the predicate's
arguments.

For example, consider the following definition of father:

(define-predicate father
(:options (:type :dynamic)

(:indexin~-patterns (father ?father ?) (father ? ?child)))

I !father Jack Ken) j
father Jack Karen))
father Isa Jack)))

8 revised February 2 1985

Kenneth M. Kahn

This declares that father iH a predicate which can be extended, and that indexing
should be done both on father and child.

LM-Prolog supports multiple worlds. A world is a list of predicate definitions.
The user declares to the system the universe, a list of worlds, in which com
putation should proceed. These worlds are searched linearly until a predicate
definition is found. The implementation has a cache mechanism for avoiding
this search in most situations. Predicates are available for binding the universe
over some computation. The trace package, for example, traces a predicate
by defining a predicate of the same name in the traced-predicates world which
prints some message, then runs the original predicate, then prints some more
messages.

This is analogous to the advice facility in some modern Lisps. Worlds are an
ideal vehicle for hypothetical reasoning and structuring a complex knowledge
base. Zeta.Lisp's packages or namespaces are inherited by LM-Prolog and pro
vide good support for more static kinds of modularity, like preventing name
clashes and accidental access from one program module into another.

4.4 Interface between Lisp and Prolog

For almost all purposes one of the three LM-Prolog predicates lisp-value, lisp
predicate or Lisp-command are adequate. lisp-value is a two place predicate
where the first argument is unified with the result of evaluating the second
argument. Lisp-predicate is a one place predicate and it fails only if its argument
evaluates to nil. Lisp-command is a one place predicate which always succeeds.
The argument is executed.

In the other direction, the following Lisp function executes a Prolog query:
(query-once predication ':lisp-term pattern). The pattern defaults to nil. If suc
cessful it will multiple value return an instantiation of pattern and t. If it fails it
returns nil. A more general interface exists which sets up a stream of solutions.
It is called make-query.

4.5 Recursive Prologs

LM-Prolog can be entered recursively. After printing out the results of the
first answer to the user's goal, the user can either ask for more possibilities
(by hitting the hand-down button), type in a new problem, or accept the cur
rent environment (by hitting the hand-up button). If the later option is taken,
then Prolog is run in the environment of the last results shown. This provides
essentially global variables during interactions with the system. These global
variables cause no semantic difficulties for the language because they exist only
in the user interface and cannot be used within programs.

This may be convenient at top-level as the following sample dialog illustrates:
(= 71 (integers-beginning ?integers 1))
OK
?i = (integers-beginning ?integers 1)
;;Hitting the hand-up button indicates acceptance.

9 revised Peblnl&.ry 2 1985

LM-Prolog

;;The system da"splays "Prolog level 1 ".
?1 ;;meta-logical variable
OK
?integers= (1 . <delayed object# 23>)
;; hand-up again - The system displays "Prolog level t".
(=?integers(? ? ?three . ?rest))
OK
?three= 3
?rest= <delayed object# 25>
;; control-hand-down and we are back to level 1.
;; hand-down indicates that more possibilities are desired.
No more answers.

Kenneth M. Kahn

It is also useful to run Prolog recursively after an error or break to inspect the
environment, add clauses, trace predicates, etc ..

4.6 Mutable Arrays ·

LM-Prolog provides a completely logical interface to the arrays of Zeta.Lisp. A
mutable array is, just like a ZetaLisp array, a (possibly very large) data structure
with direct access to its elements. However, mutable arrays are logical objects
and so are not amenable to destructive updates. LM-Prolog instead provides
updating predicates which are not destructive, but creates a new virtual array
while keeping the old. As much storage as possible is shared between the old and
the new virtual array, in particular they both point to the same Zeta.Lisp array
which normally reflects the new virtual array. The old virtual array normally
keeps a record of the difference between it and the new virtual array.

The implementation is optimized so that in the best case array references and
updates are nearly as efficient as using them directly in Zeta.Lisp. More details
on mutable arrays can be found in [Eriksson and Rayner, 1984].

5. Directions for Future Research

One avenue of future research is to partial evaluate the Prolog interpreter with
respect to the partial evaluator in Prolog to produce a Lisp version of the
partial evaluator. This program can then be applied to itself and the Prolog
interpreter to produce a Prolog compiler (i.e. a Lisp program for compiling
Prolog programs into Lisp). This is described further in [Kahn, 1982b).

Uniform [Kahn, 1981] and Intermission [Kahn, 1982a] are logic programming
languages which have various abilities lacking in Prolog. A second generation
Intermission is being contemplated where every actor is represented by a Prolog
database. There is some hope that an implementation of them in Prolog could
be both compiled down to Lisp and compilers for programs in those languages
could be generated. One difficulty expected in implementing Uniform in Prolog
is the need for controlling search. A more complete version of Intermission with

10 :revised Peb:n:u1ry 2 1985

Ke:nneth M. Kahn

concurrency and explicit continuations would also demand more control over
Prolog's· search.

6. Appendix - Benchmarks

Performance benchmarks for Prolog were published in [Warren 1977]. The
programs are reverse-SO, a naive O(n 2) reverse of a list 30 long; qsort-50, a
quicksort of a list 50 long; four differentiations; a palindrome of a list 25 long;
and a database query similar to the one described in section 2.3. The table
below shows the timings in milliseconds for compiled and interpreted predicates
on a CADR. (LM-C and LM-I, respectively), .i.nd for DECsystem-10 Prolog on
a KHO (10-C and 10-I). The LM-Prolog times are followed in parentheses by
the timings without micro-code support. Note that the hardware of a KHO is
roughly twice the speed of a CADR Lisp machine.

The first benchmark suggest a LIPS rate of around 10000 for compiled code
and 1800 for interpreted.

LM-C LM-I 10-C 10-I

reverse-30 48(134) 274(1170) 53.7 1160 ;;J 08 inf ere nee,
qsort-50 60(197) 671(2380) 75.0 1344
d-times-10 7(16) 35(110) 3.0 76.2
d-divide-10 8(18) 36(126) 2.9 84.4
d-log-10 5(12) 22(77) 1.9 49.2
d-op-10 6(12) 28(83) 2.2 63.1
palin-25 42(167) 30~(1250) 40.2 602
query 422(1746) 1990(5858) 185.0 8888

7. References

[Carlsson and Kahn, 1983] Carlsson M., Kahn K.M., "LM-Prolog User Manual",
UPMAIL, Uppsala University, Technical Report No. 24.

[Carlsson 1984a] Carlsson M., "On Implementing Prolog in Functional Program
ming", UPMAIL Technical Report No. 5B, Computing Science Departm·ent,
Uppsala University, and in Proc. 1984 International Symposium on Logic Pro
gramming, Atlantic City NJ, and in New Generation Computing, vol. 2 no. 4
pp. 347-360, Ohmsha, Ltd. and Springer-Verlag, Tokyo.

[Carlsson 1984b] Carlsson M., "LM-Prolog - the language and its implemen
tation", Ph. L. thesis, UPMAIL Technical Report No. 30, Computing Science
Department, Uppsala University.

[Clark, 1978] Clark K.L., "Negation as failure", in Logic and Databases, {eds.
Galla.ire H., Minker J.), Plenum Press, New York, pp. 293-322.

11 revised Feh:nuay 2 1985

LM-Prolog Kenneth M. Kahn

[Clark et al., 1982] Clark K.L., McCabe F.G., Gregory S., "IC-Prolog Language
Features", in Logic Programming, (eds. Clark K., Tarnlund S.-A.), Academic
Press, London.

[Colmerauer, 1982] Colmerauer A., "PROLOG II Manuel de Reference et
Modele Theorique", Proc. Prolog Programming Environments Workshop,
Linkoping University.

[Emanuelson, 1980] Emanuelson, P., "Performance enhancement in a well
structured pattern matcher through partial evaluation", Linkoping Studies in
Science and Technology Dissertations, No 55, Software Systems Research Cen
ter, Linkoping University.

[Eriksson and Rayner, 1984] Eriksson L.-H., Rayner M., "Incorporating Mutable
Arrays Into Logic Programming", Proc. Second International Logic Program
ming Conference, Uppsala.

[Hansson et al. 1982] Hansson A., Haridi S., and Tarnlund S.-A., "Properties
of a Logic Programming Language", in Logic Programming, (eds. Clark K.,
Tarnlund S.-A.), Academic Press, London.

[Haraldsson, 1977] Haraldsson, A., "A Program Manipulation System based on
Partial Evaluation", Linkoping Studies in Science and Technology Dissertations,
No 14, Department of Mathematics, Linkoping University.

[Kahn, 1981] Kahn, K., "Uniform -A Language based upon Unification which
unifies (much of) Lisp, Prolog, and Act 1", Proc. IJCAI-81, Vancouver BC.

[Kahn, 1982a] Kahn, K., "Intermission - Actors in Prolog", in Logic Program
ming, {eds. Clark K., Tarnlund S.-A.), Academic Press, London.

[Kahn 1982b] Kahn, K., "A Partial Evaluator of Lisp written in Prolog", Proc.
First International Logic Programming Conference, Marseille.

[Kahn, 1983] Kahn, K., "A Primitive for the Control of Logic Programs", UP
MAIL Technical Report No. 16, Computing Science Department, Uppsala Uni
versity, and in Proc. 1084 International Symposium on Logic Programming,
Atlantic City NJ.

[Lieberman, 1980] Lieberman H., "Logo Turtle Graphics for the Lisp Machine",
MIT AI Laboratory Working Paper 214, May 1981.

[Moon et al. 1983) Moon D., Stallman R. M., Weinreb D., ll!Lisp Machine
Manual", MIT AI Laboratory, Cambridge MA.

[Warren, 1977] Warren, D., "Implementing Prolog - compiling predicate logic
programs", Department of Artificial Intelligence, University of Edinburgh,
D.A.I. Research Report No. 39.

[Warren, 1981] Warren, D., "The 'S-P Problem' Revisted", Logic Programming
Newsletter 2, Universidade Nova de Lisboa.

12 revised. Peb:rn.aey 2 1085

