
The 'Marseille Interpreter' - a
personal perspective

F. Kluzniak, Warsaw University

The Marseille Interpreter (Battani and Meloni, 1973; Roussel, 1975) started it all,
but many of the younger Prolog fans may not have even heard ofit. In the second
half of the seventies, we have grown to know it rather intimately while installing
it, modifying it and using it in Warsaw. We therefore think it appropriate to
relate - briefly - some of our experiences: though the tone of these remarks is
light, they are intended as a tribute to an awe-inspiring achievement.

The first installation of Prolog in Warsaw was that of a version prepared by
Le Gloan (1974) for the CDC6000 series. The principal difference with respect
to the original version (Battani and Meloni, 1973) was the manner in which the
interpreter's tables were accessed. The CDC machines were very fast, but had
only up to 128K words of memory; each word had 60 bits, though, so the
potential amount of data items - addresses in various linked data structures -
was three times as large. Le Gloan replaced all array accesses with calls to simple
packing/unpacking routines.

The loss in execution speed was considerable. This was compounded by
the fact that the interpreter was not a Prolog interpreter really: it could only
interpret the internal representation of a Prolog program in its tables. The 'real'
Prolog interpreter (i.e. the program which could read and store Prolog clauses,
read and write terms, and the like) was itself a Prolog program (Roussel, 1975)
executed by the FORTRAN interpreter.

The effect was that our CDC CYBER 73, which ran at approximately 1.2
million instructions per second, read in Prolog programs at the average speed of
5 seconds per clause. As the machine was constantly labouring under a heavy
load of multiprocessed jobs flowing in from a number of remote card-reader/
printer terminals, it was impracticable to run Prolog for longer than a minute
or so. In spite of all the packing, one needed to run in a low-priority storage
class (we needed at least 72 000 (octal) words, as opposed to the standard of
54 000 (octal) for FORTRAN compilations, etc.), so a one-minute job used to
hang in the input queue for up to 10 hours. Longer runs had to wait until the
weekend.

Fortunately, the interpreter's internal state could be saved on a file between
successive runs, so in spite of all this, Prolog was used for various small tasks,
even by students. S. Szpakowicz even wrote his PhD program - a parser for a
significant subset of Polish - in Prolog. With the low tum-around, reading in

66 PAST AND PRESENT [Sec. 1]

ten clauses at a time, it took him several months to get the program into the
machine: spectacular evidence of Prolog's ability to captivate the mind!

In 1978 we obtained funding for porting Prolog to an ODRA 1305 (essentially
an ICL 1900). The machine was much slower, but it had 24-bit words, so there
was no question of packing: we had high hopes that the result would be a faster
interpreter (in the end it turned out to be twice as fast as on the CYBER). The
memory was also only 128K, but we could have all of it, as the machine had
only a very simple executive program and was operated in open shop. There was
even a certain measure of interaction: the card punch was in the very next room.

The Prolog system was in the form of four decks of cards. There was the
interpreter proper, which consisted of about 2000 FORTRAN cards. Another
FORTRAN program - about 350 cards - was used to create a binary file with
the interpreter's internal state. This program, which we called 'The Initiator',
could only read in Prolog programs in a very low-level form - essentially a
character representation of the internal form of Prolog clauses. The interpreter
used Prefix Polish representation of trees, so we called this low-level language
Prefix Prolog. To give an example of its distinctive flavour, here is the well-known
procedure APPENDt:

1. 2APPEND3 NIL000NIL0
3.2APPEND3.2012.203.2APPEND3123NIL0

The third deck - about 7 5 cards - started with a card defining the character
set, followed by 17 cards of integer sequences defining the interpreter state's
'kernel' (the representation of NIL, etc.). Seven cards declared the non-character
functors and predicates used in the Prefix Prolog program which followed, 'The
Bootstrapper', which could read and execute programs written in what we called
'Prolog B'. This was rather primitive, but already similar to full Prolog ('Prolog C').
One could write:

+ APPEND(NIL,•L,•L)
+ APPEND(.(•EL,•L), •L2, .(•EL, • L3))

--APPEND(•L,•L2, •L3) .

The last deck consisted of about 400 cards in Prolog B, defining the full
Prolog Monitor (interpreter with 'real' diagnostics, high-level input/output
routines, etc.). The Monitor was written in a style apparently-designed to squeeze
the last ounce of advantage from unification's ability to deal with multi-purpose
arguments. Despite repeated attempts to read it, we could not at first under
stand more than small isolated fragments of this program, so for a long time we
did it no harm apart from changing French diagnostic messages to Polish.

One of the things we did understand - at a later stage - was the way its
parser dealt with 'expressions' (i.e. terms containing infix, prefix or postfix
functors, also known as 'operators'). These were treated in the classical way -

t The first digit is the number of variables. Each functor is followed by its arity and variables
are represented by integer offsets (not ambiguous, as numbers greater than 9 are not
allowed).

[Sec. 1 I THE 'MARSEILLE INTERPRETER' - A PERSONAL PERSPECTIVE 67

expressions contain terms, terms contain factors, factors contain parenthesised
expressions - except that the number of syntactic levels reflecting different
'operator' priorities depended on the highest priority declared by the user. As
each possible priority level was being taken care of by a separate invocation of
the appropriate routine, the result was that one was heavily fined not for the
number of operators one used, but for the magnitude of declared priorities. The
fine was not only the danger of recursion stack overflow, but also a significant
decrease in 1/0 speed. We solved the problem by making the Monitor issue a
warning when it first encountered an 'operator' declaration with priority greater
than IO.

But it had taken us some time before we were able to attempt such modifi
cations.t The first steps were rather distressing: after we had managed to make
the FORTRAN programs compilable,:!: the Initiator simply stopped halfway
through its input. After ploughing through several hundred lines of very unreadable
FORTRAN, we discovered that it did, indeed, contain another STOP statement.
There was no error message whatsoever, which was only proper, as upon the
correct termination there was a print-out that all went well.

The cause of the error, however, remained a mystery for several days. We
were saved by the fact that Szpakowicz is a very talented proof-reader: the first
card of the Bootstrapper was somehow different from the original listing. This
card defined the collecting sequence of characters - proof of commendable
concern for portability of Prolog programs - and after it was shredded by the
card-reader we had to reproduce it from the listing. What we didn't see at the
time was that the first character was - what else? - a blank. The Initiator
failed upon reading in a blank and not being able to find the proper entry in its
dictionary.§

Our inability to divine such things from the FORTRAN text-the documen
tation was very brief indeed, and its technical contents consisted in a single drawing
illustrating the principal data structures (it was inaccurate) - was caused by the
fact that the coding was absolutely atrocious. Apparently, regard for portability
Jed its authors to adopt a 'standard' FORTRAN subset which did not even contain
the logical IF. ,i We very quickly had to decide that the best thing we could do
was to spend several days at the keypunch, systematically changing the arithmetic
IFs to logical IFs. This decreased the number of statement labels to the extent
that we were able to trace flow of control for more than a few Jines. We then
had to repunch half of the IFs a second time and shuffle cards so that there was
at least some resemblance to if ... then ... else and the bodies of loops were
contained within those loops (the program's authors having evidently been

t We eventually learned enough to implement a significant extension of metamorphosis
grammars: 'floating' terminals (Bien, et al., 1980).

:j: Always a battle when switching from one 'standard' FORTRAN implementation to
another. The new generations of programmers don't know what they are missing.

§ All this reflects on our amateurism at that time. We later took pains to expand in-line the
main resolution driver, which was called once from the main program: this could save us
five microseconds on a several-minute run.

,i This is my opportunity to follow well-established tradition by alluding scathingly to a
leading manufacturer's contributions to our field.

68 PAST AND PRESENT [Sec. 1)

unaware of the notion of programming style). It was only then that we could
start to read the program and begin to understand it.

What we saw was very illuminating - for instance, it was a joy to discover
the principle of structure-sharing! Sometimes it was also irritating. To give an
example, the Prefix Polish representation of trees made it rather costly to
traverse a term (for example, to access the kth argument), but was probably
justified by being more tightly-packed. Yet the representation of print-names
was incredibly wasteful: the strings were not only not packed several characters
per word (which would be acceptable to ease portability), but were stored as
normal representations of terms which were 'dotted' lists of their characters. The
resultant saving in the complexity of term composition/decomposition (UNIV)
was certainly not worth the price, but representation details were not localised
in small parts of the program, so there was simply no way to change such things.

The control state representation was more amendable to modification. The
activation frame stack had a simple structure - variables being kept in a separate
area - but the frames were intermingled with the trail 1ist (whose entries were
easy to recognise by being made negative). As a result, it was probably thought
too inefficient to pop off unnecessary frames with each execution of the slash
(now often referred to as 'the cut'). The opportunities for space-saving accorded
by invocation of the 'ancestor slash' (which could cut off all choice-points
between its invoker and a far-removed ancestor) were to difficult to resist,
however. The side-effect was that at least one of the programs we had from
Marseille was found to be specially contorted so that a simple slash could be
replaced by a procedure call and an ancestor slash - this was as if Pascal's
while ... do and if ... then ... else were implemented so inefficiently that in
practice one had to rely on the goto! We found it very easy to add space-saving
actions to the slash - and to determinate procedure exit as well - with no
appreciable effect on execution speed.

The other changes we made - program tracing and so on -were too numerous
to mention. There was one exotic modification: addition of the evaluable
predicate NETT ('nettoyer'). As the interpreter had no tail-recursion optimi
sation - we had also not thought of it at the time, otherwise we would have
easily implemented itt - the main reading loop created an activation record
with each clause it processed. NETT was a version of the state-saving SAUVE
routine: it simply destroyed the invocation stack, leaving only a frame or two at
the bottom; a most effective optimisation, which was, alas, too difficult to apply
to the useless representation of the Bootstrapper cluttering up the dictionary
table.

All in all, the Marseille interpreter exuded a strong air of a very sophisti
cated and robust general design filled in and implemented by inexpert pro
grammers. The design's robustness is evidenced by the extensiveness of our
modifications: at one time or another we had rewritten well over 50% of the
code, increasing its size by 25% with comments and routines of our own, and the
program lived!*

t Easily, because In Warren's terminology (Warren, 1977) all variables were global, anyway.
:j: In view of the system's size, this may not sound like a feat worth mentioning, but remember

the primitive conditions and our own lack of expertise.

[Sec. 1 I THE 'MARSEILLE INTERPRETER' - A PERSONAL PERSPECTIVE 69

After we finished with the ODRA, a Pascal interpreter was written for the
CYBER {Kluzniak, 1981). This used no bootstrapping and a different program
representation,§ but otherwise -- on a conceptual level - the general design of
Marseille Prolog. It was very successful: reading time was about 20 clauses per
second and small programs could be run in 54 000 (octal) words - the turn-around
for our Prolog class was not worse than for FORTRAN. We used it quite exten
sively until the telephone line to the CYBER was cut off in December I 981.

Of course, the general design's sophistication may seem suspect in view of
later developments. Yet, to our mind, they are but variations on the basic theme.
True, backtracking was somewhat less rapid, as an activation record did not
contain a pointer to the last choice-point - now the usual practice - but the
record occupied less space. The importance of departing from the normal practice
of programming language implementation by adopting the convention that a
clause's variable instance frame be associated with the activation of its caller
rather than activations of its body's literals - in spite of the indirect access -
can only be appreciated by those who tried to do it differently. Implementation
of Prolog in Prolog is now widely accepted as the method of choice, and if it
causes difficulties in traditional (now: obsolete) computing environments, the
principled decision to adopt it at the time merits the louder applause. The single
important departure from that basic design - the introduction of local/global
variable classification t - would probably not have been possible as a first step.
It is difficult to imagine someone devising such subtlety without first being
shown that the question is of some practical importance: that Prolog really
works.

ACKNOWLEDGEMENT
The pronoun 'we' stands for the author and Stanislaw Szpakowicz, who also
read the paper carefully, suggested improvements to its style and refreshed my
failing memory in several instances. Janusz S. Bieri was instrumental in gaining
a foothold for Prolog both in our environment and in our minds. Other people
involved at various stages of the efforts are: Z. Jurkiewicz, J. H. Komorowski,
M. l.aziriski, S. Matwin and A. Szal-as. I am grateful to all of them.

REFERENCES
Battani, G. and Meloni, H., {1973), Interpreteur du langage de programmation

Prolog, Groupe d'lntelligence Artificielle, Marseille-Luminy.
Bien, J. S. and Laus-Ma.czyriska, K. and Szpakowicz, S., (l 980),Parsingfree word

order languages in Prolog, in: COLING 80, proc. of the 8th International
Conference on Computational Linguistics, Tokyo, pp. 346-349.

§ Direct tree representation, but tightly-packed print-names.
t Non-.1tructure-sharing of Bruynooghe (1982) is competitive in this respect, though based on

more conservative notions. While willing to concede that it may be best for present-day
small computers, we consider it unprincipled. Its success seems to rest heavily on smaller
variable-instance representation (cf. Mel, 1982): that a constant factor of 2 in memory
size can be significant in terms of what is and what is not implementable seems a short
lived coincidence.

70 PAST AND PRESENT [Sec. 1)

Bruynooghe, M., (1982), The memory management of Prolog implementations,
in: Clark, K., et al. (1982).

Clark, K., Tarnlund, S.-A., (eds.), (1982), Logic Programming, Academic Press,
London.

Kluiniak, F., (1981), 1/UW-Prolog, Logic Programming Newsletter 1.
Le Gloan, (1974), Implantation de PROLOG, Internal report, Universite de

Montreal.
Mellish, C. S., (1982), An alternative to structure sharing in the implementation

of a Prolog interpreter, in: Clark, K., et al. (1982).
Roussel, P., (1975), Prolog Manuel de reference et d'utilisation, Groupe d'lntelli

gence Artificielle, Marseille-Luminy.
Warren, D. H. D., (1977), Implementing Prolog - compiling predicate logic

programs, D.A. I. Research Report Nos. 39 and 40, University of Edinburgh.

