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.l Intry4u£tiw.!. 

Research in 4rti1icial intelli~ence has spurred 
tne developmeat or nu~eroas progr4~~in~ ldnguages 
better oriented to expressing and solving the problems 
whlch 4rise in this field. One of these languages is 
PROLOG. The acronym PROLOG i9 derived 1rora PROgramming 
in LOGic and e,nph,Lsizes the rteriva.tion of the language 
Lro~ predicate Logic. The development of PROLOG 
repres•nts th~ 1iscovery o1 a means for using 
resolution logic as a practical pro~ra~filiog language 
for problem solvln~. 

The semantics uf PWOLOG are essentially those of 
Lirst order resolution Logic. Consequently the language 
is both well Je~iued and compact in de£inition. Mure 
important though, the language is a power£ul tool ~or 
problem solving, as· has bean demonstrated in the 
development o1 several proble• solving systems, among 
them J. >.?e ome try the ore ill prover, natural language 
understanding systems and a program for automatic plan 
generatlo11. 

The Waterloo implementation o± PROL0G for the 
VM/CMS system ls intended to provide an e£ficient and 
1riendly online interpreter which can be used for 
educational purposes and progra~ develop~ent. 

This manual provides ~n elementary introduction to 
the PROLOG language and the Waterloo PROLOG 
implementation. ,Section ~l of the ,manua.i describes the 
l~nguage. Those re~d.rs who are 1amiliar with a dialect 
9t' the PROLOG tattgu~'ge ma.y wis.h to skip subsections 2.1 

.1:0 2.3 and rea.d su.,bsection '}..4 :IM Syntax .in, hull• 
Subsection 2.5 U•ip.g Ipf j.nlt§ ~~ descrioes a spec ia.l r, ! 
.t:aci1ity that· 1•, pr,~vitt,ed i I.or manipulating in.finite 
ter•s• Sectiot1 3 is' ti/i-_ef.~-f~n.ce sfctlon' wbich d'e1,1~~s 
.in detail .the l>uil"tin functions ( et';ecti~elf j a 
subroutirfe libra,-y) in~ovided in the implementJtfon. 

A,· .. ,:~.:·p.~t.·l· d. '.~'x., . . .,.·./·'·d·". ;;.r'···.i .. b .. 'es·.' hb'ff·.·' TO ... •U ... ~.e P.tt()LOO··· _ un.de.,r·;····v.W¥· '!-· .. · :}.:.. •. '1-pp/endfii .. B .. ·· ./-"r~crj_b,s. ;he <:oqtent.s o,f ·· 't?e/ sfa,,d~.rl, 
l!JXf!C1,/t'io,n :fi/1.e· 1,&isea to invoke PRQLOG. A,ppl'n/'1~· /~/ 
,-·~pfaliis/hf.Jw to Jn,~~k':,, PRO.LOG. for use Ylth #'eF:mJnft:/. 
tha;t do~ nc;t .sui:,por t lower ca!!lei l..et t~riei• r ~- -.:; -

·-. 
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OJ\}._ 

2•1 Intro.Jue t ion x 
The semantics o-f PROLOG·8 essentially that of 

resolution lo~lc. Rut resolution logic itsel~ does not 
constitute a programming language. Statements in 
resolution logic are descriptive. They have the form "x 
is true"• In conventional pro~ramming languages the 
statemdnts are imperative. They have the form «perform 
action x"• To derive a progrdmming language from 
resolution logic we add imperative statements of the 
.tor,1t "1,rove tha.t x: is true"• A statement of this .:form 
is called a goal statement. A PROLOG progra~ consists 
o1 a set o1 goal •tatements an~ a set of axioms. The 
axio~s are descriptive, constituting a list 0£ 1acts. 
Each goal statement is i~pera.tive and re~uests that 
axioms be used In an a.tteApt to prove i certain fact. 

To the passive language of axioms we have added 
the notion of goals to yield a language of action, a 
programming language. This language now allows us to 
request the const.ruction of a. proof. But how wilt the 
attempt a~ a pr~of proceed? The prooL procedure for 
PROLOQ uses resolution in a simple depth first, left to 
right ~earch strategy. This proof procedure ls not 
complete. Because oL the depth first strate~y,a prool 
may not be 1oun~ even 11 one exists in the search 
space. The proot procedure may follow an in~inite 
bru.nch ln the search tree and never examine another 
branch which could yield a satis±actory prooz. However. 
11 the proof procedure termlnates~we know that it has 
1ound the right answer. If it terminates with succesA 
then a proof exists. 11 it ter~inates with failure then 
no proo1 exists in the Aearch space. 

This simple search strategy may seem 
unsatisfactory since it yields an incomplete proof 
procedure, but lt has nu~erous advantages over more 
general strategies. It can be implemented in d. manner 
which is more ef£iclent in the use 0£ space than 
current breadth ±lrst search iethods. The simplicity of 
the PROLOG search strate~y ~akes it easy for the 
program•er to understand and control the search. The 
strict ordering of the search permits the use of built
in predicates causing side e£fects(e.g. read and write) 
with the knowledge that the si~e eL1ects will occur in 
a prescribed order. The prospect of output being 
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created in random order does uot seem very pleasant? 
Thus, it is evident that the simple search strategy 
possesses several desirable -~hr~cteristics~ It is alse 
~ti, ~g'-,_.t..b.a--,~s-k-i-on-:..:.: .. v-r"· -~;~~ . .t,,C_!J.j'.J;t~--~•-·•··· 

s ta tin~ that .. ,i.:f._ a.ny.one wan ts a gene rat ·th~'6rein prove·r 
then P.10LOG i!!I a good language in which -t.o ... µr.ograin J.t&, ..• 

Th.is sect ion introduces the syntax of PROLOG 

axioms and go4ls. A brief desciption of the basic 
syntax ls provided in preparation for the description 
of Pi{OLOG execution ln 2•.l ~!:c.Y:..1.1.2.n. .!aYli! fh!&.K!.c.acking. 
A detailed description of all the syntax rules ls then 
provided l n J.•:! Ih~ §.~n.1.!!.~ .in Q.~:tail• 

The ha.sic S)1 nta.ctic unit in PROLOG is the ,ig,.c,m. A 
-1.!U:a may he: 

(a) a constant - a lower case letter 1:ollowed by 
any sequence a£ letters and digits, or any 
sequence of digits. A constant may be an 
integer or an ato~. e.g. a8c and x2~ 

(b) a variable - an asterisk or Elf\ upper case 
letter1 followed bys sequence of letters and 
digits. e.g.* and Al. 

(c) a skeleton - a skeleton name and a List o:f one 
or ,nore argwnent terau;;;. The arAu .. nent terms 
are separated by comaas and the List is 
enclos~d in parentheses. e.g. f(x2,Y) and 
g( B, a. , i ( 3 ) ) • 

<integer> 
<'.variable> 
(skeleton> 
(iu:finlte term> 
{ <ter,n> ) 

<atom>::= (Identifier> 

HNF notation: 

<skeleton>::= <1aenti1ier> ( <ar~u~ent list)) 
<term> <ln~ix operator> <term> 
<prefix operator> <term> 

<term> <sur£ix operator> 
<infix operator>::= (identifier> 
(prefix operator>::= (identifier> 
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<suf£ix operator>::= (identifier> 
<argument lfs~>::= <term> j 

<argument list>, <term> 
<v~riable>::= * I <~?per case Letter> 

<variable> <tetter> 
<variable> <digit) 

<infinite term>::= #N <digit•> N# 

<digit>::= <ctigit> l 
<ctigit•> <digit> 

The ruVes, invo,tv in,( 01:1.~ra tors ,/;fescr i~ an,_.,t:'1 t":J"naJ,{ve 
notation' 1'qr .akel,,eto.o4,, to .. be described~ in··'2_.~ Ih~ 
~!lt.;1' ·.ln 4 '.Q!Uii l .,c'. . 

PROLOG o1.xloms and r.;O"-ls a.re co,nposed of l_it~il• 
A ,literal 1nay he a l:iKeleton or a. const.::s.nt. A predis,a,te 
is the name a~sociated with a Literal. 11 the literal 
is a skeleton then the predicate is the skeleton name. 
Otherwise it is the constant associated with the 
Literal. 

The .,-en era l .for!ll o.t a PR•.)!.OG ax io1Ll_s: 
<axiom head><- <~xiom body> • .,...--

The implication arrow, "(-" is read "i~ implied by"• 
The ~xiom head ls~ single literal. The axiom body is a 
conJunctlou 0£ literals. A conjunction of literals may 
be a single literal or two or more literals separated 
by the "and" symbol(~). An example of an axiom is: 

a <- h i;; c • --The head is a, the body is b ~ c and the axiom is read 
"a is implied by b and c" or ''To prove a~-first prove b_,..-) 

then prove c"• An axiom ~ay have a null body, in which 
case the implication is omitteJ and the axio~ has the 
.form: 

<axiom head) .,:.,,.-• 
An axiom with a null body is called a 
example ls: 

unit axiom. 

i'(m). 

This i::s read nff;) is true"• 
The general form of a PROLOG goal is: 

<- (goal conjunction>. 
The goal conjunction is a single literal 
conjunction of literals. Examples of gaals dre: 

<-p. 
<-q( r) .; .f • 

or 

An 

a 

Goal statements may be 
axioms of the form: 

regarded as abbreviations for 

"goal"<- (goal conjunction> 
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where ''goal" 
PROLOG theorem 

From the 

is a distinguished ~iteral which the 
prover attempts to "prove"• 
Uber point of view the PROLOG system 

accepts axioms an~ goals from the terainal. Axioms 
which are entered are recorded for later use in proofs. 
An attempt is ~ade to prove a 4oal stateaeot as soon as 
it is entered. In the following discussion, ~oals will 
always be presented in the form<- <~oal conjunction>. 
When ... ctual ly using the PRO LOG systen1 a.n ...._a~ eviated 
goal._ fortua t is ava l lable. Refer to ,iU,Q.fill,dix .f ! usTng 
.t.RQ!.QQ !.!I!.d~!:. YM.l.£.M..§ .fo.r -further ex;)lanation before 
using PROLOG at a terminal. 

In u.xioms and terstts all Vd.ria.bles ure assumed to 
be universally rruanti.fiede That is, a.n <1.xio,u con'taining 
variables is valid ~or any "v£lues" which the variables 
may take on. A ver~al version of the dXiom ".father(X 1 Y) 
<- son(Y,X)" is ttFor all values o1 X and Y, Xis the 
father oft ir Y is the son of X"• The substituting of 
"values" for vsriaoles will be discussed further in the 
next sectjon. 

PWOLOG execution is started by a goal sta~ement. A 
goal state.ment is a request for a proof. The execution 
o1 a PROLOG program is essentially the actions of an 
elementary theorem prover attempting a proof. 

A serieH of diagrams may be used to describe the 
progress or a PLOLOG proof. Each diagra~, called an 
.i.i1W.li£tli.2u. :t.r.~~, describes the state of the proof' at 
a given point in time. An iaolication tree consists of 
one or more l~belled nodes. At the top of the diagram 
is a node labelled "goal" ■ Each u£ the other nodes is 
labelled with a literal and ls Joined to a parent node 
immmedia.tely above it. A node is called the &.h.i.1.g of 
its parent. A nocte may be in any one of three states: 

(l) open! No attemat has been ~ade to prove the 
literal labelling the node. The node has no 
chi l -l!'en ■ 

(2) closed: The Literal labelling the node has 
been proven usin.?; a w1it axiom -for the 
lite!'al. The node is marked with an "X" to 
distinguish it £roman open node. A closed 
node has no children ■ 

( J ) active: The literal la bell in~ the node is 
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being proven (or has been proven) using a 
non-unit axloru. The nude is labelled with the 
literal of the dxiom head. The children of 
the noae are labelled with the literals of 
the axiom body. The le£t-to-right order 0£ 
the ti~erals in the axiom body is preserved 
in the diagram. The orl~inal goal statement 
is treated as an axiom 0£ the 1orm "goal<
<goal conjunction>"• Thus the children o1 the 
goal node are labelled with the literals of 
the goal conjunction. 

Consider the following axioms and goal: 
a<-b::;c. 
be 

c<-d:. 
de 
<-a. 

The proof of this goal 
implication tree: 

goal 

a 
I \ 

I \ 
lJ C 

X 

d 

X 

ls represented by the following 

This ls a £Qme1eted .!.m2.!.ication .tt.tl since ~ll nodes 
are either active or closed. The nodes labelled b and d 
have been closed usin4 axioms "b•" and "d•" 
respectively. The node labelled a is active and has 
been proven using ~he axiom "a(-b&c•"• 

Consider the following example of axioms and a 
goal statement: 

a<-1>S-c. 
b(-dS f. 

b<-eGi'. 
c<-g. 
e<-.g .• 
'f<-h. 
g. 
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The initial state of the proof ls represented as: 

goat 

a 

The first axiom .tor a ls se lee ted, na,ae ly a<-b~c 
givln~: 

goal 

a 
I \ 

b C 

The prover always >¥orks in a der,th-:flrst le:ft-to-right 
£ashlon. Consequently the next literal to be proven is 
b. The axiom b(-d~£ is selected: 

,'!oal 

a 

I \ 
b C 

I \ 
d f 

The prover then attempts to prove de 8ut there are no 
axioms ror d so the prover must backtrack. This 
involves backing up the proo1 and trying other 
atterna.tlves. A G.!12.i.~~ point in the proof' is a point 
where an axiom was chosen to prove a literal and more 
a..xioms remain to be tried. ~~lu..11g involves 
backln~ up the proof to the ~ost recent choice point 
and makinu a dl£±erent choice. The order in which the 
axioms are chosen is not arbitrary. Axioms are always 
selected in the order in which they appear in the 
input. In this example b(-d~L will always be examined 
be.fore b<-e~t. 

The most recent choice point in the current proo~ 
ls the point where the axiom b(-d~f was selected. The 
proo1 is backe~ up to this point and the other axiom• 
b<-e&1, is selected. The proo£ continues as shown 
below: 
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=> 

=> 

=> 

=> 

e 

e 

g 

e 

g 

X 

e 

g 

X 

goat 

a 
I \ 

b 

I \ 
f 

C 

,g;oa L 

I 
a 

I \ 
.0 

I \ 
f 

a 
I \ 

h 
I \ 

f 

C 

C 

goal 

a 
I \ 

b C 

I \ 
f 

I 
h 
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;-;.toal.. 

·=> I 
a 

I \ 
u C 

I \ 
e f 

I 
g h 
X X 

[.l;Oat 

=> 
a 

I \ 
h C 

I ' ' e f g 

I 
g h 
..,__ ll 

goa 1. 

=> 
a 

I \ 
ll C 

I ' \. 
e f g 

l X 
g h 
X X 

The final proof is represented by a completed 
implication tree. Of course, if the proof fails then 
the Implication trae ls never completed. rt, in this 
exa•ple, we omit the axiom c<-g then the proo1 attempt 
will 1ait. Alternatively, if we include another axiom 
d<-d then the prover will attempt to construct an 
11 ln:finite branch" of the Luplication tree: 
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d 

d 

l 
d 

I 
·• .. 

Eventuall..y a.n error will occur when the i,roo"f stack 

overf'lows • 
In the previous examples, none o1 the predicates 

have ~rguments. For example, the predicate term 
father(john,fred) has two arguments, john and Ired, and 
can be used to represent the s~atement "John is ~he 
father of fredn. PHOLOG axioms can also contain 
variables. For example the axiom so~X,Y)<-~atheMY,X) 
represents the statement "xis the son o~ y 1£ y is the 
..tather of x"• Variables i.n J!kOL{X; are assume,! to be 
universally quantified. That is,an axiom containing a 
variable is considered to be "true" £or any "values" 
the variable may taKe. We will ~ake the idea of a 
variable "taking a val..ue" more precise. In any axiom or 
goal we can peri.orm a fill,UStitutism• A ~U!J2st.l.1.Y..t.i..wl. 
replaces all occurrences of a. variable by a. term. The 
replacing ter~ may be a constant (such as abc or 32), a 
sKeleton(such as f(a) or g(X,Y)) or another variable. 
For example, if we substitute a. for X in g(X,f(X)) then 
the resulting te:r1n is g(a.,f(a)). If we substitute :f(Y) 
for X in h(X,Y) then the result is h(f(Y),Y). When one 
or ~ore substitutions are applied to a term (or axiom), 
the resut"t is ca.l led an instru.\£!1 of the term ( or 
a.xio~). For example, son(fred,John}<-father(John,fred) 
is an instance of son(X,Y)<-father(Y,X) produced by 

substituting f.red for X il.nd John -for Y. 
To illustrate substitution better, consider the 

follow~xa~ple: 
---- "son( X,Y )(-father( t,X ). 

father(John,fred). 
father(John,george). 
1:a.ther(a.l,oert ). 
f4ther(george,at). 

We wish to solve 
a. goal" we me.s.n 
we can prove. 

the goal 11 <-son(Z,John)"• By "solving 
finding an instance of the goat which 

In thi3 case we will prove 
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ttson(1red,John)"• The proof will be illustrated using 
implication trees. The initial tree is: 

p-oal 

son(Z,johu) 

Now we need to find an inst~nce of a.n axiom which we 
ca.n use in the proo:f of son(Z.,John). The appropriate 
instance is formed from son(X,Y)<-ta.ther(Y,X) by 

substituting Z tor X and John for Y to give 
son(Z,john)<-fa.ther(John,z). The tree now is: 

goal 

I 
son( z., john) 

I 
.fa 1:her( John, 2 ) 

.Note that we found substitutions that made the head oJ' 
an axiom the same as the current subterm. The general 
process o~ ~inding substitutions to make two terms the 
same ls called Yn..J..Li.&A!..i.2.ll• Next we want to .find an 
axiom whose head will unify with father(John,Z). The 
£lrst axiom for father matches if we substitute ired 
:for z. This gives the completed lmpllc~tion tree: 

p:oal 

J 
son( :fred, John) 

I 
father( john, fred) 

X 

As a further example we wi~l attempt to solve the 
goal <-~ather(John,X)&1ather(X 1 Y). The proof proceeds 
as follows: 

goal 

I 
I 

I 
I 

I 
fa.ther(John,X) 

\ 
\ 

\ 
\ 

\ 
father(X,Y) 
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goal 
I \ 

I \ 
I \ 

I \ 
I \ 

-father(John,Ired) 
X 

father( f.red, Y) 

The ~ttempt to s~lve 
since this term will 

the sub5 oat -father( frerl, Y) fails 

not unify with any o~ the axiom 
heaJs. Backtracking occurs and the proof ls backed up 
to the point where the f4tber(john,fred) axiom was 
activated. This ~xiom 
substitutions made when 
seLec ted are "undone 0 • 

point: 

ls then deactivated and any 
( or si nee) this axiom was 

This restores the proo£ to the 

I 
I 

I 
I 

I 
tather(John,X) 

\ 
\ 

\ 
\ 

\ 
father( x,Y) 

The c1.xio,11 father{ john,geor~e) is about to be selected 
for unification with father(John,XJ. This unification 
succeeds piving: 

goal.. 

I \ 
I \ 

I \ 
I \ 

I \ 
father(John,george) ~ather(george,Y) 

X 

The a:xloms 
unl.ficatlon 

for Lather are then selected 
with father(george,Y). The 

succeeds for the axiom 1'.athar(george,~l.), 
completed impllcatlon tr~e: 

13 -
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goal 
I \ 

I \ 
I \ 

I \ 
I \ 

xather{john,geurge) rather(george,al) 
X X 

To illustrate the operation of PROLOG further, the 

:following examples demonstrate the manipulation 0£ more 
compL.ex data structures. A set o:f eleo1ents { similar to 
d LISP list) is represented by d term using a 
constructor s and an end ma.rker nil.. For example, the 
set with elements a,b and c is represented by 
s{a,s(n,s(c,nil))) or as a diagram: 

s 
I \ 

d. s 
I \ 

1> s 

I \ 
C nil 

The empty set ls represented by nil. 
completely arbitrary and is chosen 

This notation is 
for this example 

only. 
A reasonable definition for the "element" relation 

is: 
element( x, s( x, Y) ). 

etement(X,s(Y,Zi)<-element(X,Z). 
Verbally these a.xio:as ,night l>e stated as. 
element of~ set if it is the first ele~ent 
or 1£ it ls an e~ement of the set o~ elements 
the £lrst element. 0 • The goal 

<-element(c,s(a,s(b,s(c,s(d,nil))))) 

ux ls an 
1n the set 
following 

yields the ~allowing completed implication tree: 
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uoal. 
I 

e 1 e me n 1: ( c , s ( a I s ( b , s ( c , s ( d, n i l ) ) ) ) ) 

l 
ele~ent(c,s(b 1 s(c 7 s(d 1 nil)J)) 

I 
element{c,s(c,s(d,nil))) 

X 

This syntax tor representing sets is clearly 
cumbersome. ro simplify this, infix notation m4Y be 
used(infix, prefix and suffix notation are explained 
more .f.u l 1 y in l. • !l I.~ ~:!A.ls. .in .Q.iUAi.1. ) • I f we use a 
"•" as the constructor and use infix notation then we 
can dunote the set with elements a,b and c by 
a.b.c.nit. The axioms for element beco~e: 

element(X,X.Y). 
element(X,Y.Z)(-element(X,Z). 

Suppose we W4nt an axiom to write all the elements 
o1 a set. The following axioms will su~fice: 

l is t { X • Y ) <- w r i t e { X )S l i s t { Y ) • 
list( nil). 

write is a built-in predicate which always 
succeeds and has the side efLect o1 displaying its 
argW11ent term on the terntlnal. The term is written 
£ollowed by a period (the end ofter~ delimiter). The 
goa.l statement <-llst(a..i>-cenil) succeeds. The 

completed implication tree ls: 

voal 

lis+{ a..b.c.nil) 
I \ 

I ' write(a) 
X 

t ist{ b.c .nil) 
I \ 

I \ 
write( b j 

X 

list(c • .nil) 
I \ 

I \ 
write( c) 

X 

list(nll) 
X 

The output on the terminal is: 

a. 
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be 
c. 

The following axiom coul~ ~lso be used to list the 
elements of a set on the terminal: 

list(X.YJ<-write(X)~. 
list{ x.y ><-list< Y >• f,,J. 
listCniL). 

The 5 oal <-list(a.b.c.nil) 
the lndlrated set and then 

wiLl list all eteTients of 
succeed. The completed 

implication tree is! 

µ"oal 

J 
list( a.o.c .. nil..) 

llst(c.nil) 
j 

1.ls-t<nil.) 
X 

Suppose we wish to define axioms for d predicate 
notel(X,Y) which succeed~ if Xis not an element o~ Y. 
Reasonable axioms £or this predicate might be: 

notel( :>.,uil ). 
notel(X,Y.Z) <- noteq(X 7 Y}Snotel(X 1 Z). 

Verbally ~hese axioms might be stated: 
"X ls not dO element o~ the empty set"• 
"Xis not an eleillent of the set consisting of 

Y and so~e other elements if Xis 
not equal to Y and X is not an 
element 0£ the set 0£ other 
elements"• 

The axioms for no~eq reilaln to be defined. The axioms 
are: 

notdq(~,x)<- /~fail. 
noteq( x, Y ). 

These axioms make use 0£ a special control feature, the 
slash(/). ro illustrate this ~eature we trace the 
attempt to prove the goal <-noteq(a,a). Initially, we 
have: 
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"'oa L 
l 

no1:eq( .t. 1 a) 

The first axiom ls selected giving: 

uoal 
I 

noi"eq( a, a) 

1 \ 
/ fa.i l 

The stash predicate always succeeds. It is ased to 
prevent certain .t.lternatives £rom being considered in 
the proo~. In this case it prevents the second axiom 
£or noteq from being considered. The implication tree 
look.s like: 

v-oal 

J 
noteq{ <L,a) 

l \ 
/ i'ai l 
X 

The fail predicate has no a.xi OlilS and consequently it 
i:a.ils. Since tl1e rema.ini ng axiom for noteq is not 
considered, there are no remaining choice points and 
the entire proof fails. 

Conversely the goal <-noteq(a,b) succeeds. The 
head ot the axiom noteq(X 1 X) <- I ~ fail cannot be 
unified with noteq(a 1 b) so the next axiom is selected. 
The unification succeeds and tne proof is complete. 

The action of the slash predicate is described 
more precisely: When the slash predicate is executed, 
it removes a.1.l choice points in the proof_., from the 
point when the axiom contalnln~ the slash was selected 
to the current point in the proof. 

The slash predicate is utilized tor two ~a.in 
purposes. The first is to ~f~ect the meaning 0£ an 
axiom, of~en to t~ndle ne•ation ~sin noteq above. The 
second use is to i~prove the ex£iciency ot a program by 

preventin¥ spuriLus choices fro~ being considered. For 
example, consider the 1o1Lowing axiom used to test i1 
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two sets have one or more coamon elements: 
intersect( A, H )<-element( x:, A) t; el. e,nen t( X, iJ). 

If a call to the intersect predicate Bucceeds and then 
backtracking returns to that point, then the element 
axlo~s will cause other choices Lor X to be tried. 
Normally the at teu1pt to :find a. di f-feren t com1non element 
ls co•pletely unnecessary since it h•s already been 
proven that A and H intersect. This extra search can be 
eliminated by using the following axiom for intersect: 

lntersect(A,H)<-etement(X,A) 6 element(X,B) & /. 

A PROLOG program consists of a sequence of symbols 
belonging to a symt>ol vocabulary. In this 
implementation the EBCDIC character set is used. Any 
one byte value is a valid symbol, even though it may 
not have an explicit EBCDIC graphic c6de. These symbols 
are divided into four groups as follows: 

(a.) LU!.~r&?., - The upper and lowe.r case l et'ters 
:from A to z. 

( b) ll~ - The digl ts from O to 9. 
(c).~Yn£.1.Y.sl.li2.n Symbols. - This group consists of 

the 1.e1't and right p,a.rentheses, the { )~ ',, 
comma, the apostrophe, the quote and the 
end-0£-term symbol( the period). 

(d) Th~ Und~~~2~~ - This symbol can be used in 
constants and variable names. 

(e) ~.llit~1 ~&l..l..§. - This group consists of all 
sy~bols not in any of the four preceding 
categories. 

The fundamental syntactic construct in PROLOG ls 
the term. As stated eu.rlier, a teri11 atd.Y be a va5:i~Le, 
a constant or a skeleton. "- M,,Q,,,;.,Ji;{:r) 

A variable is rep.resented by cs" var iaM•'.) n~ ~ 
VcW'i .... ble name k :at\\upper case letter ~lowed by, a . 1 
sequence o.f l.etters~nd digits. Thus x, A1.B2C3, ~ ~Cl.131 ~ 
Abe are all variable~. In addition a single asterisk(*) 
ls a variable o.f a special sort. ft is called an 
anonymous variable and h.a,,; the special signi:ficance 
that each occurrence is considered to represent a 
distinct variable. 

A copstant is a sequence or symoots enclosed in 
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apostrophes. The sequeuce represents the value o~ the 
constant. Note that if the value contains an 
apostrophe, then the apostrophe must be duplicated. 
Examples of constants are: 

____ __..;;, ' A BC' 

~ 

I J 7+ A) f 

I ) f 9 • f 

' f 

The value of the third constant shown above consists of 
the three sy•bols right parenthesis, apostrophe and 
co~ma, in that order. The value o~ the last constant 
consists of no symbols. The apostrophes enclosing a 
constant are not always required. They may be omitted 
if any oL the following conditions are satis1ied: 

~ 1/ The value u1·the constant consists entirely 0% 
symool~ which are letters ~ Q> digits ~ 
underscores~and the initial symbol ls not an 
upper case letter. 

/ 

2/ The value of the constant consists oi 
symbol which is not a. punctuation syITTbol. 

one 

the 3/ Tt,e value o::f the constant consists of 
single period symbol and the constant is not 
rollowed by a blank• 

4/ r-rhe value of the cons t.:1n t cons isti'> of up t<>-"'-.... 
eigh+ special ctiara.c"ters)and the.re ·1s an 

---o'J)era tur dee lara t ion :for the va lt.1£'. l n the 
data base. For a further explanation of 
o µera tor d.ect.ar at ions, see J.• .§ ll.a.1ab51.s,~ 
Predl.&.~~ in conju.nc t ion with the ()f>j built
in precticate. Note that underscor~s-~re not 

~ !Spec i a 1 syinbo ls• 
Integers are constants whose values satis±y certain 
criteria. A constan-t is an i.a.llger if and only if it 
satisfies any of the following: 

1/ Its value consists of one or more digits. 

2/ Its value consists of the symbol "+n to l lowed 
by one or more di4its. 

3/ Its value consists of the symbol "-" followed 
by one or more di~its. 

Integers may be ~sed as 
predic4tes which perform 
integer arithm~tlc. 

several built-in 
the fundamental operations of 

' ..... 

Two 
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~qual(i.e. indistinguishable) if their values are the 
same after any n+n symbols and Leading zeroes have been 
dropped. Thus 001 1 1 +-uOOl I a.nd 1 are all equal 
integers. Note that signed integerfi ~ust be enclosed in 
apostrophe-s. 
A constant which is not an integer 1s an atom. ab, 
'AB(', •••and'' are all atoms. A sequence of symbols 
which satlsLy the criteri~ for an a.to~ is called an 
isiontiti.!t~• 

A skeleton consists of an identifier and one or 
more argument terms. Both predicates ~nd functions are 
represented a3 sk~letons. A 3keleton has the following 
:fo riaa.t ! 

<idevti~ier> ( <argument List> ) 

The argument list consists of one or more 
separated by commas. Examples of skeletons are: 

:fact( 1 ) 
g( 1, X, :f( 1 ) ) 
1 A/. ) 1 (X,T.) 

terms 

Note that any of the argument terms of 
ln turn he skeletons. 

a. skeleton may 

To permit a more convenient representation for 
skeletons, identifiers Cdn be declared as in£ix, prefix 
or suf.fix:. For example, i:f the iden1:l:iier likes is 
declared as infix then the skeleton represented a.s 
likes(a~b) can also be represented as a likes b. 
Similarly 9 if the ictentif'ier I is declared as suffix 
then 1(a) can be represented as al. 

An identifier used as the skeleton identi£ier in 
infix, preLix or su1£ix for~ ls called an op~rator. 
The use o-j' operator notation ls provided in addition to 
the basic notation for sKeletons which was first 
described. The two forms may be mixed 1reely. For 
example, it: likes is declared as infix 'then -f( a Likes 
b 1 likes(c 9 d)) is a perfectly a.cceptabt.e 1'orm. A term 
is represented_ iu £.il,ll.Qn.ica.l !.2.CJ!l when it is represented 
without using 1 nf'i x, prefix, or su:f-f l x no tat ion. 

,,,,~ In ony term, ·subteraas may he :r-.1.renthesized to 
/ lndlcate 1:he term .;tructure. For exampl.e: 

/· a+( b-c) is equivalent to +( a.,-( b, c)) 
( but ( ,.+b 1-c is equlva lent to -( +( a,b I, c ). 

lr_.;f_ - l 
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Any term or suht~r~ ~•Y be paren~hesized. 
infix then ((a)) Likes ( c likes( d)) is 

l f likes is 
a va.tid term 

equivalen~ to likes(a,likes(c,d)). 
An identl~ier can be declared as both prefix and 

infix si~ultaneously but an identifier which is 
declared as su1Lix can not be declared as infix or 
prefix. An identifier is declared by adding an 
opera tor d'eclara t ion axiouh , The foru,a t -for jlire ~ 

t.o. be &d,~ Hr. ,~,,,/,,. ?c;1 i •. ,,J , . ;,:: · n • .v 

op( <identi±ier>,<type>,<priority> ). 

<iden t if ler> is the i dent i .tier to be <-tee tared. 

<type) specifies the declaration type and may be 
any o.f: pre:fix, 

(priority> is a positive 
equal to 1000. 

su:ttix, tr, rl. 
integer less than or 

The declaration types 0£ su££ix and prefix have an 
obvious interpretation. The types rl and lr are used 
to declare operators as infix right-to-Left and left
to-right respectively. For example, if"•" is declared 
a.s rl then 

a.b.nil is equivalent to a.Cb.nit) 
and to .(a.,.(b,nll)) 

I£"+" ls declared as tr then 
a+b+c is equivalent to (a+b,+c 

a. nd to +(+(a, b), c ) 

The priority speciLied in the declarations gives 
the posl-tion of the decl.;1.ra.tions in a 1>riority 
hierarchy. The lurger the numeric priority the 
stronger the "binding" of the operator. The following 
examplas illustrate the function 0£ the priority. For 
these examples assume that the following ~eclaratlons 
are in ef:fect: 

Then: 

op(,,prefix,40). 
op(! t suf-fix, 70 >• 
op{ • , r 1 , 5 0 ) • 
op(+,tr,60). 
op(-,lr,60). 

,a! is equivalent to -.(as) 
a+b-c.d+e.f is equivalent to ((a+b)-c).((~+e).f) 
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-a.+b! is equivalent to ~a+(b!)) 

The problem of resolving the 
identifiers have equal priorities 
declaration types has not yet been 
instance if the decl..arat ions in et:tect 

op( +, l r, 6) ) • 
op(-,rl,61). 

then how is a•b-c to be interpreted? 

case where two 
out di1'ferent 

discussed. For 
are: 

The rule :for resolving such conflicts is: 

If the rightmost operator is declared rl and the 
le~t~ost operator is pre1ix(or rlt then treat 
the ri~htmost binding as the strongest. 

Otherwise treat- the leftmost bind in~ as strongest. 

The examp~e a+b-c is equivalent to (a+b,-c. This detail 
is confusing, and it is recommended that the user not 
declare operators with the same priorities and 
dit:.ferent types and hence avoid the condition 
completely. The above description ls included solely 
for the sake of completeness. 

The Jnitial state or the PROLOG system includes 
several operator declarations, namely: 

op( < - , rt , 10 ) • 
op( <- , pref i x, 1 0 ) • 
op( I t rl, 20) • 
op( &,rl, 30 ). 
op{ ,,prei'lx,40 ). 
op( .,rt, 100 ). 

Operator declarations c~n oe added 
addin~ and deleting a.xio,lls for 1-he 
described in~-~ Q~i~~~~ Pr§<.11£.A.~• 

and deleted by 

op predicate as 

An Input term must be deli,aited by an §nd-o.t=llr.m 
£.b~.i!u:.• Tt1e period is u.,;;;ed. To dist iuguish between 
the use of the period as ~n operator and its use as the 
end of term character, the following rules are used. ~ 

period that is not enclosed in apostrophes, double 
quotes or comment delimiters ls treated as an end of 
term delimiter i~: 

(a) It is followed lm~ediately by one or more 
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blanks or 
(b) it is the last character oL an input line. (By 

line we me~n either an input line from 
the terminal or an input record 1rom a 
file). 

Blanks may be freely used in the input term, 
subject to the :following conditions: 

,-

-.,,. 

(a) Planks may not be used internal to an unquoted 
icientif'ier or constant ( e.g. ab ls 

,· ---.~.---···dlfferen-t :from ab since a.bis a single 
·lden~iLler and a b represents two 
ldentirer~, namely a rollowed by b). 

(b) ~lanks may be used in a quoted constant or 
..c.'.-- lden-ti.fier but they are included in the 

value o1 the constant(e.g. 'AH' ls not 
< the same constant as 1 .\8 1 ) • 

(c) One or wore blanks ~ust be used to separate 
the -fol lowing: 
( l) two quoted identifiers or 

constants(e.g. 1 A11 B' represents a 
constant with value A1 R whereas 
• A 1 1 8 1 represents two constants 
with values A and B respectively). 

(2) two unquoted identi±lers or 
-constants where neither consists 
Aolely of special characters(e.g. 
a; is equivalent to a; but al2 is 

-- not equivalent to a. 12 ). 
( d) Hlanks must not be used after a period except 

where ~he period is an end-of-term 
delimiter. 

Whenever one or more blanKs may he used, a comment may 
be inserted. A £.2.!Wll~n.:1 has the form: 

/*<comment characters>*/ 

<comment charact~rs> may be any sequence o~ characters 
not lucludlng an asterisk followed immediately by a 
slash. Note that ~his format for a com~ent implies 
that if/ is declared as a prefix or in£ix operator and 
ls used 1ollowed oy ~ variable then a ~L~nk must appear 
between the / and the * o_f the variable. To helt> detect 
errors caused by an improperly clu~ed comment a warning 
message iF issued 11 a I* ls encountered in a co•ment. 

Axiom and goal statements are special cases of 
terms• They are read and parsed using the operator 
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declarations.. fhus the axiom 
been entered d.S <-L1,&{b 1 c) ). 
term of the form: 

a<-b&c could 

<-((goal conjunction>). 

An ~2.m 1 s a term of the .form: 

or 
<-((head>,<goal conjunction>). 
<head>. 

<head> can be an atom or a skeleton. 

e. &• a. 
a( 1, X ) 
'B:•(::~q 

<goal conJunctiou> c•n have the form 
<goal literal> 

o.r the form 
S(<goal Literal>,<goal conjunction>) 

also have 
is a 

(goal literal> cun ne an atom,skeleton or a variable. 
A variable goal literal ls called a ~eta variable and 
is described in J_.~ liaecution Q..Q.n.,1.rot ~r..stctig_g,tes .• 

A 11.s.!. is formed with the 

£..2llilJ:Ytl2£ n.n and the end-of-tlst lllsl.U~.C. nil. For 
example the list with ele~ents a, n and c ls 
represented as a.n.c.nil or in canonical form as 
.(.,.(b,.(c 1 nil))). 'The e,npty list is represented as 
nil. A ~uing is a list of chJ.racters, or more 
precisely, a list of constants each with a single 
character value. An abbreviated ±ormat is p~ovided to 
represent strln~s. The format is: 

"<characters>" 
For example: 

"ahc" is equivalent to a.b.c.nil. 
"()" is equivalent to 1 ( 1 • 1 )•.ntl. 

An empty list may ~ldo be specified: 
"" is equivalent to nil. 

"ote that "ab" ls equivalent to .(a, ■ lb,nil)) 
the period is declared as lnfix right-to-left. 
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After you have become familiar with ?RIJLOG, you 
may ask what happens when i ~MOLOG progrd~ attempts a 
uni1ication such as f(X} with x. One possiole approach 
would be to have the unification fail, rather than 
construct a 1 loop 1 • It turns out that allowing this 
sort o1 loop provides a use~ul capability for 
manipulating 1 1n±inite 1 ter~s. The term resulting from 
uni.fylng f( X) d.nd X is f( f{ f( •••)) ). 

This PROLOG implementation allows representations 
oL infinite terms to be read, written, uni£ied or even 
adJed to the database. A special notation is 
introduced to simplify the representation. The 
notation ls slmpLe but not necessarily easy to read. 
The best.-n.otatlon for understanding these is a two 
dimensio~E?,;raph i:;tyle notation. Unf~rtunately, such a. 

notation is not well suited to conventional input and 
ouctput devices. 

chosen for this The notation imp l eruent at ion,'. 
~ 

extends the standard term aotatio1v,, by allowing at\ 
'in.finite term specification• or •t~p specification• 
to be used in pla.ce or any subter~. The loop 
speci£ication has the 1ormat #Nn#g where n is the 
length of the loop. The term resulting Lrom the 
uniricatlon of X and f(X) would be represented as 
f{;~NlNif),. Similarly i:f we utiify X and f(g(l,X 1 h)) then 
the result w·ould be represented a-: f( g( 1 1 #1f2#11 1 h) ). ~ny 
output term 7 containing a Loop, will be written using 
this nota~ion. Similarly, any term being read in may 
contdln subterms using this notation. If an input term 
contains au Invalid in1inlte term re~erence, for 
example too large a loop length, then an error message 
will be printed and the term rejected. For example the 
ter,n Y f( g{ Nil31t1J) ) 1 is invalLJ. 

When a term is written, the loor> lengt,h specified 
is not necessarily minimal. For example, 1£ the result 
o1 uniLylng X anti f(1(XJ) is printed, the format will 
be 1{flN#2Mg)), even though the format f(#MIHH) would 
be mo re compact• 

Axlo•s containing in£inite term references may be 
added to the data base. However, in£inite conjunctions 
on the riph~ han~ side o1 an axiom are not permitted. 
For example, a(H*l#n)<-b is valid but a(X> <- b ~ NNl•• 
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is invalid. 
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The implementation provides several built-in 

predicates. rhese predicates provide f4cllities which 
4".) ...e:: •• either iillpossible or inconvenient J:or the 

prograwmer to implement directly in P~OLOG. Many 
built-in predicates have side effects, particularly 
those associated with input and output. The built-In 
predicates can 

predicates do. 
succeed or fail, exdctly as other 
They can also terminate with an error 

message if the arguments are inappropriate. 
In general~ it is not possible to add axioms for 

built-in predicates, since they have a fixed 
definition. The op and trdce predicates represent one 
type o.f exception to this, in that axioms for these 
predicates may b~ added or deleted but the presence o1 
trace o.r op axlongin the datd.ba.se ha.'11eside e.ffects. The 
other type o:f buil.t-in predicate which allow addition 
and d~letJon include error and attn predicates. Error 
and attn are special inter1aces provided to invoke user 
axioms when exceptional conditions occur. l'.>ail t • irr 
~ate ,&escrH,ea in :i ~ .Bids&:lm:rm Pom:ttat@S"•" 

The built-in predicates are divided into six 
groups. The groups and their members are: 

Structural Predic.-a.tes -

Input/Output predicates 

If 
a.tom, 

va.r, 
,J 

fiteclose, newline, 

J 
string, 

read, 
readch, readempty, tab, write, 
wrltech, wrlteq 

Arithmetic Predic.:.:t.tes diff, prod, quot, rem, sum""> ~,Jb'r/\ 
J .J ../ 

Database Predicates - addax, ax, a.xn, control, dela.x, 
op, f.reea.x_ 

·J Execution Control Predicates - ancestor, retry, I, i;;, 

atln, 
trace, 

Miscellaneous Predicates 

I, fail, repeat, error, 
stop, meta variable, 
,systra.ce_ 

letter, upshift, 
system, eq, ge, gt, le, lt, ne 
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The predicates of ec1,ch of the above groups are 
described in the 1ollowing sections. 

These predicc1,tes provide for altering and testing 
int, the s-truc-ture of ter;as. The pre di ca.tes a.r:/i? atom, 

var, skel, cons, string, argu,nent '\ ~/ ·1,,;..,,.&,, 
atom, int, var, and skel eacl have a single 

argument. If the argument is o-f the type specified by 

the predicate name, namely an atom, integer, variable 
or skeleton ~rrec•l•'541,-,, then the predicate succeeds. 
Otherwise, the predicate f:a.i ls. In no case is any 
substitution per~or~ed or are any error messages 
produced • 
.t:xampl.e: 

test(X)<-lnt(X)6testlnt(X)~ 
test(X)(-atLm(X)&testato~(X). 

I* use testint to process an integer and testatom 
tu process c1,n ato~ *I 

Suppose we wish to define dn axiom which is passed 
a skeleton and prints the s&eleton name. In order to do 
this we need ~he cons pr,;Ltlca.te. ih:, Vis used to 
decompose a ske1eto•.:_..1into a List consisting ot the 
skele1'on name follow:au by its -.1.rgumen ts. For example 
the call <-cons(X,a(b)) wilt cause X to be unified with 
a.b.nil. cons may also be used to construct~ skeleton 
term 1row a list consisting o1 the s&eleton name 
followed by its arguments~ ~or exa~ple, the call 
<-cons(~.X.3.nll,Y) uni1ies Y with £(X,J). cons treats 
a. constant as a skeleton oL O arguments, as shown in 

the examples below. I£ the second argument is not a 
vari4ble then a List consistrng of the skeleton name 
followed by its arguments is uni1ied with the 1irst 
argument. If the second argument is a variable then a 
skeleton is constructed Lrom the rirst argument and 
unl~ied with the second argument. In this case the 
first argument must be a list whose first element is a 
constant and whose remaining elements are to be the 
~rguments. If the Iirst element of the list is an 
integer then th~re must be no more e~ements in the 
List, since an integer is not a valid skeleton name. 
Examples: 
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ff I 

/ 
/ 

The followlug calls succee~. 
<-cons(~tom.nil,atom). 
<-cons{lO.nil,10). 
<-cons(~.b(c).d~X•nil 9 A(b(c),d,X)). 

The following axioM accepts a skeleton as a first 
argument and returns in the second ar~ument a skeleton 
like the first but with an initial argument of 99 
added. 

expand{Sk1,SK2)(- cons(N.Ar~s,Skl) ~ 
cons(N.39.Ar~s,SK2). 

Suppose we wish to determine if a constan~ 
contains the letter a in its value. If the first 
argument o.:t the string predicate ls a cons1:ant then the 
second argument is unified with 
in the value of the constant. 
de~ine a predicate constanta(X) 

the list of characters 
The :following axioms 

which succeeds if Xis 
a constan~ containing an a. 

constanta(Con) <- string(Con,List) ~ 
list a( List)• 

'\ 
\ 

~ista(a.Rest). , 
lista( f'irs+ ll t) < t · ta.( Re t) ' ,f.rt~;f ·t,, · 

. • es - :L,, , s . • / ," J.1,t.,, ;,r1, -:.• ... ,-
~;;»9t-~"~~,..~~ 1~-tJ;, ~y • it 1 a~~•-u"sed. to ~, 
co~n t #-'frrua- the l h:t' e:f -~•bd'(.: in i tis Yalw..e• "1'here -, 
a.,re ~- .fg......ats, <Eer-••~~·'f'rf"~~: 

~-- (d.) .e first argument is a. constant-,~ constant 
If'. ls decomposed to create a "list whose 

elem~nts are the symbols in the 
constant•s value. This list is unified 

(b) .jJe 
1f 

j 

with the second ~rguinent. 
.first argument is a. vari ab 1.e.-, ~ second 

argument raust be a list oJ'. zero or more J 1 

elements,. Sltl:ISF''~ Each eLement 4iff ,a~ ;)t' a 
constant with a value consisting of a 
single symbol. The first argument is 
unified with the constant whose value 

,.._ -~ consists o:f the symbols in the list. 
·--------~~~aa:t.P~f~~.LII IUlfflD,ANRr.lt~"\':5""!!!1"'-i!!itri'~er--tior-tt-lt,1-eer,r~-tt,fh-,;rit!Tl"""elSr'!!~,,... a S G C j lit o a, 5ft .... eP 1 UP 

j' 

~ss~qe is •M•aa••tf!l"ffll.. Examples: 
The following calls succeed. 
<-string( 1 ABC',"AHC"•• 
<-string( '',nil). 
<-string(abc,a.b.c.nit). 
<-string( 1012,1.2.nil). 

- 29 -

'!'i, ,.,. 

' . " f_ ,,,) 
(ft"",/" -'/./ /~· , . 



The 1"ollowing 
first arvument and 
preLixing the first 

append( In, Out) 

predicat~ accepts a constant as a 
produces the second argument by 

with a q. 

<- string( In,S} & 
strin~(Out,q.S). 

The argument predicate can be used to select the 
arg,uinen t o:f a skeleton corresponding to an appropria.t e 
index. For example, the goal: 

<-a.ruumen t( :t:( 1, 8, 27, 6 4), J, Cube)• 

wilt succeed and unify Cube with 27. 
Simitarly the goal: 

<-ar~ument( 1'( 1,S,27,64 ,,x,o4). 

will uni:fy X with 4, namely the index of the 
argu.aent which u1:..i.fies with 64. The <1.rgmneot predicate 
is al.ways catted with three parameters. The first 
argument must be a skeleton or atom or else a.n error 
wilt resul.t. If the :first argulltent is an atom it ls 
~reated as a skeleton with zero arguments and the 
predicate simply ±ails. The second ar~ument may be an 
integer or a free variable. An atteMpt is made to 
uni~y,the second argument with each successive index 
from 1 to the arity of the skeleton. For each index the 
third parameter is uniLied with the corresponding 
sKe le ton a.rgunaent. The arguillent predicate behaves as 
though 11: were defined by the ~ollowlng axioms: 

a.rgul1lent(Skel.etou,lnde1e,Ars) <
cons(Name.Arglist,SKeleton) S 
atom(Naille) t; 
List_lndex(Arg,Arglist,Index). 

list index( Ar~,Arg.Llst,l). 
tist_lndex(Arg,*•List,N) <- list_iudex(Arc,List,M) ~ 

9U111( M, 1, N ) • 

Input/Output predicates are provided 
PROtuG program access to external dat~. 
identlLled by a constant whose value ls 

JO -

. t ,.,:1,, .. ~., Jl . ·. •. er " 

to allow a 
A file ls 
the 1'1Le 



identl~ier. A Xile identifier •aY 
8 characters, oi which the Lirst 

consist o1 from l to 
must be a letter and 

the remainder 
identifier is 

must be digits or Letters. 
converted to 'ft•'·'c\1µpercase 

l(',c, '" 

The 
by 

file 
all 

lnput/outr.ut predicates, since•~ f'lle systems do not 
allow lower case file na~es. The input/output 
predicates each have an optiona~ file identifier 
argu1nent. If this argun1ent is 0J1itte,,1 the main 
input/output stream is assumed (i.e. the terminal ~or 
an interactive session). The file identifier is 
optional for all input/output predicates except the 
:tilecl..ose pre!icate, for which it is manditory. 
Several of the input/output predicates may also have an 
optional record number argument. This record number may 
be a positive integer and is used to position to the 
appropriate recorJ in the ti le be.tore perf'orrning the 
indicated operation. 

read is a predicate with one, two or three 
arguments~ The second argument is the optional file 
identl£ier. The third ar~umant is an optional record 
number. It must be a po3itive integer, indicating where 
in the fl~e the read ls to start. The first record in 
the file has a r~cord number 0£ l. A term is read f'rom 
the indicated file and unified with the first argument. 
The term must be delimited with the end of term 
character. If the end of the input £ile has been 
reached the predicate fails. I~ backtracking returns 
to the read then a react 0£ the next term will be 
attempted~ 1£ the term read cannot be unlfie~ with the 
first ~rgument or the format 0£ the term is invalid 
then back+racklng will cause a read of the next term to 
be attempted. 

write ls a predicate with one, two or three 
argua1ents. The second argu;.aent is the optional file 
identifier. The third argument is an optional record 
number. The term spec i-f led by the first argument is 
written on the indicated file. The ter• ls delimited by 
the end off term character. The term is written using 
pre£ix 1 lnLlx and suf1ix notation where ~pproprlate, as 
indicated by the operator declarations at the time of 
writing. 

writeq is a predicate with one, two or three 
arguments. It ±unctions in a ~anner very si~llar to 
write. fhe only dif1erence occurs in the for~at of the 
written output. writeq encloses identifiers in 
quotes(i.e apostrophes) as required, to ensure tha~ the 
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written term can be read back in by the read predicate. 
Thus any identlriers ~ontalning blankst punctuation 
symbols, etc. will be written enclosed in apostrophes. 

r~~dch is a predicate with one, two or three 
arguments. The second argument is the optional file 
identiiler. Th~ third argu•ent is an optional record 
number. A sln"le character is read from the given 
1iLe. The constant whose value is the single character 
is unified with the first ar~u~ent. If the end o1 an 
input line (or record) has been reached then the ~irst 
character o~ the next line {or record) ls read. If the 
end or the input £Ile has been reached then the 
predicate 1ails. 11 backtracKing subsequently returns 
to this point or if the unific4tlon of the first 
argUiJlent a.nd the character fails, then the next 
character in the input file is redd and the unification 
reattempted. 

The readempty predicate ls provided for use in 
conjunction with the readch predicate. It allows record 
boundaries to be detected when reading a character at a 
time. reade~pty ls a predicate with one optional 
a rgu,nen t - the :f i l.e i dent i .f ier. T.lua. -~.e-ad~y, fM"adiea te 

/, succeeds 1:£ the i·nput buf'fer is e1J1pty( l,.g~ the next 
rea.dch_ will c<.i.use a new physlca.t record to be read). 

writech ls a predicate with one, two or three 
arguiuen ts. The second argu.aent is the optional fl le 
identifier. The third argument is an optional record 
n\ldlber. The .first argument speci'fies a term which is 
formatted using the operator declarations (as for 
write.) and placed in the output buf:ter f-.or the given 
file. If the bu£fer is filled then it is written to 

/ 

the ~iven file (and emptie~•• If the buffer ls 
partially :filled then it is not written out. Note that / · -~ 
the readch an;! wr i tech predicates are not s-:,ilctt ricat. i.!.1•nc1w\Jh.,i_t:-0f, 
The writech predicate can be used to write a single 
character but it is conslder~bly more general than 
readch. 

newline is a predicate with one optional argument. 
T~ the .fil.e ldentict:,i.e,!'.~ T,+ -ue t.i::.e writes 
the current output bu1f~P to the given file and empties 
the bui':f er. newline is uae(t in conjunct ion w l th 
writeche For example, ~he goal statement: 

<-writech('on 1 ) ~ writech(one) e, 
wrltech(' line.•) i:; newline. 

causes the following to be written on the terminal: 
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on one line. 

Note that this output is 

the cal. l 
identical to that produced by 

<-write( 1 on one line'). 
or by the call 

<-writech( 'on o 1 ) e write(• ne line 1 ). 

1ileclose is a predicate with one argument a 

file identitier. illeclose may be used tu logic~lty 
close a file so that it ~ay be reread from the 
beginning. Note that when a file is used for input 
a1ter output, the ±ile is automatically closed so that 
the tirst input will be Lrom the beginning 0£ the file. 
In a similar manner, output after input will cause an 
automatic close. Output to ~n existing 1ile wilt be 
appended to the end of the file. 

tab is a predicate with one or two arguments. 
second argument is the optional file identifier. 
~irst arvument must be a non-negative integer. 
speci1ies the nu~ber of blauks to be written on 
output .fl le. 

The 
The 
It 

1:he 

TherP are several predicates which are included to 

provide the ~a.sic operations of integer arithmetic. 
Each predicate has three argu~ents. The first 1:wu are 
the input parameters and the last is the result 
parameter. The 1irst two argu~ents Aust be Integers. 
The appropriate Integer function of the ~irst ar~uments 
is unli led with the third argument• 

The arithmetic predicates are: 
cliff difference (subtraction) 
prod 
o:uot 
rem 
su,m 

: --~ j<._,.! ,~ 'i 

product 
quotient 
rema inde.r 
sum 

The following 
calculates the 

.1.xioras define a 

fa.c tori al function 
argul.Aen t. 

fa.ct( O, 1 ). 
fact( X,Y )<- dlff( X,l,Xl) t,, 

:fact(Xl,Yl) & 
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The 
pro,:.t( X, Y1, Y ) • 

.t:ollow-ing calls succeed! 
<-dlff( J, 2, 1) • 
<-prod(lu,20,200). 
<-quot(205,L0,20). 
<-re1a( 205, 10, 5 ). 
< - s urll( 1 , 2 u , 2 1 ) • 

C:-

The database built-in predicates provide the 
facility for updating the data.base ( i.e. the set 0£ 
axioms in the active workspace). The uredicates 
provided are addax, ax, axn, control, delax, op and 
.freeax_. 

The addax predicate is used to add an axio~ to the 
database. It has one or two argu•ents. The £irst 
argument must be a. va 1 id ax 10111- 1 t m.a.y he: 

(a) a unit axiom. Iu this case it ls a skeleton ·or 
an atom. 

( b) a non-unit axio,n. In this case it is of the 
form <head>(-<bo~y>. <head> must be a 
skeleton or atom. 

The axiom specified by the ~irst argu~ent is added to 
the database. If a single argument is speci£ied then 
the axiom ls a1ded a.fter al~ other axioms with the same 
predicate name and number of argument3. If the second 
~rgument is speci£ied it must be an integer or a 
variable. We first explain the case o~ a call with two 
argumen·ts where the second is an integer. This integer 
speci.fies where this axiom is to be added, as an index 
in the list of all axioms 1or the same predicate name 
and number of dr~uments. Consider the following list 
o.f axioms: 

a( 1 ) • 
a( 2 )<-b. 
a( X )<-c( X ). 

a( 4 ). 
If the predicate call <-addax(a(m)). or 

<-addax(a(m),5). or <-addax(a{m),100). were issued then 
1:he new 13st woul.d be: 

a( 1) • 
a( 2 )<-b. 

a(X )(-c( X ). 
a( 4 ). 
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a( m ). 
11 the call <-addax(a(q),1). 
would become: 

a( q.>. 
a( ( >• 
a( 2 )<-b. 
a ( X ><-ct X ) • 
a( 4 ). 
a( m ). 

were then issued the list 

The index specified gives the index in the List where 
the axiom is to oe added. If the index is 1 or less 
then the axio~ is added before the £irst axiom in the 
list. Similarly i~ the index 13 greater than the index 
of the tast axiom then the new axiom is added at the 
end 0£ the list. 

If addax ls called with a second argument of a 
variable, the axiom specified by the first argument is 
added at the end of the 11st and its index is then 
unified with the second arguaaen t. 

The delax predicate is ~sed ~o delete an axiom 
from the datanase. It may be called with one or two 
arguaents. The .first argu1Jtent is a term representing an 
axiom. The 1lrst argument may be: 

(a) a unit axiom• ln this case it is a skeleton or 
ato'4• 

( b) a non-unit axiom. la this 
form <head><-<body>. 
skeleton or atom. 

case it is of the 
<head> must be a 

Thus the first argument speci£ies the name and 
uwaber of arguments for the J.x.iom to be deleted. I.f 
only one argument is specifie~ then an attempt is •ade 
to unify 'the argwnent with ed.cn o.:f the relevant axioms 
in the database. The axioms are se1ected lo the order 
in which they appear in the database. If no axiom ls 
found which ls uniriable with the first argument then 
the predicate fails. If the unification succeeds for an 
axiom then the axiom is deleted and the predicate 
succeeds. If backtracking subsequently returns to this 
point then tne ~redicate will fall, thus preventing 
accidental deletion 0£ further axioms. 

Ti' 'two arguments are speci.fied then the second 
argl.llllent is considered to be the axiom index. It may be 
a variable or an integer. The attempts to uni£y the 
£irst argument with the database axlo~s.~ruceeds as in 
the case o.f one argument. If the C§.!:t_~at)_ory succeeds 
:for a given axiom then an atte~pt is ~a.de to unify the 
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axiom index with the second ~r~ument. If the attempt 
±alls then the search through the axioms is resumed. [f 

the a~tempt succeeds then the axiom is deleted and the 
predicate succ ee,Ls. I:r bac« tracking subsequent l.y 
returns to this point then the predicate will ~ail. 

The ox and axn predicates are used to retrieve 
axioms from the database. The axu predicate retrieves 
axioms using the r>redicate name and number of 
arguments. The ax predicate retrieves axioms using a 
model axiom head. 

The axn predicate has either 0£ the two ~ollowiug 
:formats: 

axn( <name>,<nargs>,<axlo~> ) 
axn{ <na~e>,<nargs>,<axiom>,<index> ) 

The predicate call axn(c,2,~) will cause A to be 
uni.fled with the £irst axio:n :for predicate c with 2 
argulllen1:s. 11' there are it,'?,, axio,ns for c with two 
arguments then ~it~ •••ld fall• I :f the call 
succeeds and backtracking subsequently returns to this 
point then an attempt will be m~de to unify A with the 
next axiom 1or c ~ith two ~rguments, and so on• The 
pre::Hcate call axn(c,2,A,[) functions L1entically 
excep~ that when th~ call succ~eds, r is uni1ied with 
the index o1 the axio• uni£ied with A. Similarly the 
call axn(c,2,A,J) will retrieve the third axiom 1or c 
with two argaments, if one exists. The predicate call 
axn(c,N 1 A) will unify~ with O and uniZy A with the 
.tirst axiom .for c with O arguments. [f this 
uniJ'icatlon :tails or back.tracking returns 'to this point 
then the next ~xiom £or c with O argusents is seleeted. 
When all axioms t:ur c with O argU&len1:s are exhausted 
then N is unified with 1 and the axioms for c with 1 
argu,aent are retrieved in turn. This process can 
continue until. a1.L the axioms :tor c have been examined. 
The fourth index argument ,11a.y he inc1.u.:ied and i 1: 

£unctions analogously to the previous case. For example 
~he goal state~ent: 

list~ all axloms for predicate f. 

The goal statement: 
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<-axn{1,N,*,l)&write(N)S1ail. 

writes ou.t the di~ferent number of arguments for 
which 1 has au axiom• 

The call axn(Name,N,A) can be used to exa~ine the 
axioms for each predicate name in turn. First a 
predicate name is selected .from the database and 
unified with the :first argwaent. Then each o:f the 
axioms 1or this preulcate are examined in turn as in 
the previous exaraplei:;. A.tter the last axioa1 i'.or the 
given name is examined then the first argument will be 
uni:fied with another name in the database and the 
search will continue. The order in which the predicate 
names are examined is not readily predictable since it 
depends on the hashing algorithm ox this 
implementation. Consequently this order should be 
considered to be arbitrary. The :tollowing goal 
statement will cause all axioas in the database to be 
listed: 

<-axn(*,*,A)~wr1te(A)~:fail. 

Tbe ax predicate £unctions in a uanner very 
similar to the axn predicate. Again there are two basic 
:tormats: 

ax(<head>,<axiom>). 
ax{<head>,<axiom>,<index>). 

<axiom> and <index> d.re treated exactly as for the axn 
pre~icate. <head> is a model axiom head and may be a 
skeleton, an atom or a variable. If <head> is not a 
variable then lt specifies a predicate name and number 
of <l.rgu.ments impl.icitly. The axioms -for this name and 
number o:f argu1ne11ts are exa,ained as for a.xn. If <head> 
is a variable then all axioms in the databaRe are 
examined in turn as for axn<*,*,A). Ir an axiom 
uni£ies with the specified axiom then a model 0£ the 
axiom head ls unified with the first argument. Hy a 
model we mean 
all arguments .• 

a skeleton with anonymous va.riables for 
The ~odel idea is introduced so that a 

theorem prover written 
the axioms relevant 
actually unifying the 
term. 

in P~OLOG may use ax to retrieve 
to a predicate term without 

axiom head and the predicate 

The op predicate is 
declarations. Tts use was 

used to manipulate operator 
introduced in~-~~ Syntax 
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.J..n Q.tllll• A!ding a unit axiom for the op predicate 
(wlth J arguments) is.equivalent to adding an operator 
decl.aration. Slmila.rty, del.eting a unit op axiom 
deletes the operator declaration represented. Thus one 
can delete an operator declaration with a call of the 
:form: 

de lax( op( <operator>, (type>, (priority>))• 
where: 

<operator> is an atom identi1yiug the operator. 
<type> is an atom specifying the declaration type and 

may be any one of lr,rl,prefix or su11ix. 
(priority> may be an integer or a variable. 
11 a matc~ing &ecL~ration is found it is deleted. 

A ca~l to the op predicate may he used to retrieve 
an operator ~eclaratlon• For example, the call 
op(.,rl,P) s~cc~eds if"•" is declared as rt. In this 
case P would be unified with the priority. The call 
op(.,T,P) succeeds if there is an operator declaration 
Lor"•" The ro,towing goal sta~ement will list all. 
prefix operators: 

<-op(Op,pre~ix,*)~write(Op)Sfall. 
In this case backtracking to the op predicate cal.L 
causes each prefi~ declaration to be retrieved in turn. 
Note that the order in which the declarations are 
retrieve~ is pseudo-random and not the order in which 
the original declarations were added. However, if an 
operator is declared aB both pre1ix and in1ix, the 
prefix declaration ls always retrieved first. The 
following goal statement will List all operator 
dee t.ara tions: 

<-op(Op1 T,P)&write(op{Op,T,P))Sfail. 

The contro~ predicate ls used to provide some 
special ~lobal variable facilities. The control 
predicate has two arguments, a lut~ an(t a ~~• For 
example, the cal~ <-control(top,X) retrieves the result 
corresponding to Key top and unifies this result with 
x. The key and result pairs are manipulated in a 
fashion similar to operator declarations. To add a key
resul~ pair, an axiom 1or control ls added. Adding the 
axiom controL(top,3) records result 3 for the key top. 
Only one pair can be recorded .for any key value. I :f a 
pair exists with the same key ~s one being added, then 
the previous pair ls replaced. The keY must be an atom. 
The result assocl~ted with the key must be an atom or 
an integer. A key-result pal r may be deleted by 
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deleting the appropriate axiom for tbe control 
predicate. For example <-detax(control( top,*)) will 
delete the key-result pal r wl th key top. A. subsequent 
catt of the for~ <-control(top,*) would fail since no 
pair exist~. The call <-deldx(control( top,99)) would 
succ~ed only if the key-result pair of top-99 ls 
currently recorded. The key-result pairs recorded in 
the data base may be queried in a manner similar to 
that used 1or operator declarations. For example: 

<-control{K,R)Swrite(K.R)~£all. 
lists all k.ey-resul.t pairs iu the data base. 

<-coutrot( K,99 )&write( K )&fall. 
tlsts all keys with d result of 99. 

<-control( i, t< )G@ R, 1, R2 )Gaddax( control( i, R2) •• 
• 5'..t.+n' 
1ncrements the result integer corresponding to key 1. 

The control built-in predicate ls also used with 
certain special keys to control system options. If the 
key verbose has an associated result of on the~ the 
system lists any 4oal sta.te~ents whlch succeed. The 
goal statement <-<goal conjunction> is written in the 
£orm <goal conjunction><-, displaying any 
instantla~ions made for variables in the proof. The 
goal. statement <-sum( 2,2,*) ca.uses sum( 2,2,4)(- to be 
•ritten on the terminal. lf the key veroose does not 
have reoult on, then a success£ul goal statement is not 
listed. 

1£ the key noax has an 

then the system indicates each 
associated result 0£ on 
call to a predicate for 

which there are no axioms (and no compiled routines). 
For each such ca~l a message 
nn" ls displayed. xxxxx is 
name and nn is replaced by 
With this %eature, the goal 
causes the ~ollowlng messages 

noax sum 2 
noax - prodq 3 
? 

of the form "noax - xxxxx 
raplaced oy the predicate 

the number of arguments. 
<-sum(l,2.J)lprodq(J,4,12) 

to be displayed: 

This feature is initially enabled and illay be disabled 
by deleting the control(noax,on) dxlom or adding 
control(noax,o.ff). To enhance the usability of this 
feature, the fail predicate (with no arguments) is 
included as a built-in predicate which always fails. 
Thus spurious mess~ges o~ the ~orm noax - ~ail Oare 
avoided. 
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The key lower ls used to control the translation 
o1 input froa the main input stream. IL lower is set to 
on then Lower case letters 1ro• the terminal are input 
as lower case. I~ lower is not set to on then lower 
case lett~rs from the terminal are translated to upper 
case as they are input. The initial setting of lower is 
determined based on the mode o:f operation when PPOLOG 
is inltia~ed. If single uppercase ~etters are assumed 
to be varlabl~s(the de1ault} 1 then Lower is initially 
set to on. J1 variables can be designated only by using 
an asterisk, then lower is initially set to off. 

The key goa~input can be used to control the input 
.format of goats ve.rsus axioms. I:f goalinput is set to 
on then input terms are assu.aed to speci:fy goals. The 
period character is declared as a prefix operator with 
the single initlaL axioru H( .(X) )<-addax( X) 11 • Thus with 
goalinput set to on, axioms may be added to the data 
base by entering them with a perio~ prefix. With 
goalinput set of~, all input terms are assumed to be 
axio~s u~less they have a ~nary •<-• as the main 
skeleton. go~linput is initially set to on. To make 
the input of axioms a nit more flexible when goalinput 
is on, tt,e ±ollovting axiom is provided in the initial 
data base: 

(X(-Y)(-a~dax(X(-Y). 
This odd looking axiom makes the initial period 
optional for non-unit axioms. period(or more formally 
"unless the input term ls an instance of a skeleton for 
• • • with one arp;ument 11 ). Ter.as prece,.ied by the period 
8-::t$ .l.Ssumed to be axioms. 
~, The £reeax_ pre~icate (yes it does end in an 
underscore!) ls normally of use only in very 
specialized ins1:a.nces, usu.:s.l.ly when writing second 
level interpreters in PROLOG. When using a second level 
interpreter which •never finishes•, certain anomalies 
occur in the recovery oL space from deleted axioms. 
When an axiom is deleted in a proof, the space ~or the 
axiom is placed on a 'deferred Lree list•. The space is 
not ~reed dlrect~y since the axiom may still. be used in 
the proof. Space on this deLerred £ree list is freed 
when the proo1 is completed. Thus in a second level 
interpreter whlclt is continually adding and deleting 
axlo•s, a large deferred free list may be built up and 
the interpreter ca.n run out o.f space. To provide f'or 
thls situation, the 1reeax_ predicate ls provided. 
Invoking the freeax_ goal causes all space on the 

j 
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deLerred ~ree list to be Lreed. ft is the 
responsibility ot the pro~rammer to ensure that the 
current proof does not contain any references to freed 
axio•s• Otherwise, disastrous results are likely! 

The execution control predicates provide 

£acllitle~ for testing ilnd controlling the progress of 
a proof. The ancestor, retry, I, &, I, repeat, fail, 
error, ~ttn, stop and trace predicates a.re included and 
the meta~variable £acility is also provided. 

The J2!U:!Ul.!. of a given literal in a proof is the 
literal which Invoked th• axiom containing the given 
literal. In the implication tree describing the proof, 
the parent literal labels the node above that labelled 
with the ~lteral. The ancestor5 o1 a literal include 
its parent and its parent's ancestors. The ancestor 
predicdte is used to examine the ancestors o~ the 
Literal which invoked the pre1lcate. When ancestor is 
used with one argument, the argument is ~nified with 
the most recent ancestor ~or which this is possible. If 
the argu.uent cannot l>e uniJ.'.leiJ with any ancestor, the 
predicate 1alls. Ir the predicate succeeds and 
subsequently backtracking returns to this point in the 
proo1• the argument is uniried with the next most 
recent ancestor and so on. The 1ollowing axiom wilt 
list all o~ the ancestors ol the ancestor literal and 
then fail. 

listanc<-anLestor(A)&write(A)~fail. 
first ancestor listed wilt be listanc. 

When the ancestor predicate ls 
a.rgv.ments the first a.rgu,aent functions 

Note that the 

used with two 
in the ,;a.me way 

as the single ar~ument above. The secoud argument ls 
the ancesto~ index. For~ given literal the ancestor 
index of its parent is 1, the ance3tor index of its 
parent's parent is 2, etc. The first argument is 
uni£i~d with each ancestor in turn as above. If this 
uni1lcation is success~ul then the second argument ls 
uni£ied with the current ancestor index. The following 
axiom will list the five ~ost recent ancestors of the 
ancestor literal: 

llstanc2<-ancestor(A,N)~write(A)~eq(N,5). 

The retry predicate is provided to fa.cl tit ate 
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recovery 1rom an error situation. After a correction 
has ueen made~ the prooX may he restart~d ±rom some 
point before the error. ~etry h4S one or two arguments 
which control a search through the ancestors exactly aR 
tor ancestor. The ditference is the action taken upon 
success. Jf an appropriate ~ncestor is 1ound, the proof 
is bacKed up to the poiut where the subproof for the 
ancestor literal began and th• proof is re~tarted from 
that poin~. retry restore3 the proof to the state it 
had at a partlcuLar point ln the past. Consequently 
retry is only useful when so~e change has been made to 
the axiom@. 

The slash predicate *1th no argument8 was 

described 1n .2,.a_ ~RQ!.QQ ~1Ui..2.ll. and .!!a,cktra&Jii..!l&• 
The slash predicate ls also provided in a ~ore general 
1or& with either one or two arguments. The arguments 
control a search through the ancestors exactly ae for 
ances~or and retry. If this search tails then the 
predicate t'ails. If the search succeeds then certain 
available choices are eliminated fro• an existing 
portion of the proo.1. All choice points are reuiove,1 in 
the part of the proo£ from the point of ~election of 
the given ancestor literal to the current point in the 
proof. Thus a call ot the form/(*) has exactly the 
same effect as the simple nulLary / call. Consider the 
~ollowing example: 

' a<-bSc&d. 
b<-e. 
c<-f6~• 
e. 
f. 
g(-/(c)Sh. 
<-a • 
••• 

The impLl~ation tree has the 
unary sla8h ls called: 
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goal 
I 
a 

I \ 
I \ 

I \ 
b C d 

I \ 
I \ 

e f {:," .. 
X. X \ 

\ 
/{ C ) h 

All choice points 1rom the selection of c(-f8g onward 
are eliminated. Thus if h falls an alternate prooL ~or 
e will be attempted (and the subproo£ of c will be 
deleted). 

The ~et4 variable facility allows a variable to be 
used in place of a literal in a goat or in the body of 
an axloaa. When the variable i,;; encountered in a proof 
it must be bound to a liter~!. The proof proceeds as if 
this literal occurred instead oL the variable. For 
example, the rolLowing axiom de£ines a predicate exec 
which reads~ term and "executes" it. 

exec<-read(X)~X. 

Axioms are included for the S(*,*) 
predicates. The axioms £or I ara: 

l<X,Y><-x. 
J(X,Y)(-y. 

and the I ( *, * ) 

These axioms allow alternatives to be speci1ied in an 
axiom body or goal with the desired eLfect. The axiom 
J:or i;; is: 

S( X,Y )<-,;c X,Y ). 
This axiom may look a bit ridiculous but it is useful, 
particularly wheu using the ~et~ varl~ble facility. For 
instance, if as input to the exec axio~ above, a~b is 
specified, then this axiom for~ would be invoked and a 
and then h would De called. 

The fail predicate (with no arguments) is provided 
as a bullt-in predicd.te which always -fails. This 
predicate is provided even tho~gh providing no axioms 
~or £ail woulJ yield a prddicate which always £ails. 
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The reasons ~or providing sJch a predicate are: 
(a) The ~ail predicate gives a standard na~e 1or a 

predicate which d. lwa.ys fails. This imµo=:;es a 
programming standard which may improve program 
readability. This standard predicate could also 
make it easier for a. co~piler to perform certain 
optimizations. 

(b) fhe provision of the built-in fail predicate makes 
the NOax reature 0£ the control fea.ture more 
use~ul. Reier to the description of ~he control 
pre,tJcate in a.s: Database ~!tStlcates -for further 
detalls. 
The stop pr..,:.iica.te is used to leave the PROLOG 

system. The execution oL the stop predicate terminates 
the PROLOG session aud retJrns to the operating system. 
All axioms ant operator declarations in the current 
worKspace are lost. 

The repeat predicate can be used with zero to 1our 
ar~uments to per~orm loopin~ in a proof. Repeat with no 
arguments succeeJs initially and always succeeds on 
bacKtrackJng. Thus it Cdn be used to loop indefinitely. 
The loop can be terminated only through use of the/ or 
retry predicates. Repedt wi~h one ar~u~ent provides a 
similar looping facility out also maintains a loop. 
counter. The argument ls first uni£ied with 1 and then 
to 2 on backtrackinK, etc. Again the loop can be 
terminated through/ or retry. The second, third and 
fourth arvuments of repeat can be used to specify an 
initial value, a stopping value and a step value, 
respectively. If any o± these arau~ents are speci£ied 
then they •ust be integers. The second para~eter 
speci11es the first value to be us~d for the counter. 
I.f this para.,aeter is omitted, then the starting value 
is assumed to be 1, as described d.bove. The third 
parameter is the stopping value. When the Loop counter 
exceeds this value, the repeat predicate fails. The 
fourth parameter specifies the increment or step value~ 
I£ it is omitted, then 1 ls assumed. A negative step 
value may be specified, in which case the loop 
continues until the cou.nter is less tha.n the s1:opping 
value. Note that comparison to the stopping value is 
made on initial entry to repeat, so that the predicate 
may fail the Lirst time if the stopping value is less 
than the initial value. 

The error built-in predicate ~ifLers from the 
o~her predicates in the syste~ in th4t it is not a 
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built-in predicate de1inition hut a special lnterrace 
which can be used to call a user-defined predicate. The 
error predicate (with no argu~ents) is called when 
certain non-disastrous errors occur in a proof. A 
message describing the error is always printed before 
invo1'.lng I error•• The user u1ay provide any axioms 
desired ~o list ancestors, allow axioms to be 
corrected, or to simply give up. A useful set of axioms 
i'or error are included in the standard s.et o.l axioms 
loaded wi~h the PROLOG system. These axioms are de1ined 
in .&mliUl,U.x ll : I.llit PR OLOG il!i£ llh 

The attn built-in predicate is analo 5 ous to the 
error predicate. The attn predicate is called when the 
a.ttfention or break key ls pressed on the terminal.. 
User axioms may be added for attn to provide whatever 
exception handling is desired. The standard set of 
axloillS in the P:ROLOG EXEC :file invoke the axioms .for 
error when attn is called(iee the axiom for attn ls 
1 attn <- error' ,. 

The trace built-in predicate provi~es special 
~eatures for debuggin• PROLOG progr~ms. It allows 
execution tracing to be enabled or disabled on a 
predicate by predic~te basis. The trace predicate 
1unctlons in a ~anner si~ilar to the op predicate, in 
that axioms Lor trace can be added, tested or deleted 
and the presence of trace a.xioittS ...li/. side ei'.fects. If 
the data base cootdins an axiow o1 the form •trace{P) 1 

where P is the name of a predicate, then tracing is 
enabled £or alt attempts to prove goals with predicate 
name P. 

The actual traclng functions to be performed can 
be de11ned by user axioms. The standard PROLOG EXEC 
1ile Includes axioms which WPite out the 1 position 1 and 
the • goal' f'or a traced predicate. Four I posl tlons 1 

are defined, namely •call' 'exit' 1 redo 1 and 1 fait 1 • 

The •call' position occurs when the goal is initially 
attempted, before any unification has taken place. The 
•exit• position occurs a:fter the goal has been 
successfully proven. At the exit point, the goal has 
been unified with an axiom head and the axiom body has 
ueen executed. The 1 redo 1 position occurs when 
backtracking returns to the goal, before the attempt 
has been made to reprove tha goal. The 1 1ail.' position 
occurs after a final unsuccessful. attea1pt has been made 
to prove the goal. 

Enabling tr~cing :for the ,goal 'Goal' causes 
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execu~ion to proceed as though t(Goal, became the goal, 
where t has the iollowin~ axioms: 

t(Goal) <- systrace_(call,Goal) ~ 
Coal & 
( systrace_(exit,Goal} 

systrace_(re{fo,Goal )j. 
t(Goall <- systrace_(fail,Goal). 

These axioms will cause the systrace_ axiom to be 
invoked at each of the four positions in proving the 
goal. Note that for this to work currectly, the 
systrace_ goal must succeed for positions call. and exit 
and must fail ~or positions redo and fail. The normal 
axioms £or systrace_ (which are include~ in the 
standard PROLOQ EXEC 1ile) are as fo~Lows: 

systrace_(Position,Goal) <
systrace(Position,Goal t S 
-fail. 

sys trace_( call., Goal). 
sys trace_( exit, Goal). 

The user may then define the systrace predicate to 
write anyth in.g de.sired or even 1>romp t for user 
direction• The PROLOG EXEC £ile contains the single 
ax.io1a: 

systrace(Posltion,Goal) <- writech{ Position) 6 
tab( l) :; 

write( Goa. l ). 

This axiom may be deleted or preceded by another user 
axiom to modify tbe output :format. For exampte,if the 
following axiom ls added prior to the axiom above, then 
the •call' position will be traced by a. user trace 
routine: 

systrace(ca.ll,Goal) <- / i; trace_catllGoal). 

In general, the user may find 
dl1£erent axioAs ~or systrace, 
should be left unchanged. 
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The miscel~aneous group includes µredicates to 
test the collating sequence of constants, to test if a 
symbol is a letter or a digit, and tu convert a 
character to or from uppercase. In ~ddition a system 
predicate ls provided to execute operating system 
commands. A collating sequence is de~ined for the 
values of constants as 1ollows: 

(a) Any atom is less than any integer. 
(a) Inte•ers are related by the conventional 

ordering for inte•ers. 
(c) Atoms are ordered by the lexical ordering 

imposed when the ordering of the symbols is 
as defined by the standard EBCDIC orderings. 

Six buil~-in predicates are provided to test the 
rel at Ion between two constants• Each µredlca te has two 
arguments, both of which inu~t be constants. The 
relations which cause each predicate to succeed are 
1. isted below. 

isles~ than argument 2 tt - argument l 
l.e - argument 1 

2 
is less than or equal to argument 

gt 
ge 

eq 

ne 

- argument 1 
argument 1 

arg,.u1ent 2 
argument 1 

- argument l 

ls greater than argument 2 
is gre~ter than or equal 

is eqaaL to argument 2 
is not equal to argument 2 

Exampl.es: The following predicate calls succeed. 
<-lt<a,37). 
<-gt(J,'-2' ). 
<-ge( a.3,a) • 
<-ne( abc,c ). 
<-eq( • abc' , abc , • 

<-eq( 12,•+0012• >• 

to 

The predicates ~etter aud digit each have one 
argument. The argu!llent ;11ust be a const;1nt. The 
predicates tes~ if the value of the constant ls a 
single symbol belonging to the given class. 11 ♦ he 

ar~ument of letter is a constant consisting or a single 
letter then the call succeeds. Ir the argument of digit 
is an in~eger from O to 9 inclusive then the caLl 
succeeds. The upshiJ'. t predicate has two a.rgumen1:s, of 
which at least one roust be A constant. If the first 
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argument ls a single lowercase letter, then the second 
ar~ument is.unified with the uppercase constant for the 
same letter. If the first argument ls a skeleton or a 
constant other than a lowercase letter, then the 
predicate fails. ln the remaining case(where the first 
ar~u1aent is a free va.riaote ), the predicate will 
succeed only 1 f the second <.1.r1_,;umen t is an uppercase 
Letter. In this case the first argument will be uni.fled 
with the lowercase constant for the same letter. 
Examples: The following predicate call3 succeed 

<-letter( z ). 
<-diadt(O). 
<-digit( •+OC,01 1 >• 
<-upshift( *,'A'>• 
<-upshift( 1 a 1 ,* >• 
<-upshift( 'z', 1 Z • ). 

The system predicate allows CMS coinmands to be 

executed fro~ the PROLOG environment. It may be invoked 
with one or two ar~uments. Th~ Lirst argument speci:1'ies 
the command to be executed. The second argument is 
optional. It pr~sent, it is unl1ied with the integer 
:return code :frow the CMS co,11mand. I:1' the second 
argu•ent is not present then the return code is 
ignored. The co~mand to be executed is speci£ied as a 
List of one er more constants. Each constant 
corresponds to oue token in the CMS command. Tokens may 
be no more than eight characters ~ong. In order to 
invo~e CP comAands, simply use an initial token o1 cp. 
Note that all lower cdse letters in tokens are 
automatically bhlfted to uppercase. The le£t 
pa.r~nthes is p~eding the options is a separate token. 
The .foltowing(__~alld cal.Ls to system: 

<-syste,11( print.prolog.e.lCec .ni 1 ). 
<-system(t.•••.prolog.nil,Returncode). 
<-syste•(cp.q.users.nlt). 
<-system(t.prolog.maclib. 1 (•.memoer.xxxxxx.nll). 
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The Waterloo PWOLOG system is invoked ±rom the 
VM/CMS environment by typing the comm4nd PHOLOG. This 
command invokes the PROLOG EXEC file and ~ubsequently 
the PROLOG module. The EXEC file supports several 
options as well as defining numerous utility 
predicates. The EXEC 1ile is described in detail in 
Appendix H. 

A typical. Pl-lOLOG seasion involves executing goals 
and adding and deleting 4Xio~s. The ~ormat 0£ entry for 
axioms versus goals can be control~ed. The standard 
system starts in what is called "goalinput" mode. In 
this mode, any term that is input ls assu~ed to be a 
goal, unless l t is in the format n.( ••• )", in which 
case the term ls assumed to be an axiom to add to the 
database. In £act "•" is treated as a predicate with 
the single axiom "(.(Goal)) <- addadGoal)•"• 
Consequen-tly l n goal 1 nput mode all input tertns are 
treated as goals. l:t goatlnput mode is turned off then 
goals must be e~tered in the format "(-(Goal)"• This 
mode o:f o,,era ti on i fi more verbose l f numerous go a ls are 
being entered, so the goalinput ~ode is normally 
preferred. The description of the control axiom in 1•§ 
.lul:!Jl!!A~ Preg.icates outlinea how to turn the goalinput 
mode on and off. 
always descrlberl 

Note that in this manual, goals are 
in the "(-(Goal)" syntax for clarity 

o1 explanation• When axioms are stored in a file, they 
are normally stored without the"•" prefix. The consult 
predicate (descrlbed in detail in At>pendix B) can be 
used to read the axioms from a file and add them to the 
data base. In addition, the com;ult predicate will 
treat any terms in the tile in the for~at "(-(Goal)" as 
goats and execute them. Note that when entering axioms 
or goals 'in a f: 1 le or from the ter111ina.t, they must 
a \.ways be termina"ted with a do-t which ls el ther the 
last character in the record or is followed by a blank. 

The ted predicate can ba used to update tiles of 
axioms wh~n errors are detected. The axioms may then be 
reloaded using the reconsult predicate. 

To exit the PROLOG environ;nent completely, use the 
stop predicate. Simply type •stop•'• The attention or 
break key on the terminal may be used to interrupt a 
PROLOG program. I~ att~ntion or break is signalled 
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duriuM a proo£ or in response to a READ £rom a PROLOG 
axiom, then three exclamations points are written on 
the terminal and the attn axio~ is called. Axioms for 
~ttn aay be defined by the user. A standard set of 
tt.xioms for attn is described in An.ruuu!a 11 : .Illit PRO!,OG 
g,1£Q :ti Le. 

The PROLOG system also includes facilities for 
tracing program execution, in or.:ter to aid in 
debugging. This .facility is enabled .for predicate P by 
adding an axiom 1 trace(P) 1 • Note that trace has a 
slngt.e ar~ument- which must be an atom. When trace is 
enabled for a preuicate, in conjunction with the 
standard FXEC file, the progress o1 proving a ~oat ~or 
the predicate will display the goal at each o1 four 
positions. These positions, as well as the functioning 
of trace are described in detail in a.~ Exe£~tl2n 
~5?n~1 ~~!ti.£.~ll.~ in conjunction with the trace 
predicate. 

The PROLOG input/output predicates provide 
facilities ±or reading and writing CMS file~. All ~Iles 
which are accessed are assumed to have a 1iletype 0£ 

PROLOG and to have £ixed records with a length 0£ 80 
characters. When reading from files, a blank mode 
letter is used so that the normal CMS search order is 
invoked. When updating 1iles a mode letter of •A• ls 
used. Consequently, PROLOG programs can update files 
on the A-disk only. 
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The Waterloo PROLOG system is invoked 1rom the 
VM/CMS environmeut by typing the com,~nd PHOLOG. This 
com111a.nd causes the PROLOG EXEC fl le to be executed and 
the PROLOG MODULL to be invoked from the EXEC file. The 
EXEC :file allows several options when invoKing PROLOG. 
The first option controls the size of the data area 
acquired hy PROLOG for execution. Thia area will be 
used to contain all axioms as well as the execution 
stack. The size of the area ls specified as the number 
o1 1024 byte blocks of memory to be used. If no size is 
specliied, then 100 is assumed. The Lor~at 1or 
specifyin~ the size is: 

P~OLOG nun 

where nnn is the desired size. 
In addition, a list 0£ iiLe names separated by 

b la.n\'-s may be spec i :f i ed as an ope rand,. A xio!lls and goals 
will be read from each of these files in turn, using 
the consult verb defined below. For example the 
conuna.nd Pl?OLOG DATAl DATA2 will invoke PROLOG and use 
consult -to loa'.t axio1ns from £Ile DAT,\,l and then OATA2. 
The workspace size operand may also be used in 
conjunction with the files list by specifying the size 
parameter first,as in "PHOLOG 2000 DATA! DATA2"• 

The PROLOJ bXEC ~ile also contains a set o~ axioms 
that are added to the initial PROLOG dJ.tabase. These 
axio~s provide various utility functions, including the 
consult ~unctlou described above. Each predicate 
defined in the EXEC file is described below. 

The consult predicate has a single operand which 
is the name of a file of go~ls and axioms. Each term in 
the file is read. A term 0£ the form"<-<•••)" is 
executed as a goal. All other terms are added to the 
database as axioms. When the end of the £Ile is 
reached, the file is closed. 

The reconsult predicate ~unctions similarly to the 
consult predlc~te except that it de~etes any existing 
axioms for the predicates which 
addin~ the axioms in the file. 
control are treat~d dl1~erently, 

are read in, before 
Axio~s for op and 

in that the existing 
axioms for these predicates are not deleted. 
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The list predicate is 
de~lnitions krom the databsse. 

used to 
If it is 

list a.x iom 
used with no 

arguments or wltb a single variable as an argunaent then 
all axioms in the database are listed. The list 
predicate may also be used with a predicate naAe as an 
argument +o list the axioms for th~t predicate. For 
exa~ple, "list(compute)" will list all axioms for 
predicate compute, with ~ny number of ar~uments. 

The delaxa11 predicate is use:i to delete all 
axioms for a ~iven predicate. delaxall is invoked with 
the predJcata na,ne as an argument. For example 
"delaxall(co~pute)" will 1elete all axioms for 
predicate compute. 

The error predicate is "built-in" in the sense th~ 
it is executed whenever certain errors occur. The 
PROLOG system provides this error recovery interface to 
allow the user to investig.i.te the state o.f the proo:f 
and -take appropriate recovery action. The set of 
predicate~ included :for error handling in the exec file 
vrovide the following 1unctions: 

when the error predicate is invoked, the ancestors of 
the error predicate are listed, in ascending 
order. The number 0£ · ancestors listed ls 
con-trolled hy a.ddi ng the a.x iom 
"control( errordepth,X )H where X is a positive 
lntever. The EXEC tile sets the initial errordepth 
-to s. 

a1ter the ancestors are listed, the user is prompted 
to enter a command. The comnand entered may be any 
valid goal. The goal is executed and the success 
or failure oL the goal is indicated by the '?' or 
•<-• respohses. The u~er is then prompted 1or 
another command. The most common commands used at 
this point a.re "quit" to terminate ~he proor, 
fladdax" or "delax" to correct the data.base and 
"retry(X)" to retry goal X after a correction has 
been made. 

The error axioms also check Lor the condition of an 
error within 4n error and do not print the ~ncestors in 
this case. 

The quit predicate ls used prim4rily in error 
recovery. It terminates the proof and returns to PROLOG 
comm.and level. 
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The 
to the 
executed 
ciurinlZ a 
the exec 
provide 
recovery. 

attn pred:icate is a hui tt-in 11 hooktt analogous 
"error" predic~te. The attn predicate is 
when the attention(or nreak) key is pressed 
PROLOG proor. The axiom for attn defined in 
file simply invokes the error predicate to 

exactly the sa~e facilities as error tor 

The ted predicate can 
transient editor trom the 
example 11 teu(blocks)" will 

be used to invoke the CMS 
P~OLOG environment. For 
edit the ~ile blocks and 

then return to PkOLOG~ 
The, predicate definition is included to handle 

negation. The goal -.(Pred) wilL succeed i:f and only if 
the goal "Predn fails. Note that when -. succeeds it 
doesn't bind any variables. 

'The syst racE: predicate is invoke~t as r>a rt of the 
tracing facility. It is described in more detail in 
a.ti Ii1uua1!i.211 !:Wl..!.1:2.l. Pi:~d ico, t~~ in conjunc tlon with 
the trace predicate. 

The axioms used to define these predicates in the 
exec ~Ile are listed below. All internal predicates end 
in an underscore, to avoid couLlicts with user axioms. 

consult(File) <- read(A,Flle) ~ consult_(A) ~ fail. 
consult(File) <- Lileclose(Fite•• 
consult_{(-Goat) <- / & Goal~/. 
consult_(Axiora) <- addax(Axio~). 
reconsultt*) <- delaxall(reconsulted_) ~ 

addax(reconsulted_(l )) S fail. 
reconsul½(File) <- read(A,File) S 

reconsult_( A) 
reconsut t( Fl le ) <- f i tee lose( Fi le ) S 

t:, fail. 

delax•ll( reconsulted_). 
reconsul½_(<-Goal) <- / & Goal. 
reconsult_(op(X,Y,Z)) <- / S a.ddax(op(X,Y,Z)). 
reconsutt_(controUX,¥)) <- / t;; addax(controt<X,Y)) .• 
reconsult_( Axiom) <- reconsutt_name_( Axiom, Name) S 

reconault_start_( Name) & 

a.ddax(Axio;a). 
reconsult_namft_(H~ad(-Body,Name) <- / ~ 

cons(N4me•*,Head). 
reconsul t_na.i1e_( Head, Na.ne ) <- cons( Na111e. *, H.ead ). 

reconsul t_start_( Nau1e ) <- reconsulted_( Na,ne) ~ / • 
reconsutt_start_(Name) <- delaxalt(Name) ~ 
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addax(reconsulted_(Name),1). 
list<-list( * ). 
list(con~rol) <- control(Id 1 Value)~ 

wrJteq(control( Id,Value))S 
.fa i 1. • 

tist(op) <- op(Operator,Type,Priority)~ 
writeq(op(Operator,Type,Priority))~ 
1:all. 

list{Name) <- axn(Name,*,Axlom) & 
wrlteq(Axiom) 6 
:fa l t. 

list(* ). 
control(errordepth,5). 
error<-ancestor( error ,N )C:,r~ t( N, l )~ /'!:;error _c,lld_. 
error<- control(errordepth,0epth) & 

error_list_(Depth)6fa.il .. 
error<- error_cmd_. 
error _cmd_ <- repeat & wri tech( • ENTE.!,,! COMMAND:• ) ;; 

newline~ error_exec_. 
error _exec_ <- read( C) 6 

( ( C t; error _succeed_( C)) I 
(writech(?) 6 newline) ) t;; I & fail. 

error _succeed_((; )(-control..( verbose, on h,wr it ech( C )&:fai 1. 
error_succeed_( * )<-wr i tech(•<-• )&newt ine. 
error_list_(Depth) <- sum(Depth,2,Depth2) & 

a;ttn <- error. 

ancestor(~,lndex) S 
gt( Index ,2} f; wri teq( A) S 
eq( Index, Depth2) & /. 

quit<-l(voal..)Sfail. 
ted(File)<-system(ted.Pile.prolog.nll). 
~Pred <- Pred 8 / S fail. 
,Pred. 
systrac"'_( Type,Goal) <- systrace( Type,Goa.l,,)Sfaile 
systrace_{caLl,*)• 
systrace_(exit,*>• 
systrace(Type,Goal) <- writech(Type) ~ tab( 1) ~ write(Goal •• 
delaxall(Name) <- atom(Na:ne) (i; axn(Nanie,*,Axlo1n) & 

de lax( Ax iota ) S J'.a l le 
del.a.xa.ll( Name). 
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The syntax of PROLOG as described in this manual 
involves hoth upver and lower ease letters. I~ PROLOG 
ls being used with terminals which do not support lower 
case, a slightly modified "uppercase only" syntax may 
be invoked. In this mode oi operation, the following 
changes are 1Ba.,te to the sta.nd~rd syntax: 

all variables must begin with an asterisk. 

alt sy,nbols which begin with 
be Jdentl1iers( i.e either 
constants). 

a letter are assumed to 
predicate names or 

all input characters are automatically shifted to 
upper case. 

To invoke PI<OLOG in the uppercase only Jto<ie 1 the 
PROLOG module wust be invoked with the parameter 
'L 1 .(e.g. PROLOG L). If a workspace size is to be 
speci1ied, the parameter should be 'Lnnn• where nnn is 
the slze(e.g. PROLOG L256). The standard PROLOG EXEC 
1ile does not support this mode of oper~tion. To create 
an appropriate EXHC £1Le, the standard HXEC can be 
copied, all the axioms converted to uppercase syntax 
and the lines invoking PROLOG changed to add the 'L' 
pre£ix to the first parameter. 
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