
PROGRAMMING LAW IN LOGIC

Allen Hustler

Department of Computer Science
University of Waterloo

Waterloo, Ontario, Canada
N2L 3Gl

Research Report CS-82-13

May 1982

PROGRAMMING LAW IN LOGIC

Allen Hustler

Department of Computer Science
University of Waterloo

ABSTRACT

This paper briefly reviews recent work on
automating the legal research process; investi
gates the relationship between law and logic, and
the work done by legal academics in this area; and
describes a prototype interactive logic-based
legal consultant written in the PROLOG language.

March, 1982

PROGRAMMING LAW IN LOGIC

Allen Hustler

Department of Computer Science
University of Waterloo

1. INTRODUCTION

This paper describes a representation of a portion of
the law of battery in the computer language PROLOG. The
representation is capable of performing basic legal analysis
on simple sets of facts. Through a brief look at some of the
work which has been done on the application of computers to
law, and on the use of logic as a programming language, a
case is made for the naturalness of PROLOG as a language for
conducting artificial intelligence research in the field of
law.

2. COMPUTERS AND LAW ----- -- --
Attempts to apply the power of computers to the task of

legal research began more than twenty years ago. The amount
of stored information required for research in even very
limited areas of the law is so large, however, that signifi
cant practical results awaited the development of fast,
random-access secondary storage devices. By 1973, Mead Data
Central, Inc. had begun commercial operation of its LEXIS
system in the United States [Rubin], and the QUIC/LAW pro
ject at Queen's University in Canada had conducted field
trials [Lawford]. Both of these systems, along with the
WESTLAW service in the U.S. and similar systems in Europe,
stored the texts of thousands of statutes and appelate court
decisions, either in whole or as summaries, and then
attempted to retrieve information relevant to a lawyer's
needs by searching the entire database for specific words or
sets of words which the lawyer hoped all relevant documents
would contain (and irrelevant documents would not contain).

The premises underlying this approach to legal research
have been enumerated by Fabien (1979), a participant in a
project of this type:

"-it is preferable for the lawyer to do his
research on the original statutory and case-law
texts, not amended or altered by an intermediary
whose intervention might insert an element of dis
tortion between the lawyer and the sources of law;

- 2 -

-a text in a data base, containing words identical
to those used by the lawyer in formulating his
question, is relevant and should be reported1
-a lawyer gener~lly has a thorough knowledge of
the legislative and judicial language, and it is
thus easier for him to identify the words used by
the law-makers and judges, in order to produce
those texts that are relevant to solving his prob
lem. On the other hand, it is more difficult for
him to find the categories into which an unknown
intermediary has filed the same information in a
classical research instrument." [Fabien, p.15]

It could be remarked that these premises don't fit very
well with the actual practice of most lawyers, who rely
almost entirely on headnotes, summaries, and indexes when
researching a new area of law. For whatever reasons, the
success of text-based retrieval systems over the past eight
years has been mixed at best. Lawyers have turned out to be
unwilling to master the bag of tricks necessary to construct
the boolean logic queries needed to carry out their searches
efficiently. More importantly, it has become well-recognized
that even experienced database searchers too often fail to
recover cases that any law student would easily find on his
own, yet frequently retrieve large numbers of irrelevant
cases. This seems to be an intrinsic failing of retrieval
systems based only on words rather than on the information
contained in the words.

Lower level problems have also hindered the effective
ness of some of these systems. In Canada, for example,
QUIC/LAW has never been able to accumulate a large enough
body of case law in its database because its sponsors were
unable to negotiate agreements with several of the law pub
lishing companies that own the copyright to published Cana
dian court decisions and summaries [Fabien, p.10].

Computer scientists have made a number of efforts to
design systems that would overcome or avoid the problems of
the commercial databases. Their goal has been to find a way
to store and retrieve the knowledge contained in the primary
legal materials, rather than Just their words.

The TAXMAN project [McCarty, 1977] is an ongoing
attempt to model corporate tax law. The system is imple
mented in a frame-based language called AIMDS, but has
apparently not yet reached the stage of practical large
scale applications.

Hafner (1978) designed and implemented a system for the
knowledge-based retrieval of legal documents in the area of
negotiable instruments law. She developed a simple semantic
network to represent knowledge about legal concepts and

- 3 -

relationships, and stored an analysis of each case and each
section of a statute in terms of this semantic network.
Phrasing queries in terms of her model enables the system to
go some way towards matching the meaning of a query with the
semantic content of the documents in the database.

The LEGOL project at the London School of Economics
[Stamper, 1980] originated as an attempt to develop improved
tools for computer systems specification. The participants
soon realized, however, that the task of expressing in gen
eral yet sufficiently clear and unambiguous language how a
procedure ought to be performed is exactly the problem faced
by legal draftsmen. They therefore decided to use legisla
tion as their experimental material, and set out to develop
a language for writing statutes that would enable the law to
be directly interpreted by a computer. This project has
achieved some success in the area of routine administrative
legislation.

Meldman (1975, 1977) designed a prototype system for
computer-aided legal analysis in the area of the law of
assault and battery. His representation is based to some
extent on semantic networks, and uses a relation-based for
malism that is difficult to penetrate. The formalism also
suffers from the very great disadvantage that it was never
fully implemented. Nonetheless, Meldman's work has provided
a valuable starting point for the work described in the
present paper.

Brief excerpts from published reports on each of the
above projects can be found in McCarty (1981).

In spite of the rather meagre results achieved so far
by both commercial and research efforts, the interest of the
legal community in using computers in their practices has
increased dramatically [see e.g. Bigelow, 19811. Many law
offices now rely on word processors for document prepara
tion, and a project funded by the American Bar Foundation
has attempted to apply computers more directly to the draft
ing of such common legal documents as contracts and wills.

This endeavour, described in Sprowl (1979), involved
the development of a special "ABF" language which takes as
its input a "normalized" statute or regulation or legal
form, and produces a series of questions which the computer
will ask a lawyer or legal technician who is attempting to
draft a document that complies with the given law 1 s require
ments. The answers to these questions are then used by the
computer to construct a finished document which meets those
requirements. The following example illustrates many of the
features of this approach:

"Suppose that a probate library includes a form
petition for probate that contains the following

- 4 -

passage:

[IF the estate may be probated without court
appearance INSERT]
Petitioner requests permission to •••

[ENDIF]

Assume that the relevant statute permits probate
without court appearance only when all the benefi
ciaries and children are at least 21 years old,
are of sound mind, and have consented to an out
of-court settlement: the named executor is an in
state resident; and the decedent has in the will
waived security on the executor's bond. A normal
ized version of this statute, drafted in the
language ABF, might appear as follows:

IFF
the decedent's children and the named benefi
ciaries
ARE of sound mind and over 20 years old
AND
the named executor IS a resident of the state of
Illinois
AND the decedent HAS waived security on the
executor's bond in the will
AND the decedent's children and the named benefi
ciaries HAVE consented to an out-of-court settle
ment
THEN the estate may be probated without court
appearance.

If the above statute is stored in the probate form
library along with the petition, and if the
library name of this statute is "the estate may be
probated without court appearance", the processor
will not ask whether the estate may be probated
without court appearance. Instead, the processor
will ask one or more of the following questions,
all of which are derived from the language of the
normalized statute:

Are the decedent 1 s children and the named benefi
ciaries of sound mind and over 20 years old?
Is the named executor a resident of the state of
Illinois?
Has the decedent waived security on the executor's
bond in the will?
Have the decedent's children and the named benefi
ciaries consented to an out-of-court settlement?

After the attorney
these questions,

or legal assistant answers
the processor automatically

- 5 -

alters the form document being drafted in accor
dance with whether the estate is to be probated
with or without court appearance." [Sprowl, p.45)

This technique, even though its achievements seem unre
markable in terms of the ultimate goal of an intelligent
legal information retrieval system, nevertheless incor
porates several important ideas which others may have
missed.

Significantly, this is a system that will work properly
from the very first day it is installed in a law office. Its
initial use may be limited to some small task like drafting
certain kinds of contracts or producing the forms necessary
to incorporate a small business, but it will perform these
tasks quickly and properly. As the number of forms and sta
tutes available in the system gradually increases, so does
the system's ability to take on other jobs. The lawyer is
never faced, as he may be with text-based systems, with a
computer program that promises to assist him with a broad
spectrum of legal research which it can never satisfactorily
deliver.

The ABF approach is important, as well, because it
directs the performance of legal research towards the pur
~ of that research. For many of the systems designed to
aate, and certainly for the text-based systems, the purpose
of a request for legal information is both unknown and
irrelevant. Yet a lawyer will conduct his own research
efforts differently depending on the ultimate use he intends
to make of the research. The representation of legal
knowledge in the ABF system is designed specifically for the
purpose of preparing legal forms, where the law has a
manageable number of possible twists and turns (as evidenced
by the fact that such forms are almost invariably completed
by secretaries and clerks, not by lawyers).

Most importantly, the ABF approach recognizes that the
meaning of law can be stored in a computer only if the
language of law can be simplified and regularized. As long
as law is written in language that is impossible for an
intelligent human to understand, the chances of a machine
operated procedure ever being able to understand it are
practically zero. Any serious effort to represent legal
rules in a computer must, therefore, be combined with a
serious effort to simplify the language of the legal rules.
Such an effort would certainly be worthwhile in its own
right: the benefit to society of a successful method of mak
ing law more easily understandable for humans would likely
outweigh the benefits of successful computerization of legal
research.

One approach to the simplification of legal language,

- 6 -

and ultimately to its representation in a computer system,
is the rigorous application of the rules of logic.

3. LAW AND LOGIC -- -- ---
In the third century B.C., the Stoic Chrysippus defined

law as "right reason, proceeding from supreme Zeus, command
ing what should be done and forbidding what should not be
done 11 [Radin]. "Right reason", a translation of 11orthos
logos", is logic. From that early beginning, by way of
Cicero in Rome and Coke and Blackstone in England, the con
cepts of logic and law have been inextricably intertwined in
our culture.

The development of
has been described in
divinely revealed basic
on jurisprudence, for
development of Islamic
p.32].

many of the world's legal systems
terms of the application of logic to
principles. Pound's major treatise
instance, includes an example of the
law in exactly this way [Pound,

The history of the common law in England and America
can in fact be seen, in one view, as the working out over
centuries of the inherent tension between the concept of law
as pure logic and the parallel need for the law to exhibit
flexibility and llumanity at the possible expense of reason
and impartiality. As long as law is the divinely inspired
word of a king or feudal lord, the universal desire in
society is for a set of strict rules that will be applied
impartially to all. And when, centuries later, the law has
become a body of strictly applied rules which now form a
nightmarish trap for anyone unlucky enough to be in need of
justice, the great hope is for 3 new court of equity that
will temper cold reason with individual fair treatment. The
search for the proper balance between the requirements of
logic and the need for fairness continues, in this view, to
be at the heart of legal argument up to the present day.

Within the past sixty-five years, logic having long ago
been put in its proper place as merely one of the components
of legal decision-making, the idea began to surface that
perhaps the modern, mathematical science of logic as formu
lated by Leibniz, Boole, De Morgan and others could be used
as a tool in drafting and understanding legal rules.
Between 1916 and 1955, several isolated articles on the pos
sible uses of mathematical logic in legal drafting appeared
in the law journals (e.g. Cohen(l916); Keyser{l929); Berke
ley(l937); Oppenheim(1944); and Stoljar(l953)).

About twenty-five years ago this activity grew more
intense, with the apprearance of influential papers by
Tamello(l956) and Allen(l957}. The thrust of these articles
was that the intelligent use of the rigorously defined con
nectives of symbolic logic (11 and 11

, "or", "not", "if

- 7 -

then 11
) would simplify the language of legislation and legal

documents, remove ambiguities, and ensure that the intended
meaning of a rule was conveyed to whoever had to understand
or apply it. Allen, paraphrasing Tamello, summarized their
perception of the importance of symbolic logic to law in the
following observations. Note the effort he makes to allay
lawyers' fears that logic is once again being promoted over
fairness and experience:

11 (l)Lo9ic in general can be used as a universal
form of reference, an all-embracing theory of
scientific research to coordinate all of the dif
ferent disciplines.

(2)Symbolic logic is more exact
comprehensive than traditional logic.

and more

(3)Even though traditional logic is more easily
communicated in our present state of learning
because of its greater familiarity, nevertheless
symbolic logic is capable of more effective
rational penetration.

{4)The increasing complexity of legal analysis,
just as in any other disipline, produces a greater
need for the simplification and precision of sym
bolic logic; and the tendency away from tradi
tional logic is already visible in philosophy,
natural sciences and theoretical economy.

(5)Symbolic logic is not a new conception of law;
it is not a source of experience, but only an
intellectual tool to master human experience.

(6)Symboli~ logic employed in legal thinking will
not deny the role of intuition; there is room in
legal thinking for both analytical and intuitive
approaches.

{?)Exponents of symbolic juristic logic are not
seeking to promote legal dogmatism by means ofa
'super logic'; on the contrary, they suggest that
it provides a logical means of penetration into
the sociological substratum of law, and excels
traditional logic in doing so." [Allen(l957),
p.878]

Allen continued his work in this area, and his version
of 11 normalized" legal rules became the one used twenty years
later by the ABF computer program. In a 1963 paper, Allen
and Caldwell anticipated by about ten years the development
of logic as a programming language, and recognized its
importance to automated legal analysis. A. brief excerpt from

- 8 -

that paper illustrates some of these points:

"[Consider, f]or example, the two sentences:
Sl All persons who are lawyers draft some wills.
and
S2 If a person is a lawyer, then he drafts some
wills.
{B]oth express the same idea. If Sl were used in a

written document, we could substitute S2 for Sl
without changing the ideas expressed by the docu
ment. This is no startling revelation, but drafts
men who are aware of the need for rigorously con
sistent terminology may not be sensitive to a
corresponding necessity for standarized syntax. In
many contexts, one way of expressing an idea may
be more useful than an alternative way; that is,
there may be a distinct advantage in adopting one
of several altogether permissible ways as a stand
ardized, or 'normalized', way of expressing a
given idea.

If we wish to express the idea which both Sl and
S2 express, which of these two statements should
we choose to express that idea? The answer
depends, of course, upon our objectives --- the
goals we have in mind when we consider the advan
tages and disadvantages of one or another mode of
expression. If one of our goals is to make the
fullest use of computers for purposes of informa
tion retrieval (as contrasted with document
retrieval), it will be advantageous to express
universal ideas by statements like S2 rather than
by statements like Sl. When ideas are expressed by
statements like S2, much of the logical deduction
involved in analyzing that statement and its rela
tion to other statements can be done by means of a
computer or some other automatic processing dev
ice." [Allen & Caldwell,p.234]

While Allen clearly recognized and later to some extent
exploited logic as a tool for automating legal information
retrieval, the trend in recent papers has been towards the
use of logic as a tool for simplifying and standardizing
legal drafting in order to make the meaning of legal docu
ments more clear to humans. Edwards and Barber (1975), for
example, translate a section of a statue into the form

IF A THEN B
where A consists of a number of sentences joined by AND, OR
and NOT, and Bis a single sentence. They then employ a com
puter program to derive a minimal "sum of products" expres
sion which is logically equivalent to A, and propose using
this as the preferred normalized form of the original legal
rule.

- 9 -

De Bessonet (1980) discusses the use of logic and nor
malized statutes as a tool for drafting and maintaining the
codified law peculiar (in the United States) to the French
inspired civil law system of Louisiana, but he also clearly
acknowledges its potential importance for the development of
automated systems.

This brief survey demonstrates that there already
exists a considerable body of work concerned with the appli
cation of logic to law. The importance of logic in simpli
fying and clarifying statements of legal rules for both
human and computer interpretation has been recognized, and
work has begun on the development of 11 normal forms". What
has been missing up to now is a straightforward method of
implementing these ideas in a computer program.

4. LOGIC AND COMPUTERS -----
The use of logic as a programming language was

developed in the early 1970's, and is described in Kowalski
(1974a, 1974b), and in much greater detail in Kowalski's
book "Logic for Problem Solving" (1979). The original PROLOG
language, based on the clausal form of logic, and a inter
preter for it were created at the University of Marseille by
Colmerauer and his colleagues (1973). Several PROLOG inter
preters have subsequently appeared, including one written by
Grant Roberts at the University of Waterloo (1977). PROLOG
has developed a sizeable following in Europe as a language
for artificial intelligence research, though it has not as
yet attracted a large number of users in North America.

For a full discussion of logic programming, Kowalski's
book is necessary reading. I can only attempt to give the
reader enough of the flavour of the PROLOG language to
enable him to read the PROLOG version of the law of battery
which concludes this paper.

A PROLOG program consists essentially of a set of
clauses of the form:

Al <- BL
A2 <- B2.

l
An <- Bn.

where"<-" is read "if". Each Ai is a "relation" of the form
Ri(al,a2, ••• ,ak), where Riis a constant, the ai may be con
stants or variables, and k>=0 {if k=0, then Ri=Ai). Each Bi
consists of zero or more such relations, connected by the
boolean operators"&" (and) or"!" (or). If Bi is empty,
then it is customary not to write the arrow, and the state
ment "Ai." is called an "unconditional assertion".

- 10 -

So, for example, consider the set of logical interrela
tionships defined by the following sentences: (l)John is a
man. {2)Jim is a man. (3)John loves Mary. (4)Jim loves Mary.
(5)Ellen loves any man who loves Mary. The content of these
sentences can be written in PROLOG as follows (where, by
convention, names of variables start with an upper-case
letter, and names of constants start with a lower-case
letter):

(1) man (john).
(2) man(jim)
(3) loves (john,mary).
(4) loves(jim,mary).
(5) loves(ellen,X) <- man(X) & loves(X,mary).

A PROLOG program is 11 executed" when the interpreter
receives a request to prove a statement. Such a request is
called a "query" or "goal statement". For example, suppose
we pose the query "loves(ellen,jim)?". The PROLOG inter
preter will attempt to prove this goal statement using only
the clauses in its database. It works by searching for the
relation 11 loves" on the left side of any clause. If it can
not find such a statement, the query fails. If it does find
such a statement, it attempts to match "ellen 11 and "jim"
with the corresponding positions in that relation in the
database. This is impossible in clause (3), so the inter
preter tries clause (4). Again it fails, so clause (5) is
tried. Finally a match is made, with "ellen" matching
"ellen" and 11 jim" matching the variable "X". Having made a
match, the interpreter now replaces its current goal with
everything on the right side of clause (5), carrying through
its subsitution of 11 jim 11 for "x11

•

So the goal· is now "man (j im) & loves (j im,mary) ?". Both
of these clauses must be proved if the original query is to
succeed. But since "man(jim}" is an exact match of clause
(2), it will be proved. And since "loves(jim,mary)" is an
exact match of clause (4), it will also be proved. Neither
of these clauses has anything on the right side, so the ori
ginal proof is complete.

The interpreter stops when it has found the first proof
of the query, or when it has tried every possible proof and
found they all fail. It searches the database strictly in
the order in which clauses appear, and constructs its proofs
in a strict depth-first, left-to-right order.

For improved readability, PROLOG allows relation names
to be declared "infix", 11prefix", or "suffix 11

• If we declare
"loves" to be inf ix, and replace "man" by II is a man 11

declared suffix, the database can be rewritten as:

(1) john is_a_man.
(2) jim is a man.
(3) john loves mary.
(4) jim loves mary.

- 11 -

(5) ellen loves X <- X is_a_man & X loves mary.

This is not very different from our original English
language representation, yet its meaning can be used
directly by the PROLOG interpreter to answer queries. we
will store legal information in the computer in a way very
similar to this.

PROLOG programs have been written for a number of
artificial intelligence applications, including a planning
system (Warren,1974): natural language understanding {Col
merauer, 1978): and chess playing (Van Emden, 1981). Because
of the close relationship between logic and law, it seems
natural to investigate whether a PROLOG representation of
law might be possible and useful.

5. LAW IN PROLOG ---
An ideal representation of law in a computer program

would have to meet at least the following requirements:

1.

2.

3.

4.

s.

It would be written in language as close as possible to
the original statutes and cases which it represents.
Any changes would be in the direction of simplifying
the language and removing ambiguities, and would be as
useful to a human reader as to the computer.

The computer representation of law would be directly
readable by lawyers and even by laymen. Lawyers would
be able to decide for themselves whether any given part
of it was an accurate representation.

law in the program would be com-
from and independent of

The representation of
pletely separate
implementation- and
program, such as

application-based segments of the
the style and content of input and

output.

The program would be capable of performing at least one
legal task in a manner at least as proficient as a
trained human doing the same job.

The representation could be improved or altered a lit
tle bit at a time, without requiring a major rewriting
of the program. Changes to the law caused by judicial
decisions in individual cases could normally be
effected by limited changes to the computer representa
tion, and ideally only by the addition of material
corresponding to each single case.

- 12 -

The PROLOG program presented in this paper, though
brief and incomplete, attempts to meet the first three of
these goals, and to demonstrate some potential for meeting
the fourth. Its ability to eventually meet the fifth goal is
at present not proved.

Certain areas of law seem to be better candidates than
others for such a computer representation. In particular,
fields of law which have been "codified" criminal law
being a well-known example seem to be among the most
likely targets. The approach taken here to converting such
a codified statute into a computer program is as follows:

(a) Restate each section of the statute in a "normal form"
based on logical connectives.

(b) Translate the restated sections of law into PROLOG
clauses.

(c) Add a basic "dictionary 11 of PROLOG clauses defining
terms used by but not defined in the statute.

(d) Supply an interface that enables users to query the
program by posing a fact situation and asking for the
potential legal consequences. As the PROLOG inter
preter tries to construct a proof that, for example,
someone has committed a crime, provide an interface
that lets it ask the user for any missing facts neces
sary to complete the proof.

Specifically, following Meldman (1975, 1977}, we have
taken Presser's Handbook of the Law of Torts as our source
of "codified" law, and attempted to translate normalized
excerpts from and paraphrases of Presser's version of the
law of battery into PROLOG clauses. Our goal has been to
write a computer program which, starting from a fact situa
tion supplied by the user and working from PROLOG transla
tions of legal rules, will supply logical chains of argument
to support or refute the contention that one person has com
mitted battery against another.

For example, we want to be able to enter a fact situa
tion like

John throws a rock.
The rock hits Bob.

and then ask the computer program

Did John commit battery against Bob?

Whether it is a lawyer or a computer program that is

- 13 -

attempting to answer this question, the starting point must
be the codified law. Presser's basic definition of "bat
tery" is as follows:

another for unpermitted,
with his person, caused by
in such contacts, or the
directed at the other or a

"One is liable to
unprivileged contacts
acts intended to result
apprehension of them,
third person."[p.43]

This definition is typical of many legal rules in that
it defines one concept, "battery", in terms of a number of
necessary events such as "contact", "intention", and
"apprehension". In criminal law, the list of statutory
requirements which must all be proved before the defendant
can be convicted of a crime is called "the elements of the
offence". But the reduction of one concept into a number of
specific requirements, all of which must be proved if the
original is to be considered proved, also forms the essence
of a PROLOG program. The PROLOG translation of a number of
pieces of Presser's law of battery can be seen in the Appen
dix.

Given that it seems possible to express legal rules as
PROLOG clauses, how can we then hope to link up these legal
abstractions with the real world of thoughts, actions, and
events? In other words, how do we connect our representa
tion of the law with a representation of the facts?

Case law and precedent give us one basic connection.
If a judge in some ancient case held that hitting another
person with a rock constitutes the contact required for bat
tery, that case'can provide a necessary link between the law
of battery and the fact situation we used as an example.

In the absence of directly applicable precedent, argu
ments about the meaning of phrases like "contact with his
person" will form the basis of the ultimate legal decision.
Such arguments seek to connect the "normal" or "dictionary"
meaning of a phrase with any special meaning it picks up
from the context of the legal rule and any decided cases.
As Meldman did in his 1975 thesis, we provide in our com
puter program a very simple "dictionary" of relevant terms
like "contact", linking them to included concepts such as
"hit", "strike", and "touch". This taxonomy seems to be
adequate for the simple fact situations we have used to
demonstrate the program, but a better implementation of the
concept of "dictionary" will certainly be a necessity in the
future.

Unfortunately, it is not enough for a human or computer
program merely to be able to draw inferences from the facts
as they are presented. Any law student learns, the first

- 14 -

time he interviews a client, that the essence of lawyering
is the ability to ask good questions. The client does not
know the law, so he does not know which facts are relevant:
it is never good enough merely to listen to the client's
story and then give a legal opinion, because the client will
almost certainly leave out legally relevant pieces of infor
mation.

The PROLOG representation of law must also be able to
ask good questions if it is ever to be useful. In its
present state, the program makes every effort to prove a
needed assertion from the facts it already has; but if it
reaches a dead end, it asks the user whether the missing
connection is true or not. If the missing assertion is a
factual one, the program is functioning as a lawyer would in
eliciting facts from his client. But the missing connection
may be at a higher level, such as 11does a mother worrying
about her sleeping child being hit by a rock constitute the
'apprehension' required for battery?". In this case, by
asking such a question, the program is indicating to the
lawyer the potentially contentious and important aspects of
his case. The ability to ask such questions, and their qual
ity, may be the most important test of the value of a legal
consultant, human or automated.

It is also clear that there is a very strong connection
between analyzing legal rules and understanding natural
language. Our computer program is attempting to answer a
legal question by drawing logical inferences from a simple
set of facts within a rather complex legal framework. This
is somewhat similar to constraint-driven systems for natural
language understanding, such as those described in Wilks &
Charniak (1976),. Winston (1977, Chapt.3), and Schank & Ries
beck (1981).

The program's representation of fact sentences is
simpler and less powerful than those described in the just
mentioned works, and this is perhaps its weakest element.
What strength it does have comes from following some sugges
tions in Kowalski (1979, Chapt. 2), to the effect that
binary relations are the most useful method of representing
sentences in PROLOG. This led to representing a sentence
such as "Bob throws a rock." in the following PROLOG
clauses, where "has actor" and "has_object" are binary rela
tions declared 11 infTx 11

:

throwing (t).
t has actor bob.
t has=object rock.

In other words, each event is given a name (e.g. 11 t 11
), and

the components of the event are forced into slots like
11object 11 and "actor 11

•

- 15 -

Such a representation is useful for relatively simple
sentences, and serves the purpose here of enabling simple
fact situations to be entered into the program in a way that
is easy to understand, yet allows the basic reasoning abili
ties of the program to be demonstrated. I am certain, how
ever, that a great deal of work must be done in this area if
the program is ever to be used for more than demonstrations.

While the present implementation of a legal consultant
in PROLOG is less than ideal in many respects, it does seem
to demonstrate some potential for a logic-based computer
representation of law. Much work remains to be done.

REFERENCES

Layman E. Allen, "Symbolic Logic: A Razor Edge Tool For
Drafting and Interpreting Legal Documents", Yale Law Journal
66 (1957), p.833.

Layman E. Allen & M.E. Caldwell, "Modern Logic and Judicial
Decision Making: A Sketch of One View 11

, in Jurimetrics, ed.
Hans W. Baade, 1963, p.213.

Robert Bigelow, ed., "Computers and Law: An Introductory
Handbook", American Bar Association, Chicago, 1981.

B. Buchanan and T. Headrick, "Some Speculation About Artifi
cial Intelligence and Legal Reasoning", Stanford Law Review
23 (1970), p.40.

Morris R. Cohen, "The Place of Logic in the Law 11
, Harvard

Law Review 29 (1916), p.622.

A. Colmerauer, H. Kanoui, R. Pasero, P. Roussel, 11Un Systeme
de Communication Homme-Machine en Francais 11

, Universite
d'Aix Marseille, Luminy, France; Rapport, Groupe Intelli
gence Artificielle.

A. Colmerauer, 11An Interesting Natural Language Subset",
Toulouse, Proc. Workshop on Logic and Data Bases.

Cary DeBessonett, 11A Proposal for Developing the Structural
Science of Codification", Journal of Computers, Technology
and Law 8 (1980), p.47.

T.H. Edwards and J.P.Barber, "A Computer Method for Legal
Drafting Using Propositional Logic", Texas Law Review 53
(1975), p.965.

Claude Fabien, "Computerized Legal Research in Canada",
Canadian Law Information Council, Working Paper #3, Ottawa,
Canada, 1979.

C.D. Hafner, 11An Information Retrieval System
Computer Model of Legal Knowledge", Ph.D.
University of Michigan, Ann Arbor, 1978.

Based on a
Thesis, The

Cassius J. Keyser, "On the Study of Legal Science", Yale Law
Journal 38 {1929), p.413.

Robert Kowalski, 11 Logic for Problem Solving", Dept. of Com
putational Logic, University of Edinburgh, Memo No. 75
(1974).

Robert Kowalski, 11 Predicate Logic as a Programming
Language", in Proceedings of the IFIP 74, North Holland Pub
lishing Co., Amsterdam, 1974, p.569.

Robert Kowalski, "Logic for Problem Solving", Elsvier North
Holland, Amsterdam, 1979.

Hugh Lawford, 11 QUIC/LAW: Project of Queen's University", in
National Conference on Automated Law Research, Georgia In
stitute of Technology, 1972, p.67.

L. Thorne McCarty, "The Application of Artificial Intelli
gence to Law: A Survey of Six Current Projects 11

, Laboratory
for Computer Science Research, Rutgers University, New
Brunswick, NJ., 1981.

L.Thorne McCarty, "Reflections on TAXMAN: An Experiment in
Artificial Intelligence and Legal Reasoning", Harvard Law
Review 90 (1977), p.837.

Jeffrey A. Meldman, "A Preliminary Study in Computer-Aided
Legal Analysis 11

, Ph.D. thesis, Massachusetts Institute of
Technology, Cambridge, MA., 1975.

J.A. Meldman, "A Structural Model for Computer-Aided Legal
Analysis 11

, Rutgers Journal of Computers and Law 6 (1977),
p.27.

Felix E. Oppenheim, "Outlines of a Logical Analysis of Law 11
,

Philosophy of Science 11 (1944), p.142.

Roscoe Pound, "Jurisprudence", v.l, west Publishing Co., St.
Paul, MN, 1959.

William L. Prosser, 11Handbook of the Law of Torts, 4th ed.",
West Publishing Co., St. Paul, MN., 1971.

M. Radin, "Law as Logic and Experience", Yale University
Press, 1971.

Grant M. Roberts, "An Implementation of PROLOG", M.Math
thesis, University of Waterloo, 1977.

Jerome s. Rubin, "LEXIS: An Automated Research System", in
National Conference on Automated Law Research, Georgia In
stitute of Technology, 1972.

R. Schank and C. Riesbeck, "Inside Computer Understanding",
Lawrence Erlbaum Associates, Hillsdale, NJ, 1981.

J.A. Sprowl, "Automating the Legal Reasoning Process: A Com
puter that Uses Regulations and Statutes to Draft Legal Do
cuments", American Bar Foundation Journal (1979), p.l.

R. Stamper, "LEGOL: Modelling Legal Rules by Computer", in
Computer Science and Law: An Advanced Course, ed. B. Ni
blett, Cambridge University Press, 1980, p.45.

Samuel J. Stoljar, "The Logical Status of a Legal Princi
ple", University of Chicago Law Review 20 (1953), p.181.

I. Tamello, "Sketch for a Symbolic Juristic Logic", Journal
of Legal Education 8 (1956), p.277.

M.H. Van Emden, "Chess Endgame Advice", 1980.

D.H.D. Warren, "WARPLAN: A System for Generating Plans",
Dept. of Artificial Intelligence, University of Edinburgh,
DCL Memo 76.

D.A. Waterman and M. Peterson, "Rule-Based Models of Legal
Expertise", Proceedings of the First Annual National Confer
ence on Artificial Intelligence, Stanford University,
(1980), p.272.

Yorick Wilks and Eugene Charniak, "Computational Semantics",
North Holland, New York, 1976.

Patrick H. Winston, "Artificial Intelligence", Addison
Wesley, 1977.

FILE: BATTERY PRINT A 04/23/82 20:34:46 UNIVERSITY OF WATERLOO PAGE 001

/***
EATTERY

One is liable to another fer unpermitted, unprivil~ged
contacts with his p~rson, caused by acts intended to
result in such contacts, or the apprehension of them,
directed at the other or a third person.

<Prosser, p .. 43>

***/
X is_liable_to Y if X cammits_battery_against Y.

X cornmits_battery_against Y
if person (X) &

p<?.rson (Y) &
battery_event_occurs_wich(X,Y,Concact,Act,Causation) &

hattery_intention_occurs_with(X,Y,Contact,Act,Causation) &
print('I HAVE CONCLUDED THAT•.x.

4 COM:1ITS BATTERY AGAINST'.Y.nil).

hattery_event_occurs_with(X,Y,Contact,Act,Causation)
if contact(Ccntact) &

Contact has_object Ysperson &
Ysp~rson is_tbe_p~rson_of Y &
Contact occurs &

event(Act) &
Act has actor X &
not{Act-has_direction X) &
Act occurs &

causation(Causation) 6
Causation has_actor Act &
causation has_ob;ect Contact &
Causation occurs &
not(permitted(Contact,Y,X)) &
not (privileqed (Act,Contact., Y, X)) &

print('I HAVE CONCLUDED THAT THE ACT'.Act.'AND CONTACT'.
Contact.•~ONSTITUTE THE ACTS REQUIBED FCR BATTERY BY'.
X. 'AGAINST'. Y. nil} •

battery_intention_occurs_with(X,Y,Contact,Act,Causation)
if int~ntion(In~ention) &

Intention has actor X &
((In tent ion has_ object Con tact)
I (apprehension(Apprehension) &

Apprehension has_object Contact &
Intention has_object Apprehension)) &

intention(Intention) occurs &
print('I HAVE CONCLUDED THAT'.X.

'HA~ THE INTENTICN REQUIRED FOR BATTEBY1 .nil) 6

FILE: BATTERY PRINT A 04/23/82 20:34:46 UNIVERSITY OF WATERLOO PAGE 002

/***
Permission includes actual consent. But a manifestation
of consent will be equally effective. In addition, the
defendant is sometimes at liberty to infer consent as
a matter of usage or custom.

<Prosser pp.117-120 (paraphrase)>
**/

permitted(Act,Flaintiff,Defendant)
if consent (C) &

C has_actor Plaintiff &
C has_obiect Act &
((consent(Ct occurs)
I (man if esta t ion (M) &

M has actor Plaintiff 6
M has:ob;ect C &
M has direction Defendant &
manifestation(M) occurs)

(in fere nee (I) &
I has_actor Defendant &
I has obiect C &
ir.ference{I) occurs &
I is_permitted_by_custom_or_usag~)).

/***
Contact with the plaintiff is privileged if
it results from an act of self-defence.

<Prosser, p.125>
***/

privileqed(Act,Contact,Plaintiff,Defendant)
if contact(Contact) 6

Con~act has_object X &
X is_the_person_of Plaintiff &
event (Act) &
Act has actor Defendant &
causati~n(Causa~ion) &
Causation has actor Act &
causation has-obiect Contact &
causation(Causation} occurs &
self defence(SD} &
SD h~s actor Defendant &
SD has:object Plaintiff &
Act has_purpose SD.

/**
INTENT

PilE: BATTERY PRINT A 04/23/82 20:34:46 UNIVERSITY OF WATERLOO PAGE 003

A person intends a result when he acts for the
purpose of accomplishinq it# or believes that
the resul~ is substantially certain to follow
from his ac": ..

<Prosser, p .. 40>
***/

intention{!} occurs
if I has actor X &

I has:oh;ect Result &
event. (Act) &
Act has_actor X &
((Act has_pu~pose Result &

event(Act.l occurs}
I (event(Act) occurs &

causation (C) &
Chas actor Act &
C has:ob;ect Result &
belief{B) &
B has actor X &
O has:object C &
B occurs)).

FILE: DICT PRINT A 04/23/82 20:38:50 UNIVERSITY CF WATERLOO PAGE 001

/**
This is the basic dictionary. It
is really only a hierarchy of words;
so, for example, it tells us that brick
and weapon are both physical objects,
but it doesn't tell us how to distinguish
between them.

**/

thinq (X) if object (X) -
thing (X) if event {X).
t.hinq (X) if value (X).

object (X) if physical_object(X).
obi ect (X) if pers en (X) •
ob;ect(X} if leqal_ob;ect(X).

event (X) if movement(X).
evsn t (X} if CC n ta Ct (X) •
event (X) if cornmunication(X).
even'+: (X) if mental _ev~nt(X).
event(X) if leqal_event (X).

value (X) if size(X) ..
value(X) if colour(X).
value (X) if health (X).

physical_object{X) if brick{X).
physical_object(X) if weapon(X).
physical_object (X) if firearm (X).

person (X) if man (X) •
person {X) if woman (X).
person (X) if child (X) •
person (X) if boy (X} •
person (X) if girl (X).

legal_ob;ect (X) if ;udgement (X).
leqal_object (X) if court(X).

moveme!lt (X) if throwinq (X).
movement(X) if runninq(X).

contact(X) if touch(X).
cont a ct (X) if hit (X) •
contact(X) if Rtrike(X}.

communication{X) if tAlling(X).
communication(X) if saying(X).
communication(X} if manifestinq(X).

mental_event(X) if learninq(X).

FILE: DICT PRINT A 04/23/82 20:38:50 UNIVERSITY OF WATERLOO PAGE 002

mental event U) if belief(X).
mental=~vEnt{X) if apprehension(X).

leqal_event(X) if consent(X).
leqal_event(X) if sellinq(X).
leqa 1 event (X) if c.i vi laction (X) •

leqal-event(X) if causation(X).
leqal=event(X) if ba~tery(X).
1 e q a l e v e n t. (X) if as sa u 1 t (X) ..
leqal:event{X) if intention(X) ..
legal_event(X) if inference(X).
legal_event (X} if self_defence (X) ..
legal_event(X) if arrest(X).

s i ze (X) i f short (X) ..
size(X) if tall(X).
size(X) if lonq(Y.).

colour (X) if red (X).
colour(X) if yellcw (X).
colour (X) if blue (X).

heal th (X) if healthy (X).
health (X) if ill(X).

X is_the_person_of x. /* This definition of is the person of
is required by Prosser•s definition
of battery. */

FILE: DEFNS PRINT A 04/23/82 20:42:29 UNIVERSITY OF WATERLOO PAGE 001

/***
This is a PFOLCG interpreter written in PROLOG.
Its purpose is to create an interpreter that will ask
the user as a last resort whether a missing step
in a proof is true.

**/

prOV9(X) <- X.

prove (not X) <- prove (X) & / & f ai 1.
prove {not X}.

prove {X & Y) <- / fr prove (X} & prove {Y).

prove(X Y) <- / & (prove (X} I prove {Y)) •

prove (X) <- (X if Y) & prove{Y).

(not Y.) ? <- X? f, I & fail.
(not X)?.

(X & Y)? <- I & (X?) & (Y?) •

(X Y)? <- I & { (X?) I (Y?)) •

X? <- prove(X).

X? <- prov€(X) & I & fail.

X? <- (X if Y) & (Y ?) •

X? <- (X if Y) & I & fail.

X? <- ask (X).

ask(X) <- print{'IS THE FOLLOWING TRUE?•.nil) &
write (' 1) &
write (X) &
write(• ') &
read(Answer) &
I &
((Answer equals yes) l

(Answer isnotequalto no & X equals Answer)) &
addax(X).

X equals X.
X isnotequalto X <- / & fail.
X isnotequalto Y.

print (nil) <- newlin~.
print (X. Y) <- writ8ch (X) & wri tech (1 •) & print (Y).

F!LE: OPS PRINT A 04/23/82 20:44:39 UNIVERSITY OF WATERLOO PAGE 001

/***
These are the operator definitions for the
program. They set the mode and tinding level
of each operator.

**/

op(if,rl,15).
op(?,suffix,33).

op (not, prefix, 4 9) •
op(equals,r1,so,.
op{is_not_equal_to,~1,50).
op(occurs,suffix,50).

op(is_liable_to,rl,50).
op(commits_battery_aqainst,rl,50).
op(is_the_person_of,rl,50).
op(is_permitted_by_custom_or_usaqe,suffix,50).

op (has_actor,rl,50).
op(has_oh;ect,rl,50).
cp(has_direction,rl,50).
op{has_purpose,rl,50).

PILE: FACTS PRINT A 04/23/82 20:45:47 UNIVERSITY CF WATERLOO PAGE 001

/****************•***
A FAC'I SITUATION

***/

throwing (e1) ..
e1 has actor al.
e1 has:object rock.
e1 occurs.

hit(e2) ..
e2 has_actor rock.
€2 has_ob;ect bob.
e2 occurs.

person{al).
person (bob).
physical_object(rock).

FILE: APPENDIX APPENDIX A 04/23/82 20:19:23 UNIVERSITY OF WATERLOO PAGE 001

WELCOME TO WATERLCO PROLOG 1.1
load(LAW)<-
loadlaw.
loadlaw<-
al isliableto bob?.
IS THE FOLLOWING TRUE?

e1 hasdirection al.

no.
IS THE FOLLOWING TRUE?

causation(*1).

causation(cause1).
IS THE FOLLOWING TRUE?

cause1 hasactor e1.

yes.
IS THE FOLLOWING TRUE?

cause1 hasobject e2.

yes.
IS THE FOLLOWING TRUE?

cause1 occurs.

yes.
IS THE FCLLOWING TRUE?

consent(*1) ..

consent(con1~.
IS THE FOLLOWING TRUE?

con1 hasactor bob.

yes.
IS THE FOLLOWING TRUE?

con1 hasobject e2.

yes.
IS THE FOLLOWING !PUE?

COMMENTARY

The query.
PROLOG interpreter asks user.

User's respcnse.

Was there a causation invclved?

Bid (al throws a rock) cause
(the rock hits bob)?

Was a cons€nt involved?

Did bob consent to (the rock hits bob)?
consent(con1) occurs.

no.
IS THE FOLLOwING TEUE?

manifestation(*1) 4

Has a manifestation involved?

FILE: APPENDIX APPENDIX A 04/23/82 20:19:23 UNIVERSITY OF WATERLOO PAGE 002

no.
IS THE FOLLOWING TRUE?

inference (*1).

inference(inf1).
IS THE FOLLOWING !RUE?

inf1 hasactor al.

yes.
IS THE FOLLO~ING TRUE? .
inf1 hasobj~ct con1.

yes.
IS THE FOLLOwING ~RUE?

inference(inf1) occurs.

no.
IS THE FOLLOWING TRUE?

causation(cause1} occurs.

yes ..
IS THE FOLLOWING TRUE?

selfdefencA(*1).

no.

Was an inference involved?

Did al infer that bob consents to
(the rock hits bob)?

Was self-defencE involvBd?

I HAVE CONCLUDED THk! THE ACT e1 AND CCNTACT e2
CONSTITUTE THE ACTS REQUIREL FOR BATTERY BY al AGAINST bob

IS THE FOLLOWING TPUE?

intent.ion (*1).

intention {int1).
IS THE FOLLOwING !RUE?

int1 hasactor al.

yes.
IS THE FOLLOWING TRUE? .
int1 hasobject e2.

yes.
IS THE FOLLOWING TRUE?

e1 haspurpose e2.

Was an intention involved?

A way of proving intention:
Did (al throws a rock) have the
purpose {the rock hits bah)?

PILE: APPENDIX APPENDIX A 04/23/82 20:19:23 UNIVERSITY CF WATERLOO PAGE 003

yes.
IS THE FOLLOWING TROE?

event (e1) occurs.

yas.
I HAVE CONCLUDED THAT al HAD THZ INTENTICN REQUIRED
FOP BATTERY.
I HAVE CONCLUDED THAT al CCMMITS BATTERY AGAINST bob
al isliableto bob?<-

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

