
1L\TlRLOO PROLO<l USEY' 8 '-tANUAL

Version 1.4

1 Introduction 2

2 The Lan~uage 3

2.1 Jutroduction -------------------------------3
2.2 Fle~entary Syn~ax --------------------------4
2.J PROLO~ Execution and Backtracking ----------6
2.4 The 5yntax in Detail -----------------------18
2.5 Usin4 Infl11ite Terms -----------------------25

,J Built-in Pre,tic:ates 27

3.1 Introduction -------------------------------27 3.2 Structur~l Predic~tes ----------------------28 ~.3 Input/Output Predicates --------------------30
3.4 Arithmetic Predicates ----------------------33
3.5 Databa~e Predicates ------------------------34
3.6 Fxecutlon Control Pradicates ---------------41
3.7 Miscellaneous Predicates -------------------47

Appendix A: ~unning PROLOG under VM/CMS ------------49

Appeudix R: The PROLOG EXEC file -------------------51

Appendix C: Using PROLOG with uppercase input ------55

- 1 -

.l Intry4u£tiw.!.

Research in 4rti1icial intelli~ence has spurred
tne developmeat or nu~eroas progr4~~in~ ldnguages
better oriented to expressing and solving the problems
whlch 4rise in this field. One of these languages is
PROLOG. The acronym PROLOG i9 derived 1rora PROgramming
in LOGic and e,nph,Lsizes the rteriva.tion of the language
Lro~ predicate Logic. The development of PROLOG
repres•nts th~ 1iscovery o1 a means for using
resolution logic as a practical pro~ra~filiog language
for problem solvln~.

The semantics uf PWOLOG are essentially those of
Lirst order resolution Logic. Consequently the language
is both well Je~iued and compact in de£inition. Mure
important though, the language is a power£ul tool ~or
problem solving, as· has bean demonstrated in the
development o1 several proble• solving systems, among
them J. >.?e ome try the ore ill prover, natural language
understanding systems and a program for automatic plan
generatlo11.

The Waterloo implementation o± PROL0G for the
VM/CMS system ls intended to provide an e£ficient and
1riendly online interpreter which can be used for
educational purposes and progra~ develop~ent.

This manual provides ~n elementary introduction to
the PROLOG language and the Waterloo PROLOG
implementation. ,Section ~l of the ,manua.i describes the
l~nguage. Those re~d.rs who are 1amiliar with a dialect
9t' the PROLOG tattgu~'ge ma.y wis.h to skip subsections 2.1

.1:0 2.3 and rea.d su.,bsection '}..4 :IM Syntax .in, hull•
Subsection 2.5 U•ip.g Ipf j.nlt§ ~~ descrioes a spec ia.l r, !
.t:aci1ity that· 1•, pr,~vitt,ed i I.or manipulating in.finite
ter•s• Sectiot1 3 is' ti/i-_ef.~-f~n.ce sfctlon' wbich d'e1,1~~s
.in detail .the l>uil"tin functions (et';ecti~elf j a
subroutirfe libra,-y) in~ovided in the implementJtfon.

A,· .. ,:~.:·p.~t.·l· d. '.~'x., . . .,.·./·'·d·". ;;.r'···.i .. b .. 'es·.' hb'ff·.·' TO ... •U ... ~.e P.tt()LOO··· _ un.de.,r·;····v.W¥· '!-· .. · :}.:.. •. '1-pp/endfii .. B .. ·· ./-"r~crj_b,s. ;he <:oqtent.s o,f ·· 't?e/ sfa,,d~.rl,
l!JXf!C1,/t'io,n :fi/1.e· 1,&isea to invoke PRQLOG. A,ppl'n/'1~· /~/
,-·~pfaliis/hf.Jw to Jn,~~k':,, PRO.LOG. for use Ylth #'eF:mJnft:/.
tha;t do~ nc;t .sui:,por t lower ca!!lei l..et t~riei• r ~- -.:; -

·-.
- l -

/

OJ\}._

2•1 Intro.Jue t ion x
The semantics o-f PROLOG·8 essentially that of

resolution lo~lc. Rut resolution logic itsel~ does not
constitute a programming language. Statements in
resolution logic are descriptive. They have the form "x
is true"• In conventional pro~ramming languages the
statemdnts are imperative. They have the form «perform
action x"• To derive a progrdmming language from
resolution logic we add imperative statements of the
.tor,1t "1,rove tha.t x: is true"• A statement of this .:form
is called a goal statement. A PROLOG progra~ consists
o1 a set o1 goal •tatements an~ a set of axioms. The
axio~s are descriptive, constituting a list 0£ 1acts.
Each goal statement is i~pera.tive and re~uests that
axioms be used In an a.tteApt to prove i certain fact.

To the passive language of axioms we have added
the notion of goals to yield a language of action, a
programming language. This language now allows us to
request the const.ruction of a. proof. But how wilt the
attempt a~ a pr~of proceed? The prooL procedure for
PROLOQ uses resolution in a simple depth first, left to
right ~earch strategy. This proof procedure ls not
complete. Because oL the depth first strate~y,a prool
may not be 1oun~ even 11 one exists in the search
space. The proot procedure may follow an in~inite
bru.nch ln the search tree and never examine another
branch which could yield a satis±actory prooz. However.
11 the proof procedure termlnates~we know that it has
1ound the right answer. If it terminates with succesA
then a proof exists. 11 it ter~inates with failure then
no proo1 exists in the Aearch space.

This simple search strategy may seem
unsatisfactory since it yields an incomplete proof
procedure, but lt has nu~erous advantages over more
general strategies. It can be implemented in d. manner
which is more ef£iclent in the use 0£ space than
current breadth ±lrst search iethods. The simplicity of
the PROLOG search strate~y ~akes it easy for the
program•er to understand and control the search. The
strict ordering of the search permits the use of built
in predicates causing side e£fects(e.g. read and write)
with the knowledge that the si~e eL1ects will occur in
a prescribed order. The prospect of output being

- 3 -

created in random order does uot seem very pleasant?
Thus, it is evident that the simple search strategy
possesses several desirable -~hr~cteristics~ It is alse
~ti, ~g'-,_.t..b.a--,~s-k-i-on-:..:.: .. v-r"· -~;~~ . .t,,C_!J.j'.J;t~--~•-·•···

s ta tin~ that .. ,i.:f._ a.ny.one wan ts a gene rat ·th~'6rein prove·r
then P.10LOG i!!I a good language in which -t.o ... µr.ograin J.t&, ..•

Th.is sect ion introduces the syntax of PROLOG

axioms and go4ls. A brief desciption of the basic
syntax ls provided in preparation for the description
of Pi{OLOG execution ln 2•.l ~!:c.Y:..1.1.2.n. .!aYli! fh!&.K!.c.acking.
A detailed description of all the syntax rules ls then
provided l n J.•:! Ih~ §.~n.1.!!.~ .in Q.~:tail•

The ha.sic S)1 nta.ctic unit in PROLOG is the ,ig,.c,m. A
-1.!U:a may he:

(a) a constant - a lower case letter 1:ollowed by
any sequence a£ letters and digits, or any
sequence of digits. A constant may be an
integer or an ato~. e.g. a8c and x2~

(b) a variable - an asterisk or Elf\ upper case
letter1 followed bys sequence of letters and
digits. e.g.* and Al.

(c) a skeleton - a skeleton name and a List o:f one
or ,nore argwnent terau;;;. The arAu .. nent terms
are separated by comaas and the List is
enclos~d in parentheses. e.g. f(x2,Y) and
g(B, a. , i (3)) •

<integer>
<'.variable>
(skeleton>
(iu:finlte term>
{ <ter,n>)

<atom>::= (Identifier>

HNF notation:

<skeleton>::= <1aenti1ier> (<ar~u~ent list))
<term> <ln~ix operator> <term>
<prefix operator> <term>

<term> <sur£ix operator>
<infix operator>::= (identifier>
(prefix operator>::= (identifier>

- -t -

<suf£ix operator>::= (identifier>
<argument lfs~>::= <term> j

<argument list>, <term>
<v~riable>::= * I <~?per case Letter>

<variable> <tetter>
<variable> <digit)

<infinite term>::= #N <digit•> N#

<digit>::= <ctigit> l
<ctigit•> <digit>

The ruVes, invo,tv in,(01:1.~ra tors ,/;fescr i~ an,_.,t:'1 t":J"naJ,{ve
notation' 1'qr .akel,,eto.o4,, to .. be described~ in··'2_.~ Ih~
~!lt.;1' ·.ln 4 '.Q!Uii l .,c'. .

PROLOG o1.xloms and r.;O"-ls a.re co,nposed of l_it~il•
A ,literal 1nay he a l:iKeleton or a. const.::s.nt. A predis,a,te
is the name a~sociated with a Literal. 11 the literal
is a skeleton then the predicate is the skeleton name.
Otherwise it is the constant associated with the
Literal.

The .,-en era l .for!ll o.t a PR•.)!.OG ax io1Ll_s:
<axiom head><- <~xiom body> • .,...--

The implication arrow, "(-" is read "i~ implied by"•
The ~xiom head ls~ single literal. The axiom body is a
conJunctlou 0£ literals. A conjunction of literals may
be a single literal or two or more literals separated
by the "and" symbol(~). An example of an axiom is:

a <- h i;; c • --The head is a, the body is b ~ c and the axiom is read
"a is implied by b and c" or ''To prove a~-first prove b_,..-)

then prove c"• An axiom ~ay have a null body, in which
case the implication is omitteJ and the axio~ has the
.form:

<axiom head) .,:.,,.-•
An axiom with a null body is called a
example ls:

unit axiom.

i'(m).

This i::s read nff;) is true"•
The general form of a PROLOG goal is:

<- (goal conjunction>.
The goal conjunction is a single literal
conjunction of literals. Examples of gaals dre:

<-p.
<-q(r) .; .f •

or

An

a

Goal statements may be
axioms of the form:

regarded as abbreviations for

"goal"<- (goal conjunction>

- ;:>

where ''goal"
PROLOG theorem

From the

is a distinguished ~iteral which the
prover attempts to "prove"•
Uber point of view the PROLOG system

accepts axioms an~ goals from the terainal. Axioms
which are entered are recorded for later use in proofs.
An attempt is ~ade to prove a 4oal stateaeot as soon as
it is entered. In the following discussion, ~oals will
always be presented in the form<- <~oal conjunction>.
When ... ctual ly using the PRO LOG systen1 a.n_a~ eviated
goal._ fortua t is ava l lable. Refer to ,iU,Q.fill,dix .f ! usTng
.t.RQ!.QQ !.!I!.d~!:. YM.l.£.M..§ .fo.r -further ex;)lanation before
using PROLOG at a terminal.

In u.xioms and terstts all Vd.ria.bles ure assumed to
be universally rruanti.fiede That is, a.n <1.xio,u con'taining
variables is valid ~or any "v£lues" which the variables
may take on. A ver~al version of the dXiom ".father(X 1 Y)
<- son(Y,X)" is ttFor all values o1 X and Y, Xis the
father oft ir Y is the son of X"• The substituting of
"values" for vsriaoles will be discussed further in the
next sectjon.

PWOLOG execution is started by a goal sta~ement. A
goal state.ment is a request for a proof. The execution
o1 a PROLOG program is essentially the actions of an
elementary theorem prover attempting a proof.

A serieH of diagrams may be used to describe the
progress or a PLOLOG proof. Each diagra~, called an
.i.i1W.li£tli.2u. :t.r.~~, describes the state of the proof' at
a given point in time. An iaolication tree consists of
one or more l~belled nodes. At the top of the diagram
is a node labelled "goal" ■ Each u£ the other nodes is
labelled with a literal and ls Joined to a parent node
immmedia.tely above it. A node is called the &.h.i.1.g of
its parent. A nocte may be in any one of three states:

(l) open! No attemat has been ~ade to prove the
literal labelling the node. The node has no
chi l -l!'en ■

(2) closed: The Literal labelling the node has
been proven usin.?; a w1it axiom -for the
lite!'al. The node is marked with an "X" to
distinguish it £roman open node. A closed
node has no children ■

(J) active: The literal la bell in~ the node is

- 6 -

being proven (or has been proven) using a
non-unit axloru. The nude is labelled with the
literal of the dxiom head. The children of
the noae are labelled with the literals of
the axiom body. The le£t-to-right order 0£
the ti~erals in the axiom body is preserved
in the diagram. The orl~inal goal statement
is treated as an axiom 0£ the 1orm "goal<
<goal conjunction>"• Thus the children o1 the
goal node are labelled with the literals of
the goal conjunction.

Consider the following axioms and goal:
a<-b::;c.
be

c<-d:.
de
<-a.

The proof of this goal
implication tree:

goal

a
I \

I \
lJ C

X

d

X

ls represented by the following

This ls a £Qme1eted .!.m2.!.ication .tt.tl since ~ll nodes
are either active or closed. The nodes labelled b and d
have been closed usin4 axioms "b•" and "d•"
respectively. The node labelled a is active and has
been proven using ~he axiom "a(-b&c•"•

Consider the following example of axioms and a
goal statement:

a<-1>S-c.
b(-dS f.

b<-eGi'.
c<-g.
e<-.g .•
'f<-h.
g.

- 7 -

The initial state of the proof ls represented as:

goat

a

The first axiom .tor a ls se lee ted, na,ae ly a<-b~c
givln~:

goal

a
I \

b C

The prover always >¥orks in a der,th-:flrst le:ft-to-right
£ashlon. Consequently the next literal to be proven is
b. The axiom b(-d~£ is selected:

,'!oal

a

I \
b C

I \
d f

The prover then attempts to prove de 8ut there are no
axioms ror d so the prover must backtrack. This
involves backing up the proo1 and trying other
atterna.tlves. A G.!12.i.~~ point in the proof' is a point
where an axiom was chosen to prove a literal and more
a..xioms remain to be tried. ~~lu..11g involves
backln~ up the proof to the ~ost recent choice point
and makinu a dl£±erent choice. The order in which the
axioms are chosen is not arbitrary. Axioms are always
selected in the order in which they appear in the
input. In this example b(-d~L will always be examined
be.fore b<-e~t.

The most recent choice point in the current proo~
ls the point where the axiom b(-d~f was selected. The
proo1 is backe~ up to this point and the other axiom•
b<-e&1, is selected. The proo£ continues as shown
below:

- 8 -

=>

=>

=>

=>

e

e

g

e

g

X

e

g

X

goat

a
I \

b

I \
f

C

,g;oa L

I
a

I \
.0

I \
f

a
I \

h
I \

f

C

C

goal

a
I \

b C

I \
f

I
h

- 9 -

;-;.toal..

·=> I
a

I \
u C

I \
e f

I
g h
X X

[.l;Oat

=>
a

I \
h C

I ' ' e f g

I
g h
..,__ ll

goa 1.

=>
a

I \
ll C

I ' \.
e f g

l X
g h
X X

The final proof is represented by a completed
implication tree. Of course, if the proof fails then
the Implication trae ls never completed. rt, in this
exa•ple, we omit the axiom c<-g then the proo1 attempt
will 1ait. Alternatively, if we include another axiom
d<-d then the prover will attempt to construct an
11 ln:finite branch" of the Luplication tree:

- 10 -

d

d

l
d

I
·• ..

Eventuall..y a.n error will occur when the i,roo"f stack

overf'lows •
In the previous examples, none o1 the predicates

have ~rguments. For example, the predicate term
father(john,fred) has two arguments, john and Ired, and
can be used to represent the s~atement "John is ~he
father of fredn. PHOLOG axioms can also contain
variables. For example the axiom so~X,Y)<-~atheMY,X)
represents the statement "xis the son o~ y 1£ y is the
..tather of x"• Variables i.n J!kOL{X; are assume,! to be
universally quantified. That is,an axiom containing a
variable is considered to be "true" £or any "values"
the variable may taKe. We will ~ake the idea of a
variable "taking a val..ue" more precise. In any axiom or
goal we can peri.orm a fill,UStitutism• A ~U!J2st.l.1.Y..t.i..wl.
replaces all occurrences of a. variable by a. term. The
replacing ter~ may be a constant (such as abc or 32), a
sKeleton(such as f(a) or g(X,Y)) or another variable.
For example, if we substitute a. for X in g(X,f(X)) then
the resulting te:r1n is g(a.,f(a)). If we substitute :f(Y)
for X in h(X,Y) then the result is h(f(Y),Y). When one
or ~ore substitutions are applied to a term (or axiom),
the resut"t is ca.l led an instru.\£!1 of the term (or
a.xio~). For example, son(fred,John}<-father(John,fred)
is an instance of son(X,Y)<-father(Y,X) produced by

substituting f.red for X il.nd John -for Y.
To illustrate substitution better, consider the

follow~xa~ple:
---- "son(X,Y)(-father(t,X).

father(John,fred).
father(John,george).
1:a.ther(a.l,oert).
f4ther(george,at).

We wish to solve
a. goal" we me.s.n
we can prove.

the goal 11 <-son(Z,John)"• By "solving
finding an instance of the goat which

In thi3 case we will prove

- 11 -

ttson(1red,John)"• The proof will be illustrated using
implication trees. The initial tree is:

p-oal

son(Z,johu)

Now we need to find an inst~nce of a.n axiom which we
ca.n use in the proo:f of son(Z.,John). The appropriate
instance is formed from son(X,Y)<-ta.ther(Y,X) by

substituting Z tor X and John for Y to give
son(Z,john)<-fa.ther(John,z). The tree now is:

goal

I
son(z., john)

I
.fa 1:her(John, 2)

.Note that we found substitutions that made the head oJ'
an axiom the same as the current subterm. The general
process o~ ~inding substitutions to make two terms the
same ls called Yn..J..Li.&A!..i.2.ll• Next we want to .find an
axiom whose head will unify with father(John,Z). The
£lrst axiom for father matches if we substitute ired
:for z. This gives the completed lmpllc~tion tree:

p:oal

J
son(:fred, John)

I
father(john, fred)

X

As a further example we wi~l attempt to solve the
goal <-~ather(John,X)&1ather(X 1 Y). The proof proceeds
as follows:

goal

I
I

I
I

I
fa.ther(John,X)

\
\

\
\

\
father(X,Y)

12 -

goal
I \

I \
I \

I \
I \

-father(John,Ired)
X

father(f.red, Y)

The ~ttempt to s~lve
since this term will

the sub5 oat -father(frerl, Y) fails

not unify with any o~ the axiom
heaJs. Backtracking occurs and the proof ls backed up
to the point where the f4tber(john,fred) axiom was
activated. This ~xiom
substitutions made when
seLec ted are "undone 0 •

point:

ls then deactivated and any
(or si nee) this axiom was

This restores the proo£ to the

I
I

I
I

I
tather(John,X)

\
\

\
\

\
father(x,Y)

The c1.xio,11 father{ john,geor~e) is about to be selected
for unification with father(John,XJ. This unification
succeeds piving:

goal..

I \
I \

I \
I \

I \
father(John,george) ~ather(george,Y)

X

The a:xloms
unl.ficatlon

for Lather are then selected
with father(george,Y). The

succeeds for the axiom 1'.athar(george,~l.),
completed impllcatlon tr~e:

13 -

in turn -for
unification

yielding the

goal
I \

I \
I \

I \
I \

xather{john,geurge) rather(george,al)
X X

To illustrate the operation of PROLOG further, the

:following examples demonstrate the manipulation 0£ more
compL.ex data structures. A set o:f eleo1ents { similar to
d LISP list) is represented by d term using a
constructor s and an end ma.rker nil.. For example, the
set with elements a,b and c is represented by
s{a,s(n,s(c,nil))) or as a diagram:

s
I \

d. s
I \

1> s

I \
C nil

The empty set ls represented by nil.
completely arbitrary and is chosen

This notation is
for this example

only.
A reasonable definition for the "element" relation

is:
element(x, s(x, Y)).

etement(X,s(Y,Zi)<-element(X,Z).
Verbally these a.xio:as ,night l>e stated as.
element of~ set if it is the first ele~ent
or 1£ it ls an e~ement of the set o~ elements
the £lrst element. 0 • The goal

<-element(c,s(a,s(b,s(c,s(d,nil)))))

ux ls an
1n the set
following

yields the ~allowing completed implication tree:

- 14 -

uoal.
I

e 1 e me n 1: (c , s (a I s (b , s (c , s (d, n i l)))))

l
ele~ent(c,s(b 1 s(c 7 s(d 1 nil)J))

I
element{c,s(c,s(d,nil)))

X

This syntax tor representing sets is clearly
cumbersome. ro simplify this, infix notation m4Y be
used(infix, prefix and suffix notation are explained
more .f.u l 1 y in l. • !l I.~ ~:!A.ls. .in .Q.iUAi.1.) • I f we use a
"•" as the constructor and use infix notation then we
can dunote the set with elements a,b and c by
a.b.c.nit. The axioms for element beco~e:

element(X,X.Y).
element(X,Y.Z)(-element(X,Z).

Suppose we W4nt an axiom to write all the elements
o1 a set. The following axioms will su~fice:

l is t { X • Y) <- w r i t e { X)S l i s t { Y) •
list(nil).

write is a built-in predicate which always
succeeds and has the side efLect o1 displaying its
argW11ent term on the terntlnal. The term is written
£ollowed by a period (the end ofter~ delimiter). The
goa.l statement <-llst(a..i>-cenil) succeeds. The

completed implication tree ls:

voal

lis+{ a..b.c.nil)
I \

I ' write(a)
X

t ist{ b.c .nil)
I \

I \
write(b j

X

list(c • .nil)
I \

I \
write(c)

X

list(nll)
X

The output on the terminal is:

a.

- 15 -

be
c.

The following axiom coul~ ~lso be used to list the
elements of a set on the terminal:

list(X.YJ<-write(X)~.
list{ x.y ><-list< Y >• f,,J.
listCniL).

The 5 oal <-list(a.b.c.nil)
the lndlrated set and then

wiLl list all eteTients of
succeed. The completed

implication tree is!

µ"oal

J
list(a.o.c .. nil..)

llst(c.nil)
j

1.ls-t<nil.)
X

Suppose we wish to define axioms for d predicate
notel(X,Y) which succeed~ if Xis not an element o~ Y.
Reasonable axioms £or this predicate might be:

notel(:>.,uil).
notel(X,Y.Z) <- noteq(X 7 Y}Snotel(X 1 Z).

Verbally ~hese axioms might be stated:
"X ls not dO element o~ the empty set"•
"Xis not an eleillent of the set consisting of

Y and so~e other elements if Xis
not equal to Y and X is not an
element 0£ the set 0£ other
elements"•

The axioms for no~eq reilaln to be defined. The axioms
are:

notdq(~,x)<- /~fail.
noteq(x, Y).

These axioms make use 0£ a special control feature, the
slash(/). ro illustrate this ~eature we trace the
attempt to prove the goal <-noteq(a,a). Initially, we
have:

- 16 -

"'oa L
l

no1:eq(.t. 1 a)

The first axiom ls selected giving:

uoal
I

noi"eq(a, a)

1 \
/ fa.i l

The stash predicate always succeeds. It is ased to
prevent certain .t.lternatives £rom being considered in
the proo~. In this case it prevents the second axiom
£or noteq from being considered. The implication tree
look.s like:

v-oal

J
noteq{ <L,a)

l \
/ i'ai l
X

The fail predicate has no a.xi OlilS and consequently it
i:a.ils. Since tl1e rema.ini ng axiom for noteq is not
considered, there are no remaining choice points and
the entire proof fails.

Conversely the goal <-noteq(a,b) succeeds. The
head ot the axiom noteq(X 1 X) <- I ~ fail cannot be
unified with noteq(a 1 b) so the next axiom is selected.
The unification succeeds and tne proof is complete.

The action of the slash predicate is described
more precisely: When the slash predicate is executed,
it removes a.1.l choice points in the proof_., from the
point when the axiom contalnln~ the slash was selected
to the current point in the proof.

The slash predicate is utilized tor two ~a.in
purposes. The first is to ~f~ect the meaning 0£ an
axiom, of~en to t~ndle ne•ation ~sin noteq above. The
second use is to i~prove the ex£iciency ot a program by

preventin¥ spuriLus choices fro~ being considered. For
example, consider the 1o1Lowing axiom used to test i1

17 -

two sets have one or more coamon elements:
intersect(A, H)<-element(x:, A) t; el. e,nen t(X, iJ).

If a call to the intersect predicate Bucceeds and then
backtracking returns to that point, then the element
axlo~s will cause other choices Lor X to be tried.
Normally the at teu1pt to :find a. di f-feren t com1non element
ls co•pletely unnecessary since it h•s already been
proven that A and H intersect. This extra search can be
eliminated by using the following axiom for intersect:

lntersect(A,H)<-etement(X,A) 6 element(X,B) & /.

A PROLOG program consists of a sequence of symbols
belonging to a symt>ol vocabulary. In this
implementation the EBCDIC character set is used. Any
one byte value is a valid symbol, even though it may
not have an explicit EBCDIC graphic c6de. These symbols
are divided into four groups as follows:

(a.) LU!.~r&?., - The upper and lowe.r case l et'ters
:from A to z.

(b) ll~ - The digl ts from O to 9.
(c).~Yn£.1.Y.sl.li2.n Symbols. - This group consists of

the 1.e1't and right p,a.rentheses, the {)~ ',,
comma, the apostrophe, the quote and the
end-0£-term symbol(the period).

(d) Th~ Und~~~2~~ - This symbol can be used in
constants and variable names.

(e) ~.llit~1 ~&l..l..§. - This group consists of all
sy~bols not in any of the four preceding
categories.

The fundamental syntactic construct in PROLOG ls
the term. As stated eu.rlier, a teri11 atd.Y be a va5:i~Le,
a constant or a skeleton. "- M,,Q,,,;.,Ji;{:r)

A variable is rep.resented by cs" var iaM•'.) n~ ~
VcW'i ble name k :at\\upper case letter ~lowed by, a . 1
sequence o.f l.etters~nd digits. Thus x, A1.B2C3, ~ ~Cl.131 ~
Abe are all variable~. In addition a single asterisk(*)
ls a variable o.f a special sort. ft is called an
anonymous variable and h.a,,; the special signi:ficance
that each occurrence is considered to represent a
distinct variable.

A copstant is a sequence or symoots enclosed in

- 18 -

apostrophes. The sequeuce represents the value o~ the
constant. Note that if the value contains an
apostrophe, then the apostrophe must be duplicated.
Examples of constants are:

____ __..;;, ' A BC'

~

I J 7+ A) f

I) f 9 • f

' f

The value of the third constant shown above consists of
the three sy•bols right parenthesis, apostrophe and
co~ma, in that order. The value o~ the last constant
consists of no symbols. The apostrophes enclosing a
constant are not always required. They may be omitted
if any oL the following conditions are satis1ied:

~ 1/ The value u1·the constant consists entirely 0%
symool~ which are letters ~ Q> digits ~
underscores~and the initial symbol ls not an
upper case letter.

/

2/ The value of the constant consists oi
symbol which is not a. punctuation syITTbol.

one

the 3/ Tt,e value o::f the constant consists of
single period symbol and the constant is not
rollowed by a blank•

4/ r-rhe value of the cons t.:1n t cons isti'> of up t<>-"'-....
eigh+ special ctiara.c"ters)and the.re ·1s an

---o'J)era tur dee lara t ion :for the va lt.1£'. l n the
data base. For a further explanation of
o µera tor d.ect.ar at ions, see J.• .§ ll.a.1ab51.s,~
Predl.&.~~ in conju.nc t ion with the ()f>j built
in precticate. Note that underscor~s-~re not

~ !Spec i a 1 syinbo ls•
Integers are constants whose values satis±y certain
criteria. A constan-t is an i.a.llger if and only if it
satisfies any of the following:

1/ Its value consists of one or more digits.

2/ Its value consists of the symbol "+n to l lowed
by one or more di4its.

3/ Its value consists of the symbol "-" followed
by one or more di~its.

Integers may be ~sed as
predic4tes which perform
integer arithm~tlc.

several built-in
the fundamental operations of

'

Two

19 -

,•_(\ •'·" ; .,f.
- .f ;i;/." -- ,_;

integer constants are

~qual(i.e. indistinguishable) if their values are the
same after any n+n symbols and Leading zeroes have been
dropped. Thus 001 1 1 +-uOOl I a.nd 1 are all equal
integers. Note that signed integerfi ~ust be enclosed in
apostrophe-s.
A constant which is not an integer 1s an atom. ab,
'AB(', •••and'' are all atoms. A sequence of symbols
which satlsLy the criteri~ for an a.to~ is called an
isiontiti.!t~•

A skeleton consists of an identifier and one or
more argument terms. Both predicates ~nd functions are
represented a3 sk~letons. A 3keleton has the following
:fo riaa.t !

<idevti~ier> (<argument List>)

The argument list consists of one or more
separated by commas. Examples of skeletons are:

:fact(1)
g(1, X, :f(1))
1 A/.) 1 (X,T.)

terms

Note that any of the argument terms of
ln turn he skeletons.

a. skeleton may

To permit a more convenient representation for
skeletons, identifiers Cdn be declared as in£ix, prefix
or suf.fix:. For example, i:f the iden1:l:iier likes is
declared as infix then the skeleton represented a.s
likes(a~b) can also be represented as a likes b.
Similarly 9 if the ictentif'ier I is declared as suffix
then 1(a) can be represented as al.

An identifier used as the skeleton identi£ier in
infix, preLix or su1£ix for~ ls called an op~rator.
The use o-j' operator notation ls provided in addition to
the basic notation for sKeletons which was first
described. The two forms may be mixed 1reely. For
example, it: likes is declared as infix 'then -f(a Likes
b 1 likes(c 9 d)) is a perfectly a.cceptabt.e 1'orm. A term
is represented_ iu £.il,ll.Qn.ica.l !.2.CJ!l when it is represented
without using 1 nf'i x, prefix, or su:f-f l x no tat ion.

,,,,~ In ony term, ·subteraas may he :r-.1.renthesized to
/ lndlcate 1:he term .;tructure. For exampl.e:

/· a+(b-c) is equivalent to +(a.,-(b, c))
(but (,.+b 1-c is equlva lent to -(+(a,b I, c).

lr_.;f_ - l
- 20 -

Any term or suht~r~ ~•Y be paren~hesized.
infix then ((a)) Likes (c likes(d)) is

l f likes is
a va.tid term

equivalen~ to likes(a,likes(c,d)).
An identl~ier can be declared as both prefix and

infix si~ultaneously but an identifier which is
declared as su1Lix can not be declared as infix or
prefix. An identifier is declared by adding an
opera tor d'eclara t ion axiouh , The foru,a t -for jlire ~

t.o. be &d,~ Hr. ,~,,,/,,. ?c;1 i •. ,,J , . ;,:: · n • .v

op(<identi±ier>,<type>,<priority>).

<iden t if ler> is the i dent i .tier to be <-tee tared.

<type) specifies the declaration type and may be
any o.f: pre:fix,

(priority> is a positive
equal to 1000.

su:ttix, tr, rl.
integer less than or

The declaration types 0£ su££ix and prefix have an
obvious interpretation. The types rl and lr are used
to declare operators as infix right-to-Left and left
to-right respectively. For example, if"•" is declared
a.s rl then

a.b.nil is equivalent to a.Cb.nit)
and to .(a.,.(b,nll))

I£"+" ls declared as tr then
a+b+c is equivalent to (a+b,+c

a. nd to +(+(a, b), c)

The priority speciLied in the declarations gives
the posl-tion of the decl.;1.ra.tions in a 1>riority
hierarchy. The lurger the numeric priority the
stronger the "binding" of the operator. The following
examplas illustrate the function 0£ the priority. For
these examples assume that the following ~eclaratlons
are in ef:fect:

Then:

op(,,prefix,40).
op(! t suf-fix, 70 >•
op{ • , r 1 , 5 0) •
op(+,tr,60).
op(-,lr,60).

,a! is equivalent to -.(as)
a+b-c.d+e.f is equivalent to ((a+b)-c).((~+e).f)

- 21 -

-a.+b! is equivalent to ~a+(b!))

The problem of resolving the
identifiers have equal priorities
declaration types has not yet been
instance if the decl..arat ions in et:tect

op(+, l r, 6)) •
op(-,rl,61).

then how is a•b-c to be interpreted?

case where two
out di1'ferent

discussed. For
are:

The rule :for resolving such conflicts is:

If the rightmost operator is declared rl and the
le~t~ost operator is pre1ix(or rlt then treat
the ri~htmost binding as the strongest.

Otherwise treat- the leftmost bind in~ as strongest.

The examp~e a+b-c is equivalent to (a+b,-c. This detail
is confusing, and it is recommended that the user not
declare operators with the same priorities and
dit:.ferent types and hence avoid the condition
completely. The above description ls included solely
for the sake of completeness.

The Jnitial state or the PROLOG system includes
several operator declarations, namely:

op(< - , rt , 10) •
op(<- , pref i x, 1 0) •
op(I t rl, 20) •
op(&,rl, 30).
op{ ,,prei'lx,40).
op(.,rt, 100).

Operator declarations c~n oe added
addin~ and deleting a.xio,lls for 1-he
described in~-~ Q~i~~~~ Pr§<.11£.A.~•

and deleted by

op predicate as

An Input term must be deli,aited by an §nd-o.t=llr.m
£.b~.i!u:.• Tt1e period is u.,;;;ed. To dist iuguish between
the use of the period as ~n operator and its use as the
end of term character, the following rules are used. ~

period that is not enclosed in apostrophes, double
quotes or comment delimiters ls treated as an end of
term delimiter i~:

(a) It is followed lm~ediately by one or more

- 22 -

--

blanks or
(b) it is the last character oL an input line. (By

line we me~n either an input line from
the terminal or an input record 1rom a
file).

Blanks may be freely used in the input term,
subject to the :following conditions:

,-

-.,,.

(a) Planks may not be used internal to an unquoted
icientif'ier or constant (e.g. ab ls

,· ---.~.---···dlfferen-t :from ab since a.bis a single
·lden~iLler and a b represents two
ldentirer~, namely a rollowed by b).

(b) ~lanks may be used in a quoted constant or
..c.'.-- lden-ti.fier but they are included in the

value o1 the constant(e.g. 'AH' ls not
< the same constant as 1 .\8 1) •

(c) One or wore blanks ~ust be used to separate
the -fol lowing:
(l) two quoted identifiers or

constants(e.g. 1 A11 B' represents a
constant with value A1 R whereas
• A 1 1 8 1 represents two constants
with values A and B respectively).

(2) two unquoted identi±lers or
-constants where neither consists
Aolely of special characters(e.g.
a; is equivalent to a; but al2 is

-- not equivalent to a. 12).
(d) Hlanks must not be used after a period except

where ~he period is an end-of-term
delimiter.

Whenever one or more blanKs may he used, a comment may
be inserted. A £.2.!Wll~n.:1 has the form:

/*<comment characters>*/

<comment charact~rs> may be any sequence o~ characters
not lucludlng an asterisk followed immediately by a
slash. Note that ~his format for a com~ent implies
that if/ is declared as a prefix or in£ix operator and
ls used 1ollowed oy ~ variable then a ~L~nk must appear
between the / and the * o_f the variable. To helt> detect
errors caused by an improperly clu~ed comment a warning
message iF issued 11 a I* ls encountered in a co•ment.

Axiom and goal statements are special cases of
terms• They are read and parsed using the operator

- 23 -

declarations.. fhus the axiom
been entered d.S <-L1,&{b 1 c)).
term of the form:

a<-b&c could

<-((goal conjunction>).

An ~2.m 1 s a term of the .form:

or
<-((head>,<goal conjunction>).
<head>.

<head> can be an atom or a skeleton.

e. &• a.
a(1, X)
'B:•(::~q

<goal conJunctiou> c•n have the form
<goal literal>

o.r the form
S(<goal Literal>,<goal conjunction>)

also have
is a

(goal literal> cun ne an atom,skeleton or a variable.
A variable goal literal ls called a ~eta variable and
is described in J_.~ liaecution Q..Q.n.,1.rot ~r..stctig_g,tes .•

A 11.s.!. is formed with the

£..2llilJ:Ytl2£ n.n and the end-of-tlst lllsl.U~.C. nil. For
example the list with ele~ents a, n and c ls
represented as a.n.c.nil or in canonical form as
.(.,.(b,.(c 1 nil))). 'The e,npty list is represented as
nil. A ~uing is a list of chJ.racters, or more
precisely, a list of constants each with a single
character value. An abbreviated ±ormat is p~ovided to
represent strln~s. The format is:

"<characters>"
For example:

"ahc" is equivalent to a.b.c.nil.
"()" is equivalent to 1 (1 • 1)•.ntl.

An empty list may ~ldo be specified:
"" is equivalent to nil.

"ote that "ab" ls equivalent to .(a, ■ lb,nil))
the period is declared as lnfix right-to-left.

- 24 -

only i.f

After you have become familiar with ?RIJLOG, you
may ask what happens when i ~MOLOG progrd~ attempts a
uni1ication such as f(X} with x. One possiole approach
would be to have the unification fail, rather than
construct a 1 loop 1 • It turns out that allowing this
sort o1 loop provides a use~ul capability for
manipulating 1 1n±inite 1 ter~s. The term resulting from
uni.fylng f(X) d.nd X is f(f{ f(•••))).

This PROLOG implementation allows representations
oL infinite terms to be read, written, uni£ied or even
adJed to the database. A special notation is
introduced to simplify the representation. The
notation ls slmpLe but not necessarily easy to read.
The best.-n.otatlon for understanding these is a two
dimensio~E?,;raph i:;tyle notation. Unf~rtunately, such a.

notation is not well suited to conventional input and
ouctput devices.

chosen for this The notation imp l eruent at ion,'.
~

extends the standard term aotatio1v,, by allowing at\
'in.finite term specification• or •t~p specification•
to be used in pla.ce or any subter~. The loop
speci£ication has the 1ormat #Nn#g where n is the
length of the loop. The term resulting Lrom the
uniricatlon of X and f(X) would be represented as
f{;~NlNif),. Similarly i:f we utiify X and f(g(l,X 1 h)) then
the result w·ould be represented a-: f(g(1 1 #1f2#11 1 h)). ~ny
output term 7 containing a Loop, will be written using
this nota~ion. Similarly, any term being read in may
contdln subterms using this notation. If an input term
contains au Invalid in1inlte term re~erence, for
example too large a loop length, then an error message
will be printed and the term rejected. For example the
ter,n Y f(g{ Nil31t1J)) 1 is invalLJ.

When a term is written, the loor> lengt,h specified
is not necessarily minimal. For example, 1£ the result
o1 uniLylng X anti f(1(XJ) is printed, the format will
be 1{flN#2Mg)), even though the format f(#MIHH) would
be mo re compact•

Axlo•s containing in£inite term references may be
added to the data base. However, in£inite conjunctions
on the riph~ han~ side o1 an axiom are not permitted.
For example, a(H*l#n)<-b is valid but a(X> <- b ~ NNl••

- 25 -

is invalid.

- 26 -

The implementation provides several built-in

predicates. rhese predicates provide f4cllities which
4".) ...e:: •• either iillpossible or inconvenient J:or the

prograwmer to implement directly in P~OLOG. Many
built-in predicates have side effects, particularly
those associated with input and output. The built-In
predicates can

predicates do.
succeed or fail, exdctly as other
They can also terminate with an error

message if the arguments are inappropriate.
In general~ it is not possible to add axioms for

built-in predicates, since they have a fixed
definition. The op and trdce predicates represent one
type o.f exception to this, in that axioms for these
predicates may b~ added or deleted but the presence o1
trace o.r op axlongin the datd.ba.se ha.'11eside e.ffects. The
other type o:f buil.t-in predicate which allow addition
and d~letJon include error and attn predicates. Error
and attn are special inter1aces provided to invoke user
axioms when exceptional conditions occur. l'.>ail t • irr
~ate ,&escrH,ea in :i ~ .Bids&:lm:rm Pom:ttat@S"•"

The built-in predicates are divided into six
groups. The groups and their members are:

Structural Predic.-a.tes -

Input/Output predicates

If
a.tom,

va.r,
,J

fiteclose, newline,

J
string,

read,
readch, readempty, tab, write,
wrltech, wrlteq

Arithmetic Predic.:.:t.tes diff, prod, quot, rem, sum""> ~,Jb'r/\
J .J ../

Database Predicates - addax, ax, a.xn, control, dela.x,
op, f.reea.x_

·J Execution Control Predicates - ancestor, retry, I, i;;,

atln,
trace,

Miscellaneous Predicates

I, fail, repeat, error,
stop, meta variable,
,systra.ce_

letter, upshift,
system, eq, ge, gt, le, lt, ne

- 27 -

The predicates of ec1,ch of the above groups are
described in the 1ollowing sections.

These predicc1,tes provide for altering and testing
int, the s-truc-ture of ter;as. The pre di ca.tes a.r:/i? atom,

var, skel, cons, string, argu,nent '\ ~/ ·1,,;..,,.&,,
atom, int, var, and skel eacl have a single

argument. If the argument is o-f the type specified by

the predicate name, namely an atom, integer, variable
or skeleton ~rrec•l•'541,-,, then the predicate succeeds.
Otherwise, the predicate f:a.i ls. In no case is any
substitution per~or~ed or are any error messages
produced •
.t:xampl.e:

test(X)<-lnt(X)6testlnt(X)~
test(X)(-atLm(X)&testato~(X).

I* use testint to process an integer and testatom
tu process c1,n ato~ *I

Suppose we wish to define dn axiom which is passed
a skeleton and prints the s&eleton name. In order to do
this we need ~he cons pr,;Ltlca.te. ih:, Vis used to
decompose a ske1eto•.:_..1into a List consisting ot the
skele1'on name follow:au by its -.1.rgumen ts. For example
the call <-cons(X,a(b)) wilt cause X to be unified with
a.b.nil. cons may also be used to construct~ skeleton
term 1row a list consisting o1 the s&eleton name
followed by its arguments~ ~or exa~ple, the call
<-cons(~.X.3.nll,Y) uni1ies Y with £(X,J). cons treats
a. constant as a skeleton oL O arguments, as shown in

the examples below. I£ the second argument is not a
vari4ble then a List consistrng of the skeleton name
followed by its arguments is uni1ied with the 1irst
argument. If the second argument is a variable then a
skeleton is constructed Lrom the rirst argument and
unl~ied with the second argument. In this case the
first argument must be a list whose first element is a
constant and whose remaining elements are to be the
~rguments. If the Iirst element of the list is an
integer then th~re must be no more e~ements in the
List, since an integer is not a valid skeleton name.
Examples:

- 28 -

!
'-• ,..• /f /", ' I

ff I

/
/

The followlug calls succee~.
<-cons(~tom.nil,atom).
<-cons{lO.nil,10).
<-cons(~.b(c).d~X•nil 9 A(b(c),d,X)).

The following axioM accepts a skeleton as a first
argument and returns in the second ar~ument a skeleton
like the first but with an initial argument of 99
added.

expand{Sk1,SK2)(- cons(N.Ar~s,Skl) ~
cons(N.39.Ar~s,SK2).

Suppose we wish to determine if a constan~
contains the letter a in its value. If the first
argument o.:t the string predicate ls a cons1:ant then the
second argument is unified with
in the value of the constant.
de~ine a predicate constanta(X)

the list of characters
The :following axioms

which succeeds if Xis
a constan~ containing an a.

constanta(Con) <- string(Con,List) ~
list a(List)•

'\
\

~ista(a.Rest). ,
lista(f'irs+ ll t) < t · ta.(Re t) ' ,f.rt~;f ·t,, ·

. • es - :L,, , s . • / ," J.1,t.,, ;,r1, -:.• ... ,-
~;;»9t-~"~~,..~~ 1~-tJ;, ~y • it 1 a~~•-u"sed. to ~,
co~n t #-'frrua- the l h:t' e:f -~•bd'(.: in i tis Yalw..e• "1'here -,
a.,re ~- .fg......ats, <Eer-••~~·'f'rf"~~:

~-- (d.) .e first argument is a. constant-,~ constant
If'. ls decomposed to create a "list whose

elem~nts are the symbols in the
constant•s value. This list is unified

(b) .jJe
1f

j

with the second ~rguinent.
.first argument is a. vari ab 1.e.-, ~ second

argument raust be a list oJ'. zero or more J 1

elements,. Sltl:ISF''~ Each eLement 4iff ,a~ ;)t' a
constant with a value consisting of a
single symbol. The first argument is
unified with the constant whose value

,.._ -~ consists o:f the symbols in the list.
·--------~~~aa:t.P~f~~.LII IUlfflD,ANRr.lt~"\':5""!!!1"'-i!!itri'~er--tior-tt-lt,1-eer,r~-tt,fh-,;rit!Tl"""elSr'!!~,,... a S G C j lit o a, 5ft eP 1 UP

j'

~ss~qe is •M•aa••tf!l"ffll.. Examples:
The following calls succeed.
<-string(1 ABC',"AHC"••
<-string('',nil).
<-string(abc,a.b.c.nit).
<-string(1012,1.2.nil).

- 29 -

'!'i, ,.,.

' . " f_ ,,,)
(ft"",/" -'/./ /~· , .

The 1"ollowing
first arvument and
preLixing the first

append(In, Out)

predicat~ accepts a constant as a
produces the second argument by

with a q.

<- string(In,S} &
strin~(Out,q.S).

The argument predicate can be used to select the
arg,uinen t o:f a skeleton corresponding to an appropria.t e
index. For example, the goal:

<-a.ruumen t(:t:(1, 8, 27, 6 4), J, Cube)•

wilt succeed and unify Cube with 27.
Simitarly the goal:

<-ar~ument(1'(1,S,27,64 ,,x,o4).

will uni:fy X with 4, namely the index of the
argu.aent which u1:..i.fies with 64. The <1.rgmneot predicate
is al.ways catted with three parameters. The first
argument must be a skeleton or atom or else a.n error
wilt resul.t. If the :first argulltent is an atom it ls
~reated as a skeleton with zero arguments and the
predicate simply ±ails. The second ar~ument may be an
integer or a free variable. An atteMpt is made to
uni~y,the second argument with each successive index
from 1 to the arity of the skeleton. For each index the
third parameter is uniLied with the corresponding
sKe le ton a.rgunaent. The arguillent predicate behaves as
though 11: were defined by the ~ollowlng axioms:

a.rgul1lent(Skel.etou,lnde1e,Ars) <
cons(Name.Arglist,SKeleton) S
atom(Naille) t;
List_lndex(Arg,Arglist,Index).

list index(Ar~,Arg.Llst,l).
tist_lndex(Arg,*•List,N) <- list_iudex(Arc,List,M) ~

9U111(M, 1, N) •

Input/Output predicates are provided
PROtuG program access to external dat~.
identlLled by a constant whose value ls

JO -

. t ,.,:1,, .. ~., Jl . ·. •. er "

to allow a
A file ls
the 1'1Le

identl~ier. A Xile identifier •aY
8 characters, oi which the Lirst

consist o1 from l to
must be a letter and

the remainder
identifier is

must be digits or Letters.
converted to 'ft•'·'c\1µpercase

l(',c, '"

The
by

file
all

lnput/outr.ut predicates, since•~ f'lle systems do not
allow lower case file na~es. The input/output
predicates each have an optiona~ file identifier
argu1nent. If this argun1ent is 0J1itte,,1 the main
input/output stream is assumed (i.e. the terminal ~or
an interactive session). The file identifier is
optional for all input/output predicates except the
:tilecl..ose pre!icate, for which it is manditory.
Several of the input/output predicates may also have an
optional record number argument. This record number may
be a positive integer and is used to position to the
appropriate recorJ in the ti le be.tore perf'orrning the
indicated operation.

read is a predicate with one, two or three
arguments~ The second argument is the optional file
identl£ier. The third ar~umant is an optional record
number. It must be a po3itive integer, indicating where
in the fl~e the read ls to start. The first record in
the file has a r~cord number 0£ l. A term is read f'rom
the indicated file and unified with the first argument.
The term must be delimited with the end of term
character. If the end of the input £ile has been
reached the predicate fails. I~ backtracking returns
to the read then a react 0£ the next term will be
attempted~ 1£ the term read cannot be unlfie~ with the
first ~rgument or the format 0£ the term is invalid
then back+racklng will cause a read of the next term to
be attempted.

write ls a predicate with one, two or three
argua1ents. The second argu;.aent is the optional file
identifier. The third argument is an optional record
number. The term spec i-f led by the first argument is
written on the indicated file. The ter• ls delimited by
the end off term character. The term is written using
pre£ix 1 lnLlx and suf1ix notation where ~pproprlate, as
indicated by the operator declarations at the time of
writing.

writeq is a predicate with one, two or three
arguments. It ±unctions in a ~anner very si~llar to
write. fhe only dif1erence occurs in the for~at of the
written output. writeq encloses identifiers in
quotes(i.e apostrophes) as required, to ensure tha~ the

- 31 -

written term can be read back in by the read predicate.
Thus any identlriers ~ontalning blankst punctuation
symbols, etc. will be written enclosed in apostrophes.

r~~dch is a predicate with one, two or three
arguments. The second argument is the optional file
identiiler. Th~ third argu•ent is an optional record
number. A sln"le character is read from the given
1iLe. The constant whose value is the single character
is unified with the first ar~u~ent. If the end o1 an
input line (or record) has been reached then the ~irst
character o~ the next line {or record) ls read. If the
end or the input £Ile has been reached then the
predicate 1ails. 11 backtracKing subsequently returns
to this point or if the unific4tlon of the first
argUiJlent a.nd the character fails, then the next
character in the input file is redd and the unification
reattempted.

The readempty predicate ls provided for use in
conjunction with the readch predicate. It allows record
boundaries to be detected when reading a character at a
time. reade~pty ls a predicate with one optional
a rgu,nen t - the :f i l.e i dent i .f ier. T.lua. -~.e-ad~y, fM"adiea te

/, succeeds 1:£ the i·nput buf'fer is e1J1pty(l,.g~ the next
rea.dch_ will c<.i.use a new physlca.t record to be read).

writech ls a predicate with one, two or three
arguiuen ts. The second argu.aent is the optional fl le
identifier. The third argument is an optional record
n\ldlber. The .first argument speci'fies a term which is
formatted using the operator declarations (as for
write.) and placed in the output buf:ter f-.or the given
file. If the bu£fer is filled then it is written to

/

the ~iven file (and emptie~•• If the buffer ls
partially :filled then it is not written out. Note that / · -~
the readch an;! wr i tech predicates are not s-:,ilctt ricat. i.!.1•nc1w\Jh.,i_t:-0f,
The writech predicate can be used to write a single
character but it is conslder~bly more general than
readch.

newline is a predicate with one optional argument.
T~ the .fil.e ldentict:,i.e,!'.~ T,+ -ue t.i::.e writes
the current output bu1f~P to the given file and empties
the bui':f er. newline is uae(t in conjunct ion w l th
writeche For example, ~he goal statement:

<-writech('on 1) ~ writech(one) e,
wrltech(' line.•) i:; newline.

causes the following to be written on the terminal:

- 32 -

on one line.

Note that this output is

the cal. l
identical to that produced by

<-write(1 on one line').
or by the call

<-writech('on o 1) e write(• ne line 1).

1ileclose is a predicate with one argument a

file identitier. illeclose may be used tu logic~lty
close a file so that it ~ay be reread from the
beginning. Note that when a file is used for input
a1ter output, the ±ile is automatically closed so that
the tirst input will be Lrom the beginning 0£ the file.
In a similar manner, output after input will cause an
automatic close. Output to ~n existing 1ile wilt be
appended to the end of the file.

tab is a predicate with one or two arguments.
second argument is the optional file identifier.
~irst arvument must be a non-negative integer.
speci1ies the nu~ber of blauks to be written on
output .fl le.

The
The
It

1:he

TherP are several predicates which are included to

provide the ~a.sic operations of integer arithmetic.
Each predicate has three argu~ents. The first 1:wu are
the input parameters and the last is the result
parameter. The 1irst two argu~ents Aust be Integers.
The appropriate Integer function of the ~irst ar~uments
is unli led with the third argument•

The arithmetic predicates are:
cliff difference (subtraction)
prod
o:uot
rem
su,m

: --~ j<._,.! ,~ 'i

product
quotient
rema inde.r
sum

The following
calculates the

.1.xioras define a

fa.c tori al function
argul.Aen t.

fa.ct(O, 1).
fact(X,Y)<- dlff(X,l,Xl) t,,

:fact(Xl,Yl) &

- 33 -

,..., . I ~.

predicate
of its

which
first

The
pro,:.t(X, Y1, Y) •

.t:ollow-ing calls succeed!
<-dlff(J, 2, 1) •
<-prod(lu,20,200).
<-quot(205,L0,20).
<-re1a(205, 10, 5).
< - s urll(1 , 2 u , 2 1) •

C:-

The database built-in predicates provide the
facility for updating the data.base (i.e. the set 0£
axioms in the active workspace). The uredicates
provided are addax, ax, axn, control, delax, op and
.freeax_.

The addax predicate is used to add an axio~ to the
database. It has one or two argu•ents. The £irst
argument must be a. va 1 id ax 10111- 1 t m.a.y he:

(a) a unit axiom. Iu this case it ls a skeleton ·or
an atom.

(b) a non-unit axio,n. In this case it is of the
form <head>(-<bo~y>. <head> must be a
skeleton or atom.

The axiom specified by the ~irst argu~ent is added to
the database. If a single argument is speci£ied then
the axiom ls a1ded a.fter al~ other axioms with the same
predicate name and number of argument3. If the second
~rgument is speci£ied it must be an integer or a
variable. We first explain the case o~ a call with two
argumen·ts where the second is an integer. This integer
speci.fies where this axiom is to be added, as an index
in the list of all axioms 1or the same predicate name
and number of dr~uments. Consider the following list
o.f axioms:

a(1) •
a(2)<-b.
a(X)<-c(X).

a(4).
If the predicate call <-addax(a(m)). or

<-addax(a(m),5). or <-addax(a{m),100). were issued then
1:he new 13st woul.d be:

a(1) •
a(2)<-b.

a(X)(-c(X).
a(4).

- 34 -

a(m).
11 the call <-addax(a(q),1).
would become:

a(q.>.
a((>•
a(2)<-b.
a (X ><-ct X) •
a(4).
a(m).

were then issued the list

The index specified gives the index in the List where
the axiom is to oe added. If the index is 1 or less
then the axio~ is added before the £irst axiom in the
list. Similarly i~ the index 13 greater than the index
of the tast axiom then the new axiom is added at the
end 0£ the list.

If addax ls called with a second argument of a
variable, the axiom specified by the first argument is
added at the end of the 11st and its index is then
unified with the second arguaaen t.

The delax predicate is ~sed ~o delete an axiom
from the datanase. It may be called with one or two
arguaents. The .first argu1Jtent is a term representing an
axiom. The 1lrst argument may be:

(a) a unit axiom• ln this case it is a skeleton or
ato'4•

(b) a non-unit axiom. la this
form <head><-<body>.
skeleton or atom.

case it is of the
<head> must be a

Thus the first argument speci£ies the name and
uwaber of arguments for the J.x.iom to be deleted. I.f
only one argument is specifie~ then an attempt is •ade
to unify 'the argwnent with ed.cn o.:f the relevant axioms
in the database. The axioms are se1ected lo the order
in which they appear in the database. If no axiom ls
found which ls uniriable with the first argument then
the predicate fails. If the unification succeeds for an
axiom then the axiom is deleted and the predicate
succeeds. If backtracking subsequently returns to this
point then tne ~redicate will fall, thus preventing
accidental deletion 0£ further axioms.

Ti' 'two arguments are speci.fied then the second
argl.llllent is considered to be the axiom index. It may be
a variable or an integer. The attempts to uni£y the
£irst argument with the database axlo~s.~ruceeds as in
the case o.f one argument. If the C§.!:t_~at)_ory succeeds
:for a given axiom then an atte~pt is ~a.de to unify the

- :}5 -

,

axiom index with the second ~r~ument. If the attempt
±alls then the search through the axioms is resumed. [f

the a~tempt succeeds then the axiom is deleted and the
predicate succ ee,Ls. I:r bac« tracking subsequent l.y
returns to this point then the predicate will ~ail.

The ox and axn predicates are used to retrieve
axioms from the database. The axu predicate retrieves
axioms using the r>redicate name and number of
arguments. The ax predicate retrieves axioms using a
model axiom head.

The axn predicate has either 0£ the two ~ollowiug
:formats:

axn(<name>,<nargs>,<axlo~>)
axn{ <na~e>,<nargs>,<axiom>,<index>)

The predicate call axn(c,2,~) will cause A to be
uni.fled with the £irst axio:n :for predicate c with 2
argulllen1:s. 11' there are it,'?,, axio,ns for c with two
arguments then ~it~ •••ld fall• I :f the call
succeeds and backtracking subsequently returns to this
point then an attempt will be m~de to unify A with the
next axiom 1or c ~ith two ~rguments, and so on• The
pre::Hcate call axn(c,2,A,[) functions L1entically
excep~ that when th~ call succ~eds, r is uni1ied with
the index o1 the axio• uni£ied with A. Similarly the
call axn(c,2,A,J) will retrieve the third axiom 1or c
with two argaments, if one exists. The predicate call
axn(c,N 1 A) will unify~ with O and uniZy A with the
.tirst axiom .for c with O arguments. [f this
uniJ'icatlon :tails or back.tracking returns 'to this point
then the next ~xiom £or c with O argusents is seleeted.
When all axioms t:ur c with O argU&len1:s are exhausted
then N is unified with 1 and the axioms for c with 1
argu,aent are retrieved in turn. This process can
continue until. a1.L the axioms :tor c have been examined.
The fourth index argument ,11a.y he inc1.u.:ied and i 1:

£unctions analogously to the previous case. For example
~he goal state~ent:

list~ all axloms for predicate f.

The goal statement:

- J6 -

/

<-axn{1,N,*,l)&write(N)S1ail.

writes ou.t the di~ferent number of arguments for
which 1 has au axiom•

The call axn(Name,N,A) can be used to exa~ine the
axioms for each predicate name in turn. First a
predicate name is selected .from the database and
unified with the :first argwaent. Then each o:f the
axioms 1or this preulcate are examined in turn as in
the previous exaraplei:;. A.tter the last axioa1 i'.or the
given name is examined then the first argument will be
uni:fied with another name in the database and the
search will continue. The order in which the predicate
names are examined is not readily predictable since it
depends on the hashing algorithm ox this
implementation. Consequently this order should be
considered to be arbitrary. The :tollowing goal
statement will cause all axioas in the database to be
listed:

<-axn(*,*,A)~wr1te(A)~:fail.

Tbe ax predicate £unctions in a uanner very
similar to the axn predicate. Again there are two basic
:tormats:

ax(<head>,<axiom>).
ax{<head>,<axiom>,<index>).

<axiom> and <index> d.re treated exactly as for the axn
pre~icate. <head> is a model axiom head and may be a
skeleton, an atom or a variable. If <head> is not a
variable then lt specifies a predicate name and number
of <l.rgu.ments impl.icitly. The axioms -for this name and
number o:f argu1ne11ts are exa,ained as for a.xn. If <head>
is a variable then all axioms in the databaRe are
examined in turn as for axn<*,*,A). Ir an axiom
uni£ies with the specified axiom then a model 0£ the
axiom head ls unified with the first argument. Hy a
model we mean
all arguments .•

a skeleton with anonymous va.riables for
The ~odel idea is introduced so that a

theorem prover written
the axioms relevant
actually unifying the
term.

in P~OLOG may use ax to retrieve
to a predicate term without

axiom head and the predicate

The op predicate is
declarations. Tts use was

used to manipulate operator
introduced in~-~~ Syntax

- 37 -

.J..n Q.tllll• A!ding a unit axiom for the op predicate
(wlth J arguments) is.equivalent to adding an operator
decl.aration. Slmila.rty, del.eting a unit op axiom
deletes the operator declaration represented. Thus one
can delete an operator declaration with a call of the
:form:

de lax(op(<operator>, (type>, (priority>))•
where:

<operator> is an atom identi1yiug the operator.
<type> is an atom specifying the declaration type and

may be any one of lr,rl,prefix or su11ix.
(priority> may be an integer or a variable.
11 a matc~ing &ecL~ration is found it is deleted.

A ca~l to the op predicate may he used to retrieve
an operator ~eclaratlon• For example, the call
op(.,rl,P) s~cc~eds if"•" is declared as rt. In this
case P would be unified with the priority. The call
op(.,T,P) succeeds if there is an operator declaration
Lor"•" The ro,towing goal sta~ement will list all.
prefix operators:

<-op(Op,pre~ix,*)~write(Op)Sfall.
In this case backtracking to the op predicate cal.L
causes each prefi~ declaration to be retrieved in turn.
Note that the order in which the declarations are
retrieve~ is pseudo-random and not the order in which
the original declarations were added. However, if an
operator is declared aB both pre1ix and in1ix, the
prefix declaration ls always retrieved first. The
following goal statement will List all operator
dee t.ara tions:

<-op(Op1 T,P)&write(op{Op,T,P))Sfail.

The contro~ predicate ls used to provide some
special ~lobal variable facilities. The control
predicate has two arguments, a lut~ an(t a ~~• For
example, the cal~ <-control(top,X) retrieves the result
corresponding to Key top and unifies this result with
x. The key and result pairs are manipulated in a
fashion similar to operator declarations. To add a key
resul~ pair, an axiom 1or control ls added. Adding the
axiom controL(top,3) records result 3 for the key top.
Only one pair can be recorded .for any key value. I :f a
pair exists with the same key ~s one being added, then
the previous pair ls replaced. The keY must be an atom.
The result assocl~ted with the key must be an atom or
an integer. A key-result pal r may be deleted by

- 38 -

deleting the appropriate axiom for tbe control
predicate. For example <-detax(control(top,*)) will
delete the key-result pal r wl th key top. A. subsequent
catt of the for~ <-control(top,*) would fail since no
pair exist~. The call <-deldx(control(top,99)) would
succ~ed only if the key-result pair of top-99 ls
currently recorded. The key-result pairs recorded in
the data base may be queried in a manner similar to
that used 1or operator declarations. For example:

<-control{K,R)Swrite(K.R)~£all.
lists all k.ey-resul.t pairs iu the data base.

<-coutrot(K,99)&write(K)&fall.
tlsts all keys with d result of 99.

<-control(i, t<)G@ R, 1, R2)Gaddax(control(i, R2) ••
• 5'..t.+n'
1ncrements the result integer corresponding to key 1.

The control built-in predicate ls also used with
certain special keys to control system options. If the
key verbose has an associated result of on the~ the
system lists any 4oal sta.te~ents whlch succeed. The
goal statement <-<goal conjunction> is written in the
£orm <goal conjunction><-, displaying any
instantla~ions made for variables in the proof. The
goal. statement <-sum(2,2,*) ca.uses sum(2,2,4)(- to be
•ritten on the terminal. lf the key veroose does not
have reoult on, then a success£ul goal statement is not
listed.

1£ the key noax has an

then the system indicates each
associated result 0£ on
call to a predicate for

which there are no axioms (and no compiled routines).
For each such ca~l a message
nn" ls displayed. xxxxx is
name and nn is replaced by
With this %eature, the goal
causes the ~ollowlng messages

noax sum 2
noax - prodq 3
?

of the form "noax - xxxxx
raplaced oy the predicate

the number of arguments.
<-sum(l,2.J)lprodq(J,4,12)

to be displayed:

This feature is initially enabled and illay be disabled
by deleting the control(noax,on) dxlom or adding
control(noax,o.ff). To enhance the usability of this
feature, the fail predicate (with no arguments) is
included as a built-in predicate which always fails.
Thus spurious mess~ges o~ the ~orm noax - ~ail Oare
avoided.

- 39 -

I
//; ',, J ,,..,

. ·~-: ,-- -

The key lower ls used to control the translation
o1 input froa the main input stream. IL lower is set to
on then Lower case letters 1ro• the terminal are input
as lower case. I~ lower is not set to on then lower
case lett~rs from the terminal are translated to upper
case as they are input. The initial setting of lower is
determined based on the mode o:f operation when PPOLOG
is inltia~ed. If single uppercase ~etters are assumed
to be varlabl~s(the de1ault} 1 then Lower is initially
set to on. J1 variables can be designated only by using
an asterisk, then lower is initially set to off.

The key goa~input can be used to control the input
.format of goats ve.rsus axioms. I:f goalinput is set to
on then input terms are assu.aed to speci:fy goals. The
period character is declared as a prefix operator with
the single initlaL axioru H(.(X))<-addax(X) 11 • Thus with
goalinput set to on, axioms may be added to the data
base by entering them with a perio~ prefix. With
goalinput set of~, all input terms are assumed to be
axio~s u~less they have a ~nary •<-• as the main
skeleton. go~linput is initially set to on. To make
the input of axioms a nit more flexible when goalinput
is on, tt,e ±ollovting axiom is provided in the initial
data base:

(X(-Y)(-a~dax(X(-Y).
This odd looking axiom makes the initial period
optional for non-unit axioms. period(or more formally
"unless the input term ls an instance of a skeleton for
• • • with one arp;ument 11). Ter.as prece,.ied by the period
8-::t$.l.Ssumed to be axioms.
~, The £reeax_ pre~icate (yes it does end in an
underscore!) ls normally of use only in very
specialized ins1:a.nces, usu.:s.l.ly when writing second
level interpreters in PROLOG. When using a second level
interpreter which •never finishes•, certain anomalies
occur in the recovery oL space from deleted axioms.
When an axiom is deleted in a proof, the space ~or the
axiom is placed on a 'deferred Lree list•. The space is
not ~reed dlrect~y since the axiom may still. be used in
the proof. Space on this deLerred £ree list is freed
when the proo1 is completed. Thus in a second level
interpreter whlclt is continually adding and deleting
axlo•s, a large deferred free list may be built up and
the interpreter ca.n run out o.f space. To provide f'or
thls situation, the 1reeax_ predicate ls provided.
Invoking the freeax_ goal causes all space on the

j
Jr,,,.../ •

deLerred ~ree list to be Lreed. ft is the
responsibility ot the pro~rammer to ensure that the
current proof does not contain any references to freed
axio•s• Otherwise, disastrous results are likely!

The execution control predicates provide

£acllitle~ for testing ilnd controlling the progress of
a proof. The ancestor, retry, I, &, I, repeat, fail,
error, ~ttn, stop and trace predicates a.re included and
the meta~variable £acility is also provided.

The J2!U:!Ul.!. of a given literal in a proof is the
literal which Invoked th• axiom containing the given
literal. In the implication tree describing the proof,
the parent literal labels the node above that labelled
with the ~lteral. The ancestor5 o1 a literal include
its parent and its parent's ancestors. The ancestor
predicdte is used to examine the ancestors o~ the
Literal which invoked the pre1lcate. When ancestor is
used with one argument, the argument is ~nified with
the most recent ancestor ~or which this is possible. If
the argu.uent cannot l>e uniJ.'.leiJ with any ancestor, the
predicate 1alls. Ir the predicate succeeds and
subsequently backtracking returns to this point in the
proo1• the argument is uniried with the next most
recent ancestor and so on. The 1ollowing axiom wilt
list all o~ the ancestors ol the ancestor literal and
then fail.

listanc<-anLestor(A)&write(A)~fail.
first ancestor listed wilt be listanc.

When the ancestor predicate ls
a.rgv.ments the first a.rgu,aent functions

Note that the

used with two
in the ,;a.me way

as the single ar~ument above. The secoud argument ls
the ancesto~ index. For~ given literal the ancestor
index of its parent is 1, the ance3tor index of its
parent's parent is 2, etc. The first argument is
uni£i~d with each ancestor in turn as above. If this
uni1lcation is success~ul then the second argument ls
uni£ied with the current ancestor index. The following
axiom will list the five ~ost recent ancestors of the
ancestor literal:

llstanc2<-ancestor(A,N)~write(A)~eq(N,5).

The retry predicate is provided to fa.cl tit ate

- 41 -

recovery 1rom an error situation. After a correction
has ueen made~ the prooX may he restart~d ±rom some
point before the error. ~etry h4S one or two arguments
which control a search through the ancestors exactly aR
tor ancestor. The ditference is the action taken upon
success. Jf an appropriate ~ncestor is 1ound, the proof
is bacKed up to the poiut where the subproof for the
ancestor literal began and th• proof is re~tarted from
that poin~. retry restore3 the proof to the state it
had at a partlcuLar point ln the past. Consequently
retry is only useful when so~e change has been made to
the axiom@.

The slash predicate *1th no argument8 was

described 1n .2,.a_ ~RQ!.QQ ~1Ui..2.ll. and .!!a,cktra&Jii..!l&•
The slash predicate ls also provided in a ~ore general
1or& with either one or two arguments. The arguments
control a search through the ancestors exactly ae for
ances~or and retry. If this search tails then the
predicate t'ails. If the search succeeds then certain
available choices are eliminated fro• an existing
portion of the proo.1. All choice points are reuiove,1 in
the part of the proo£ from the point of ~election of
the given ancestor literal to the current point in the
proof. Thus a call ot the form/(*) has exactly the
same effect as the simple nulLary / call. Consider the
~ollowing example:

' a<-bSc&d.
b<-e.
c<-f6~•
e.
f.
g(-/(c)Sh.
<-a •
•••

The impLl~ation tree has the
unary sla8h ls called:

- 42 -

tot lowing f'orm when the

goal
I
a

I \
I \

I \
b C d

I \
I \

e f {:," ..
X. X \

\
/{ C) h

All choice points 1rom the selection of c(-f8g onward
are eliminated. Thus if h falls an alternate prooL ~or
e will be attempted (and the subproo£ of c will be
deleted).

The ~et4 variable facility allows a variable to be
used in place of a literal in a goat or in the body of
an axloaa. When the variable i,;; encountered in a proof
it must be bound to a liter~!. The proof proceeds as if
this literal occurred instead oL the variable. For
example, the rolLowing axiom de£ines a predicate exec
which reads~ term and "executes" it.

exec<-read(X)~X.

Axioms are included for the S(*,*)
predicates. The axioms £or I ara:

l<X,Y><-x.
J(X,Y)(-y.

and the I (*, *)

These axioms allow alternatives to be speci1ied in an
axiom body or goal with the desired eLfect. The axiom
J:or i;; is:

S(X,Y)<-,;c X,Y).
This axiom may look a bit ridiculous but it is useful,
particularly wheu using the ~et~ varl~ble facility. For
instance, if as input to the exec axio~ above, a~b is
specified, then this axiom for~ would be invoked and a
and then h would De called.

The fail predicate (with no arguments) is provided
as a bullt-in predicd.te which always -fails. This
predicate is provided even tho~gh providing no axioms
~or £ail woulJ yield a prddicate which always £ails.

- 4] -

The reasons ~or providing sJch a predicate are:
(a) The ~ail predicate gives a standard na~e 1or a

predicate which d. lwa.ys fails. This imµo=:;es a
programming standard which may improve program
readability. This standard predicate could also
make it easier for a. co~piler to perform certain
optimizations.

(b) fhe provision of the built-in fail predicate makes
the NOax reature 0£ the control fea.ture more
use~ul. Reier to the description of ~he control
pre,tJcate in a.s: Database ~!tStlcates -for further
detalls.
The stop pr..,:.iica.te is used to leave the PROLOG

system. The execution oL the stop predicate terminates
the PROLOG session aud retJrns to the operating system.
All axioms ant operator declarations in the current
worKspace are lost.

The repeat predicate can be used with zero to 1our
ar~uments to per~orm loopin~ in a proof. Repeat with no
arguments succeeJs initially and always succeeds on
bacKtrackJng. Thus it Cdn be used to loop indefinitely.
The loop can be terminated only through use of the/ or
retry predicates. Repedt wi~h one ar~u~ent provides a
similar looping facility out also maintains a loop.
counter. The argument ls first uni£ied with 1 and then
to 2 on backtrackinK, etc. Again the loop can be
terminated through/ or retry. The second, third and
fourth arvuments of repeat can be used to specify an
initial value, a stopping value and a step value,
respectively. If any o± these arau~ents are speci£ied
then they •ust be integers. The second para~eter
speci11es the first value to be us~d for the counter.
I.f this para.,aeter is omitted, then the starting value
is assumed to be 1, as described d.bove. The third
parameter is the stopping value. When the Loop counter
exceeds this value, the repeat predicate fails. The
fourth parameter specifies the increment or step value~
I£ it is omitted, then 1 ls assumed. A negative step
value may be specified, in which case the loop
continues until the cou.nter is less tha.n the s1:opping
value. Note that comparison to the stopping value is
made on initial entry to repeat, so that the predicate
may fail the Lirst time if the stopping value is less
than the initial value.

The error built-in predicate ~ifLers from the
o~her predicates in the syste~ in th4t it is not a

- 41 -

built-in predicate de1inition hut a special lnterrace
which can be used to call a user-defined predicate. The
error predicate (with no argu~ents) is called when
certain non-disastrous errors occur in a proof. A
message describing the error is always printed before
invo1'.lng I error•• The user u1ay provide any axioms
desired ~o list ancestors, allow axioms to be
corrected, or to simply give up. A useful set of axioms
i'or error are included in the standard s.et o.l axioms
loaded wi~h the PROLOG system. These axioms are de1ined
in .&mliUl,U.x ll : I.llit PR OLOG il!i£ llh

The attn built-in predicate is analo 5 ous to the
error predicate. The attn predicate is called when the
a.ttfention or break key ls pressed on the terminal..
User axioms may be added for attn to provide whatever
exception handling is desired. The standard set of
axloillS in the P:ROLOG EXEC :file invoke the axioms .for
error when attn is called(iee the axiom for attn ls
1 attn <- error' ,.

The trace built-in predicate provi~es special
~eatures for debuggin• PROLOG progr~ms. It allows
execution tracing to be enabled or disabled on a
predicate by predic~te basis. The trace predicate
1unctlons in a ~anner si~ilar to the op predicate, in
that axioms Lor trace can be added, tested or deleted
and the presence of trace a.xioittS ...li/. side ei'.fects. If
the data base cootdins an axiow o1 the form •trace{P) 1

where P is the name of a predicate, then tracing is
enabled £or alt attempts to prove goals with predicate
name P.

The actual traclng functions to be performed can
be de11ned by user axioms. The standard PROLOG EXEC
1ile Includes axioms which WPite out the 1 position 1 and
the • goal' f'or a traced predicate. Four I posl tlons 1

are defined, namely •call' 'exit' 1 redo 1 and 1 fait 1 •

The •call' position occurs when the goal is initially
attempted, before any unification has taken place. The
•exit• position occurs a:fter the goal has been
successfully proven. At the exit point, the goal has
been unified with an axiom head and the axiom body has
ueen executed. The 1 redo 1 position occurs when
backtracking returns to the goal, before the attempt
has been made to reprove tha goal. The 1 1ail.' position
occurs after a final unsuccessful. attea1pt has been made
to prove the goal.

Enabling tr~cing :for the ,goal 'Goal' causes

- 45 -

/

execu~ion to proceed as though t(Goal, became the goal,
where t has the iollowin~ axioms:

t(Goal) <- systrace_(call,Goal) ~
Coal &
(systrace_(exit,Goal}

systrace_(re{fo,Goal)j.
t(Goall <- systrace_(fail,Goal).

These axioms will cause the systrace_ axiom to be
invoked at each of the four positions in proving the
goal. Note that for this to work currectly, the
systrace_ goal must succeed for positions call. and exit
and must fail ~or positions redo and fail. The normal
axioms £or systrace_ (which are include~ in the
standard PROLOQ EXEC 1ile) are as fo~Lows:

systrace_(Position,Goal) <
systrace(Position,Goal t S
-fail.

sys trace_(call., Goal).
sys trace_(exit, Goal).

The user may then define the systrace predicate to
write anyth in.g de.sired or even 1>romp t for user
direction• The PROLOG EXEC £ile contains the single
ax.io1a:

systrace(Posltion,Goal) <- writech{ Position) 6
tab(l) :;

write(Goa. l).

This axiom may be deleted or preceded by another user
axiom to modify tbe output :format. For exampte,if the
following axiom ls added prior to the axiom above, then
the •call' position will be traced by a. user trace
routine:

systrace(ca.ll,Goal) <- / i; trace_catllGoal).

In general, the user may find
dl1£erent axioAs ~or systrace,
should be left unchanged.

- 46 -

it use:ful to provide
but those for systrace_

I

The miscel~aneous group includes µredicates to
test the collating sequence of constants, to test if a
symbol is a letter or a digit, and tu convert a
character to or from uppercase. In ~ddition a system
predicate ls provided to execute operating system
commands. A collating sequence is de~ined for the
values of constants as 1ollows:

(a) Any atom is less than any integer.
(a) Inte•ers are related by the conventional

ordering for inte•ers.
(c) Atoms are ordered by the lexical ordering

imposed when the ordering of the symbols is
as defined by the standard EBCDIC orderings.

Six buil~-in predicates are provided to test the
rel at Ion between two constants• Each µredlca te has two
arguments, both of which inu~t be constants. The
relations which cause each predicate to succeed are
1. isted below.

isles~ than argument 2 tt - argument l
l.e - argument 1

2
is less than or equal to argument

gt
ge

eq

ne

- argument 1
argument 1

arg,.u1ent 2
argument 1

- argument l

ls greater than argument 2
is gre~ter than or equal

is eqaaL to argument 2
is not equal to argument 2

Exampl.es: The following predicate calls succeed.
<-lt<a,37).
<-gt(J,'-2').
<-ge(a.3,a) •
<-ne(abc,c).
<-eq(• abc' , abc , •

<-eq(12,•+0012• >•

to

The predicates ~etter aud digit each have one
argument. The argu!llent ;11ust be a const;1nt. The
predicates tes~ if the value of the constant ls a
single symbol belonging to the given class. 11 ♦ he

ar~ument of letter is a constant consisting or a single
letter then the call succeeds. Ir the argument of digit
is an in~eger from O to 9 inclusive then the caLl
succeeds. The upshiJ'. t predicate has two a.rgumen1:s, of
which at least one roust be A constant. If the first

- 47 -

argument ls a single lowercase letter, then the second
ar~ument is.unified with the uppercase constant for the
same letter. If the first argument ls a skeleton or a
constant other than a lowercase letter, then the
predicate fails. ln the remaining case(where the first
ar~u1aent is a free va.riaote), the predicate will
succeed only 1 f the second <.1.r1_,;umen t is an uppercase
Letter. In this case the first argument will be uni.fled
with the lowercase constant for the same letter.
Examples: The following predicate call3 succeed

<-letter(z).
<-diadt(O).
<-digit(•+OC,01 1 >•
<-upshift(*,'A'>•
<-upshift(1 a 1 ,* >•
<-upshift('z', 1 Z •).

The system predicate allows CMS coinmands to be

executed fro~ the PROLOG environment. It may be invoked
with one or two ar~uments. Th~ Lirst argument speci:1'ies
the command to be executed. The second argument is
optional. It pr~sent, it is unl1ied with the integer
:return code :frow the CMS co,11mand. I:1' the second
argu•ent is not present then the return code is
ignored. The co~mand to be executed is speci£ied as a
List of one er more constants. Each constant
corresponds to oue token in the CMS command. Tokens may
be no more than eight characters ~ong. In order to
invo~e CP comAands, simply use an initial token o1 cp.
Note that all lower cdse letters in tokens are
automatically bhlfted to uppercase. The le£t
pa.r~nthes is p~eding the options is a separate token.
The .foltowing(__~alld cal.Ls to system:

<-syste,11(print.prolog.e.lCec .ni 1).
<-system(t.•••.prolog.nil,Returncode).
<-syste•(cp.q.users.nlt).
<-system(t.prolog.maclib. 1 (•.memoer.xxxxxx.nll).

- 48 -

/

The Waterloo PWOLOG system is invoked ±rom the
VM/CMS environment by typing the comm4nd PHOLOG. This
command invokes the PROLOG EXEC file and ~ubsequently
the PROLOG module. The EXEC file supports several
options as well as defining numerous utility
predicates. The EXEC 1ile is described in detail in
Appendix H.

A typical. Pl-lOLOG seasion involves executing goals
and adding and deleting 4Xio~s. The ~ormat 0£ entry for
axioms versus goals can be control~ed. The standard
system starts in what is called "goalinput" mode. In
this mode, any term that is input ls assu~ed to be a
goal, unless l t is in the format n.(•••)", in which
case the term ls assumed to be an axiom to add to the
database. In £act "•" is treated as a predicate with
the single axiom "(.(Goal)) <- addadGoal)•"•
Consequen-tly l n goal 1 nput mode all input tertns are
treated as goals. l:t goatlnput mode is turned off then
goals must be e~tered in the format "(-(Goal)"• This
mode o:f o,,era ti on i fi more verbose l f numerous go a ls are
being entered, so the goalinput ~ode is normally
preferred. The description of the control axiom in 1•§
.lul:!Jl!!A~ Preg.icates outlinea how to turn the goalinput
mode on and off.
always descrlberl

Note that in this manual, goals are
in the "(-(Goal)" syntax for clarity

o1 explanation• When axioms are stored in a file, they
are normally stored without the"•" prefix. The consult
predicate (descrlbed in detail in At>pendix B) can be
used to read the axioms from a file and add them to the
data base. In addition, the com;ult predicate will
treat any terms in the tile in the for~at "(-(Goal)" as
goats and execute them. Note that when entering axioms
or goals 'in a f: 1 le or from the ter111ina.t, they must
a \.ways be termina"ted with a do-t which ls el ther the
last character in the record or is followed by a blank.

The ted predicate can ba used to update tiles of
axioms wh~n errors are detected. The axioms may then be
reloaded using the reconsult predicate.

To exit the PROLOG environ;nent completely, use the
stop predicate. Simply type •stop•'• The attention or
break key on the terminal may be used to interrupt a
PROLOG program. I~ att~ntion or break is signalled

- 49 -

duriuM a proo£ or in response to a READ £rom a PROLOG
axiom, then three exclamations points are written on
the terminal and the attn axio~ is called. Axioms for
~ttn aay be defined by the user. A standard set of
tt.xioms for attn is described in An.ruuu!a 11 : .Illit PRO!,OG
g,1£Q :ti Le.

The PROLOG system also includes facilities for
tracing program execution, in or.:ter to aid in
debugging. This .facility is enabled .for predicate P by
adding an axiom 1 trace(P) 1 • Note that trace has a
slngt.e ar~ument- which must be an atom. When trace is
enabled for a preuicate, in conjunction with the
standard FXEC file, the progress o1 proving a ~oat ~or
the predicate will display the goal at each o1 four
positions. These positions, as well as the functioning
of trace are described in detail in a.~ Exe£~tl2n
~5?n~1 ~~!ti.£.~ll.~ in conjunction with the trace
predicate.

The PROLOG input/output predicates provide
facilities ±or reading and writing CMS file~. All ~Iles
which are accessed are assumed to have a 1iletype 0£

PROLOG and to have £ixed records with a length 0£ 80
characters. When reading from files, a blank mode
letter is used so that the normal CMS search order is
invoked. When updating 1iles a mode letter of •A• ls
used. Consequently, PROLOG programs can update files
on the A-disk only.

- 50 -

The Waterloo PROLOG system is invoked 1rom the
VM/CMS environmeut by typing the com,~nd PHOLOG. This
com111a.nd causes the PROLOG EXEC fl le to be executed and
the PROLOG MODULL to be invoked from the EXEC file. The
EXEC :file allows several options when invoKing PROLOG.
The first option controls the size of the data area
acquired hy PROLOG for execution. Thia area will be
used to contain all axioms as well as the execution
stack. The size of the area ls specified as the number
o1 1024 byte blocks of memory to be used. If no size is
specliied, then 100 is assumed. The Lor~at 1or
specifyin~ the size is:

P~OLOG nun

where nnn is the desired size.
In addition, a list 0£ iiLe names separated by

b la.n\'-s may be spec i :f i ed as an ope rand,. A xio!lls and goals
will be read from each of these files in turn, using
the consult verb defined below. For example the
conuna.nd Pl?OLOG DATAl DATA2 will invoke PROLOG and use
consult -to loa'.t axio1ns from £Ile DAT,\,l and then OATA2.
The workspace size operand may also be used in
conjunction with the files list by specifying the size
parameter first,as in "PHOLOG 2000 DATA! DATA2"•

The PROLOJ bXEC ~ile also contains a set o~ axioms
that are added to the initial PROLOG dJ.tabase. These
axio~s provide various utility functions, including the
consult ~unctlou described above. Each predicate
defined in the EXEC file is described below.

The consult predicate has a single operand which
is the name of a file of go~ls and axioms. Each term in
the file is read. A term 0£ the form"<-<•••)" is
executed as a goal. All other terms are added to the
database as axioms. When the end of the £Ile is
reached, the file is closed.

The reconsult predicate ~unctions similarly to the
consult predlc~te except that it de~etes any existing
axioms for the predicates which
addin~ the axioms in the file.
control are treat~d dl1~erently,

are read in, before
Axio~s for op and

in that the existing
axioms for these predicates are not deleted.

- 51 -

The list predicate is
de~lnitions krom the databsse.

used to
If it is

list a.x iom
used with no

arguments or wltb a single variable as an argunaent then
all axioms in the database are listed. The list
predicate may also be used with a predicate naAe as an
argument +o list the axioms for th~t predicate. For
exa~ple, "list(compute)" will list all axioms for
predicate compute, with ~ny number of ar~uments.

The delaxa11 predicate is use:i to delete all
axioms for a ~iven predicate. delaxall is invoked with
the predJcata na,ne as an argument. For example
"delaxall(co~pute)" will 1elete all axioms for
predicate compute.

The error predicate is "built-in" in the sense th~
it is executed whenever certain errors occur. The
PROLOG system provides this error recovery interface to
allow the user to investig.i.te the state o.f the proo:f
and -take appropriate recovery action. The set of
predicate~ included :for error handling in the exec file
vrovide the following 1unctions:

when the error predicate is invoked, the ancestors of
the error predicate are listed, in ascending
order. The number 0£ · ancestors listed ls
con-trolled hy a.ddi ng the a.x iom
"control(errordepth,X)H where X is a positive
lntever. The EXEC tile sets the initial errordepth
-to s.

a1ter the ancestors are listed, the user is prompted
to enter a command. The comnand entered may be any
valid goal. The goal is executed and the success
or failure oL the goal is indicated by the '?' or
•<-• respohses. The u~er is then prompted 1or
another command. The most common commands used at
this point a.re "quit" to terminate ~he proor,
fladdax" or "delax" to correct the data.base and
"retry(X)" to retry goal X after a correction has
been made.

The error axioms also check Lor the condition of an
error within 4n error and do not print the ~ncestors in
this case.

The quit predicate ls used prim4rily in error
recovery. It terminates the proof and returns to PROLOG
comm.and level.

- 52 -

/

The
to the
executed
ciurinlZ a
the exec
provide
recovery.

attn pred:icate is a hui tt-in 11 hooktt analogous
"error" predic~te. The attn predicate is
when the attention(or nreak) key is pressed
PROLOG proor. The axiom for attn defined in
file simply invokes the error predicate to

exactly the sa~e facilities as error tor

The ted predicate can
transient editor trom the
example 11 teu(blocks)" will

be used to invoke the CMS
P~OLOG environment. For
edit the ~ile blocks and

then return to PkOLOG~
The, predicate definition is included to handle

negation. The goal -.(Pred) wilL succeed i:f and only if
the goal "Predn fails. Note that when -. succeeds it
doesn't bind any variables.

'The syst racE: predicate is invoke~t as r>a rt of the
tracing facility. It is described in more detail in
a.ti Ii1uua1!i.211 !:Wl..!.1:2.l. Pi:~d ico, t~~ in conjunc tlon with
the trace predicate.

The axioms used to define these predicates in the
exec ~Ile are listed below. All internal predicates end
in an underscore, to avoid couLlicts with user axioms.

consult(File) <- read(A,Flle) ~ consult_(A) ~ fail.
consult(File) <- Lileclose(Fite••
consult_{(-Goat) <- / & Goal~/.
consult_(Axiora) <- addax(Axio~).
reconsultt*) <- delaxall(reconsulted_) ~

addax(reconsulted_(l)) S fail.
reconsul½(File) <- read(A,File) S

reconsult_(A)
reconsut t(Fl le) <- f i tee lose(Fi le) S

t:, fail.

delax•ll(reconsulted_).
reconsul½_(<-Goal) <- / & Goal.
reconsult_(op(X,Y,Z)) <- / S a.ddax(op(X,Y,Z)).
reconsutt_(controUX,¥)) <- / t;; addax(controt<X,Y)) .•
reconsult_(Axiom) <- reconsutt_name_(Axiom, Name) S

reconault_start_(Name) &

a.ddax(Axio;a).
reconsult_namft_(H~ad(-Body,Name) <- / ~

cons(N4me•*,Head).
reconsul t_na.i1e_(Head, Na.ne) <- cons(Na111e. *, H.ead).

reconsul t_start_(Nau1e) <- reconsulted_(Na,ne) ~ / •
reconsutt_start_(Name) <- delaxalt(Name) ~

- 5.J -

addax(reconsulted_(Name),1).
list<-list(*).
list(con~rol) <- control(Id 1 Value)~

wrJteq(control(Id,Value))S
.fa i 1. •

tist(op) <- op(Operator,Type,Priority)~
writeq(op(Operator,Type,Priority))~
1:all.

list{Name) <- axn(Name,*,Axlom) &
wrlteq(Axiom) 6
:fa l t.

list(*).
control(errordepth,5).
error<-ancestor(error ,N)C:,r~ t(N, l)~ /'!:;error _c,lld_.
error<- control(errordepth,0epth) &

error_list_(Depth)6fa.il ..
error<- error_cmd_.
error _cmd_ <- repeat & wri tech(• ENTE.!,,! COMMAND:•) ;;

newline~ error_exec_.
error _exec_ <- read(C) 6

((C t; error _succeed_(C)) I
(writech(?) 6 newline)) t;; I & fail.

error _succeed_((;)(-control..(verbose, on h,wr it ech(C)&:fai 1.
error_succeed_(*)<-wr i tech(•<-•)&newt ine.
error_list_(Depth) <- sum(Depth,2,Depth2) &

a;ttn <- error.

ancestor(~,lndex) S
gt(Index ,2} f; wri teq(A) S
eq(Index, Depth2) & /.

quit<-l(voal..)Sfail.
ted(File)<-system(ted.Pile.prolog.nll).
~Pred <- Pred 8 / S fail.
,Pred.
systrac"'_(Type,Goal) <- systrace(Type,Goa.l,,)Sfaile
systrace_{caLl,*)•
systrace_(exit,*>•
systrace(Type,Goal) <- writech(Type) ~ tab(1) ~ write(Goal ••
delaxall(Name) <- atom(Na:ne) (i; axn(Nanie,*,Axlo1n) &

de lax(Ax iota) S J'.a l le
del.a.xa.ll(Name).

- 54 -

The syntax of PROLOG as described in this manual
involves hoth upver and lower ease letters. I~ PROLOG
ls being used with terminals which do not support lower
case, a slightly modified "uppercase only" syntax may
be invoked. In this mode oi operation, the following
changes are 1Ba.,te to the sta.nd~rd syntax:

all variables must begin with an asterisk.

alt sy,nbols which begin with
be Jdentl1iers(i.e either
constants).

a letter are assumed to
predicate names or

all input characters are automatically shifted to
upper case.

To invoke PI<OLOG in the uppercase only Jto<ie 1 the
PROLOG module wust be invoked with the parameter
'L 1 .(e.g. PROLOG L). If a workspace size is to be
speci1ied, the parameter should be 'Lnnn• where nnn is
the slze(e.g. PROLOG L256). The standard PROLOG EXEC
1ile does not support this mode of oper~tion. To create
an appropriate EXHC £1Le, the standard HXEC can be
copied, all the axioms converted to uppercase syntax
and the lines invoking PROLOG changed to add the 'L'
pre£ix to the first parameter.

- 55 -

--------------- --·-------------

