An interpreting algorithm for
Prolog programs’

M. H. van Emden, University of Waterloo

The basic algorithm for interpreting Prolog programs was invented by A.
Colmerauer and Ph. Roussel in 1972 when the first implementation was built in
Marseille. We are not aware of a published description of the complete basic
algorithm, although there is no scarcity of publications dealing with Prologimple-
mentation. Some of these contain expositions of structure sharing (Bruynooghe,
1982; Warren, 1977). Other papers(Roberts, 1977) treat memory management or
compare the relative advantages of structure sharing versus copying (Bruynooghe,
1982; Mellish, 1982). Only in Bruynooghe (1982) do we find a fragment of an
algorithm. In 1981, Colmerauer lectured on an interpreting algorithm in ‘clock’
form. We lack details on this and look forward for an opportunity to compare
it with the algorithm presented here.

The purpose of this paper is to present and to justify a simple algorithm for
interpreting Prolog programs. We believe that programming environments such
as Unix will make it relatively easy to implement reasonably efficient Prolog
systems. We expect many individuals and groups to take advantage of this
opportunity because the wide variety of potential Prolog applications (expert
systems, knowledge bases, natural-language processing, symbolic computation)
will encourage building specialised implementations.

We do not expect the algorithm to have any novel features. It is hard to be
sure, because of the machine-oriented form in which currently-used algorithms
exist. The components of the ‘state’ and the ‘stack frame’ are from Bruynooghe
(1982). The only novelty we believe this paper to have is the human-oriented
form of the algorithm and its derivation from a mathematical description of the
SLD theorem-prover.

A SEARCH ALGORITHM FOR TREES WITH UNSPECIFIED NODES

Our starting point is a depth-first, left-to-right algorithm for traversing a tree in
search of a terminal node having some given property P. At this point we do not
make any assumptions about the nature of the nodes of the tree.

We do have to make an assumption about the way the relation is specified
between a node and its descendants and also about the specification of the

+ Reprinted from the proceedings of the I'irst International Logic Programming Conference
at the University of Marseille, 1982.

94 STUDIES OF IMPLEMENTATIONS [Sec. 2]

order among descendants. We do this in the style of ‘data abstraction’: we posit
the availability of a procedure son(x,y) which, for a given node x, exhibits
(after being initialised) the following behaviour on successive calls. If x has
n sons, then son(x,y) will return TRUE the first n times it is called and FALSE
forever after. The first n times y is assigned successively the n sons. This procedure
may therefore be called a generator of sons. Similarly, father(x,y) returns, for
given x, FALSE if node x is the root and TRUE otherwise. In the latter case y is
assigned the father node of x. Note that we have avoided any assumptions about
data structures representing trees; hence the earlier reference to data abstraction.

We pursue an assertion-based (van Emden, 1974) development of the
algorithm. The minimum set of variables required seems to include one indicating
how far the tree has been searched. We call it ‘cn’, for ‘current node’. Here
‘assertion’ is used in Floyd’s sense: it is an assertion about the values that variables
have at a particular point in the execution of an imperative program.

The following assertion is useful because it applies to the initial situation as
a special case, where no part of the tree has been searched.

A: no terminal node to the left of the current node has property P

The assertion has been labelled "A’. ‘To the left of x’ means: occurring in a sub-
tree rooted in an older sibling of x or in an older sibling of an ancestor of x.

B: all terminal nodes to the left of all nodes still in the son generator of
the current node do not have property P

C: B holds; furthermore, the son generator of the current node is empty

The following program may be verified with respect to the assertions
described. This verification is in the sense of Floyd: it means that, whenever
execution reaches a label, the corresponding assertion, as described above,
holds.

For example, if, in the initial situation where no part of the tree has been
searched, we set the current node to the root, then assertion A holds. This
implication is expressed in the program as:

cn :=root
A:

Another example: if C holds and if the current node has x as father, then, after
making x the current node, B holds. Again, this implication is expressed by the
program; this time by

C: if father(cn, x)
thencn :=x; goto B

The complete program is listed in Fig. 1.

[Sec. 2] AN INTERPRETING AL.GORITHM FOR PROLOG PROGRAMS 95

¢n := root
A: ifP{cn)
then halt with success
else initialise son() for cn;
goto B
fi
B: if son(cn,x)
then {x is next son of cn}
cn :=x; goto A
else {all sons of cn have
been tried
}
goto C
fi

C: if father(cn, x)
then {x is the father of cn}
cn :=x; goto B
else {cn is the root }
halt with failure
fi

Fig. 1 — The basic tree-search algorithm.

Note that we retain some instructions ‘goto B’ and ‘goto C’ which are not.
needed for a computer executing the algorithm. But these are necessary if we'
are to be able to read the program as a system of logical implications true about
the set of computations to be performed by the algorithm.

An efficient way to implement the ‘father’ operation is to keep on a stack
the sequence of nodes from the root up to and including the current node. The
variable cn is an alias for the top of the stack and it holds the current node.
The father of the current node is obtained by popping the stack. If we want to!
use this method, then the current node has to be pushed on the stack when its
son becomes the current node (see Fig. 2).

96 STUDIES OF IMPLEMENTATIONS [Sec. 2]

initialise the stack at empty
cn :=root
push ¢cn

A: ifP(cn)
then halt with success
else initialise son() forcn;
goto B
fi

B: ifson(cn,x)
then {x is the next son of cn}
cn :=x; push ¢cn; goto A
else {all sons of cn have
been tried
}
pop stack; goto C
fi

C: if stack empty
then halt with failure
else cn becomes top of stack
goto B
fi

Fig. 2 — The stack version of the ABC algorithm.

THE THEOREM PROVER ON WHICH PROLOG IS BASED

A Prolog program is a set of definite clauses, i.e. Horn clauses which are not goal
statements. For a given program P and goal statement G, aderivation is a sequence
G(0), G(1), ... of goal statements such that G(0) = G and G(i+1) is obtained
from G(i) by resolution between a clause of P and G(i).

Notice that often a given derivation G(0), ..., G(n) can be extended in
several different ways. This is usually true even if we restrict (as we will do)
resolution to unification between the conclusion of the definite clause and one
particular (‘selected”) goal of G(n). The set of all derivations thus restricted and
starting at G can be arranged in the form of a tree of goal statements having the
property that the set of all paths from the root is exactly the set of all possible
derivations using most general unifications. This tree is called the search tree.
See Apt and van Emden (1984) and Clark (1984) for correctness and complete-
ness properties of the search tree.

[Sec. 2] AN INTERPRETING ALGORITHM FOR PROLOG PROGRAMS 97

The next step in the development of the interpreter results from the following
observation;

An interpreter for a Prolog program P and initial goal statement G is obtained
by applying the ABC algorithm to the search tree for P having G as root.

The resulting interpreter is shown in Fig. 3.

initialise the stack at empty
cn :=initial goal statement
push cn

A: if cnis empty goal statement
then halt with success
else initialise son{) for cn

goto B

fi

B: if son(cn,x)
then cn := x; push cn; goto A
else pop stack; goto C
fi

C:. if stack empty
then halt with failure
else cn becomes top of stack
goto B
fi
where son (cn, x) is defined as

while nextclause (cn, y)
do if head of y unifies with
selected goal of cn
then
x := goal statement obtained
by resolving y with cn
return (true)
fi
od
return (false)

Fig. 3 — The stack-based ABC algorithm applied to a search tree.

98 STUDIES OF IMPLEMENTATIONS [Sec. 2]

STRUCTURE SHARING AND PROOF TREES

The ABC algorithm for searching a tree has to store the sequence of nodes
between the root and the current node. When the tree is the search tree described
in the previous section, this sequence is typically enormously redundant. The
reason is that in the search tree every node contains a complete description of
a global statement, without reference to any other data. Yet, given any node in a
search tree (i.e. any goal statement), each of its sons can be specified by means of
a description of the resolution that generated the son concerned. This description
is typically more compact than the full goal statement.

A proof tree is a data structure which stores in a non-redundant way the
path in a search tree between the root and a current node. Consider for example

the program

P<Q&R&S&T
Q<U

U<V

\Y

With < P as initial goal statement, the search tree for this program is

<P

<Q&R&S&T

<U&R&S&T

“V&R&S&T

<R&S&T

The proof tree for the path in this search tree is as shown in Fig. 4.

Fig.4 — A proof tree.

[Sec. 2] AN INTERPRETING ALGORITHM FOR PROLOG PROGRAMS 99

We may assume without loss of generality that the initial goal statement
(the root of the search tree) has a single goal with the distinguished predicate
‘goal’. This ensures that the proof tree is indeed a tree rather than a forest.
The proof tree for a path from the root of a search tree is defined as follows.

Let p = g(0), g(1), ...,g(n—1), g(n) be a path in a search tree, where g(0)
is the root. If n = 0, then the proof tree for p contains only the root and it is
g(0). Let n > 0, let G be the selected goal of g(n —1), and let C be the clause
that was resolved with g(n — 1) (unifying the head of C with G) to give g(n). Let
us call T the proof tree of g(0), ..., g(n—1). The proof tree of g(0), ..., g(n) is
obtained from T by attaching as sons to G (which must be a terminal node of T)
the goals of the right-hand side of C and by applying throughout T and these
goals the most general unifier of G and the head of C.

The proof tree avoids redundantly repeating goals from one goal statement
to the next. Ultimately, storage of goals in proof trees will be avoided altogether.
To every nonterminal node of a proof tree there corresponds a unification.
The basic idea of structure sharing (Boyer and Moore, 1972) is to represent a
proof tree by storing only records of these unifications and to refer wherever
possible to the program for the structure of clauses, goals, and terms. To help
explain this we show an example of what we call a Ferguson diagram for a proof
tree (after its originator R. J. Ferguson (1977)). Such a diagram shows explicitly
the unifications and the structures which are borrowed from the program. Fig. 5
shows the Ferguson diagram for the same example we used before.

=0 | 19SPHRO»y

'/I
!
C 1
4 [y
< !

Fig. 5 -~ A Ferguson diagram.

100 STUDIES OF IMPLEMENTATIONS [Sec. 2]

Calls are upper half circles. Headings are lower half circles. A unification is
represented by an upper half circle meeting a lower half circle. The graphic
equivalent of a procedure connects its heading with the zero or more calls which
constitute its body.

In general, a Ferguson diagram consists of an instance of the initial goal
statement together with instances of program procedures. Structure sharing
avoids redundancy in the representation of two different instances of the same
procedure by representing each procedure by a pair consisting of a pointer to
the procedure in the program and an environment, that is, a vector of substi-
tuting terms, one for each variable in the procedure. Each substituting term,
if composite, is itself a pair: the first component points to the occurrence of
the term in the program of which the substituting term is an instance; the
second points to an environment where substitutions for possibly occurring
variables in the program term can be found.

Thus, in structure sharing there is a strict segregation in the information
specifying an instance of procedure, call, or term. On the one hand there is
the ‘structure’, obtained from the program; this is also called ‘(pure) code’ or
‘skeleton’ (Warren, 1977) (lacking the ‘flesh’ of the substitution). On the other

hand there are the substitutions, one value for each variable. For the represen-
tation of each of these one also uses structure sharing.
Consider for example the procedure

sub1(x,y) < app(u,x, V) & app(v,w,y)

See below for an explanation of the meaning of the predicates ‘subl’ and ‘app’.
The environment of this procedure is a vector of 5 pairs, one each for the
variables x,y,u, v, w.

We can now be more specific about the method for storing a proof tree.
We store each unification in a ‘frame’. Each frame records a unification (hence
corresponds to a full circle of the proof tree). Each frame has the following
components:

CALL: A pointer to the occurrence of the call in the code of which the
call in the proof tree is an instance.

FATHER: A pointer to the environment where the substitutions for the
variables in CALL may be found.

PROC: A pointer to the occurrence in the code of a procedure. The
heading which participated in the unification is an instance of
the heading of this procedure.

ENV: An environment for PROC.

The reasoning behind this is simple: a unification happens between two partici-
pants. One is determined by CALL and FATHER; the other by PROC and ENV.
Notice that, by having PROC point to an entire procedure rather than just the
heading involved in the unification, we have included in the representation not
just the full circles of the proof tree, but also the upper half circles.

Fig. 5 is untypical, in that there are no variables in the clauses, so that no
environments are needed to store substitutions. The Ferguson diagram in Fig. 6

[Sec. 2] AN INTERPRETING ALGORITHM FOR PROLOG PROGRAMS 101

illustrates the more general situation where there are four components of a
frame recording a unification.

FATHER

CALL
., — UNIFICATION RECORDED

ENV
PROC

Fig. 6 — Ferguson diagram illustrating the components of a frame.

As an illustration we show the growth of the proof tree for the following
program and initial goal statement.

1{app(9fnil},y,y)}
2{app(7{u.x},y,8{u.z}) < app(x,y,z)}
3{subl(x,y) < app(u,x,v) & app(v,w,y)}
4{goal(x,y)

< subl(5{10{a}.x},6{y.11{nil}})

< goal(x,y)

Let ‘app’ mean ‘append’, let ‘subl’ mean ‘sublist’. To obtain the Prolog program,
remove all numerals and braces. A number refers to the expression enclosed by
the matching pair of braces of which the opening brace immediately follows the
numeral. For example, 10 refers to ‘a’, 5 refers to ‘a.x’. These references are
needed in the proof trees shown in Figs. 7—10.

102 STUDIES OF IMPLEMENTATIONS [Sec. 2]

Fig. 7 — The proof tree in an early stage.

el

1

Fig. 8 — After one more unification.

[Sec. 2] AN INTERPRETING ALGORITHM FOR PROLOG PROGRAMS 103

569Y

1

O
' \%,
1

ﬁ

Fig. 9 - After another unification.

104 STUDIES OF IMPLEMENTATIONS [Sec. 2]

Fig. 10 -- Completed proof tree. Read off the answer: x = nil, y =a.

[Sec. 2] AN INTERPRETING ALGORITHM FOR PROLOG PROGRAMS 105

The numeral shown in the ‘crotch’ of a procedure refers to its code in
the program. Entries in the environment are shown as p/e where p refers to an
expression in the program and e is an environment elsewhere in the proof tree.

A USABLE INTERPRETING ALGORITHM

As we observed before, the proof tree is a representation of a path from the root
in the search tree. Extending the path in the search tree by one node (i.e. one
goal statement) extends the corresponding proof tree by one full circle and zero
or more upper half circles. To avoid becoming confused between nodes in the
search tree and nodes in the proof tree, one should realise that to one node in
the search tree (i.e. one goal statement) corresponds the frontier of upper half
circles in the proof tree. We claimed that the proof tree not only represents that
single goal statement but also the entire sequence of predecessors. With the
information we included in the frames so far, this is only true if we disregard the
effects of substitutions. In this section, we will include additional information
in each frame of a proof tree for a path so that from it one can reconstruct
proof trees corresponding to initial segments of that path.

Let us consider again the ABC algorithm using a stack to represent the
sequence S of nodes of the search tree (i.e. goal statements) between the root
and the current node. The operations the algorithm performs on this stack are
to push (resulting, say, in S1) and to pop (resulting, say, in S2). Given that S is
a proof tree we ask for a convenient storage representation of it which allows
us to obtain efficiently the proof trees representing S1 and S2. The answer is
that S should be a stack of frames and that Sl is obtained from S by a push
operation and S2 by a pop operation. It is important not to confuse the stack of
goal statements in the previous version of the interpreting algorithm with the
stack of frames in the following version. Now that we are committed to the
stack representation of proof trees, we will refer to its frames as stack frames.

Steps in the execution of a Prolog program are most naturally measured by
extensions to the proof tree where one of the calls (upper half circles of the
proof tree) is selected and made into a full circle by attaching a procedure to it.
This adds one internal node, hence one stack frame to the proof tree. Most
Prologs always select the leftmost call. Ferguson (1977) observed that, with this
selection, the order of the stack frames in the stack is the one obtained by
preorder traversal of the full circles of the proof tree (Knuth, 1968).

The interpreter acts on two categories of data. One is the code, the internal
representation of the program. This does not change during execution, at least
not in pure Prolog (i.e. in the absence of extra-logical facilities for adding
or deleting clauses). The other category of data does change during execution. It
comprises the stack (representing the proof tree) which changes both in size and
content. It also comprises what is called the state (Bruynooghe, 1982). This is
constant in size and variable in content. It plays the role of the ‘current node’
in the earlier versions of the ABC algorithm.

Let us now determine the components of the stack frame, which has to
store the information concerning a unification. This information was already
identified in the ‘frame’ of the previous section. The stack frame also has to

106 STUDIES OF IMPLEMENTATIONS [Sec. 2]

contain data which allow the proof tree to be restored to the state in which it
was before the unification. Hence the stack frame is an extension of the frame,

with the following components:

CALL: A pointer to the occurrence of the call in the code of
which the call in the proof tree is an instance.

FATHER: A pointer to the stack frame of which the procedure
contains the call of CALL.

PROC: A pointer to the occurrence of a procedure in the code.

The heading which participated in the unification is an
instance of the heading of this procedure.

ENV: The environment for PROC.

RESET: The reset list, i.e. a list of variables in the proof tree
that obtained substitutions as a result of the unification.

NEXT-CLAUSE: A generator for clauses which are candidates for attempts
at unification with the call of CALL.

The RESET component of the stack frame is obviously necessary to restore the
previous state. FATHER is changed from a pointer to an environment to a
pointer to the entire stack frame containing that environment. In this way, one
can still get the environment, but one also has the remaining information which
is required for restoring the previous state. Finally, NEXT-CLAUSE is included
to facilitate the implementation of the son generator.

Let us now discuss the components of the state. A point in the ABC algorithm
where all components of the state enter into play is where a new son (in the
search-tree sense) has just been found. When the tree is known to be a resolution
search tree, the corresponding point in the algorithm is where a unification has
just been successfully completed. The relevant part of the search tree is shown in
Fig. 11.

Another change is in the time when the stack is popped. In the previous
version it seemed most natural to do it right after failure of unification. Now

curr-frame
Q'/curr-env

,curr-call

Fig. 11 - All components of the state in use. Not shown is the next-clause
component which is the generator of clauses which are candidates for matching
with curr-call.

(Sec. 2] AN INTERPRETING ALGORITHM FOR PROLOG PROGRAMS 107

we have to worry about the details of installing the appropriate state. The
required information comes from the stack frame which must be popped.
In the next version, popping the stack is delayed so as to have time to copy
information from the top frame before it disappears.

The next version of the algorithm is obtained from the previous one by
taking into account the consequences of our chosen representation of the path
in the search tree by a stack of stack frames and of the current node by the state.
The following notes should clarify the transition to the next version of the
algorithm.

Instead of testing whether the current node cn is the empty goal statement,
we call a boolean procedure ‘select’ which returns FALSE if the proof tree
contains no ununified call (i.e. the goal statement is empty)and TRUE otherwise.
In the latter case, a pointer to such a call is returned in the argument. At label A
of the program not every component of the state necessarily has a meaningful
value. Those that do are indicated in Fig. 12.

curr-frame
curr-env

curr-
proc

Fig. 12 — Components of the state at label A.

As before, ‘son’ is the generator of sons in the search tree. In the current
context, finding a son translates to finding a procedure whose head matches the
selected call (‘currcall’), performing the unification, initialising a clause generator,
and returning a newly created frame (‘new-frame’) recording the unification.
*Son’ also returns in curr-proc the procedure it found matching curr-call. Con-
ceptually, the son (in the search-tree sense) is not just the new frame, but the
entire goal statement implicit in the proof tree which is now represented by the
stack together with new-frame. Just after ‘son’ has returned TRUE, the state
is as indicated in Fig. 11. Just after ‘son’ has returned FALSE, the state is as
indicated in Fig. 13.

curr-frame
g/ curr-env

curr-proc

Fig. 13 The state just after failure to find a son (in the search-tree sense).

108 STUDIES OF IMPLEMENTATIONS

[Sec. 2]

initialise stack at empty
curr-proc
:= initial goal statement
{disguised as procedure
goal < ...
}
curr-env := create-env (curr-proc)
curr-frame
:= create-frame(curr-env)
push curr-frame

if select (curr-call)

then
{the current goal statement is non-
empty; curr-call is the selected

goal
}
next-clause := create-cg{curr-call)
goto B
else halt with success

fi

If son (next-clause, curr-call, curr-
env, new-frame, curr-proc
)

then curr-frame := new-frame
push curr-frame
curr-env := ENV (new-frame)
goto A

else goto C

fi

if stack has only one frame

then halt with failure

else top-frame := top of stack
curr-frame := FATHER (top-frame)
curr-env := ENV (curr-frame)
curr-call := CALL (top-frame)
curr-proc := PROC (curr-frame)
next-clause
:= NEXT-CLAUSE (top-frame)
undo bindings of RESET (top-frame)
pop stack; goto B

fi

Fig. 14 -- The interpreter using proof trees implemented as a stack.

[Sec. 2]

AN INTERPRETING ALGORITHM FOR PROLOG PROGRAMS 109

function
son (next-clause, curr-call, curr-env
, new-frame, curr-proc
): boolean
while next-clause (curr-proc)
do if unifies (curr-call, curr-env
,curr-proc
, new-env, res-list
)
then create new-frame with
CALL = curr-call
PROC = curr-proc
FATHER = curr-frame
ENV = new-env
RESET = res-list
NEXT-CLAUSE = next-clause
return (TRUE)
fi
od return (FALSE)
function
select (curr-call): boolean
curr-call : = first-call (curr-proc)
while curr-call = nil
do curr-frame
:= FATHER (curr-frame)
if curr-frame = nil
then return (FALSE)
else curr-call
:= next-call (CALL (curr-frame))
fi
od
curr-proc := PROC (curr-frame)
curr-env := ENV (curr-frame)
return(TRUE)

Fig. 1S — Auxiliary functions for the interpreter.

At X no matching procedure head was found. This means that in the search
tree the father of the current node becomes the current node. To effect this, the
proof tree has to be restored to the state in which it was before the unification
recorded in curr-frame was performed.

110 STUDIES OF IMPLEMENTATIONS [Sec. 2]

The function ‘unifies’ unifies curr-call (with curr-env as environment) with
the head of curr-proc. It creates the environment new-env for curr-proc and may
place bindings in it. ‘Unifies’ also creates the reset list and makes it accessible in
res-list (Fig. 14).

We need a place to store the environment for the initial goal statement.
Such a place is obtained as the environment for a ficticious procedure

goal < (initial goal statement)

The very first frame ever to be pushed on the stack contains this environment and
records the unification between the fictitious call ‘goal’ and the above fictitious
procedure. A consequence for the ABC algorithm is now that at label C the
appropriate test is not for the empty stack but for one containing only a single
frame (Fig. 15).

ACKNOWLEDGEMENTS

Many thanks to Ron Ferguson for some very helpful discussions and to Paul Ng
for his willingness to use the algorithm in this form as basis for his implemen-
tation work. Maurice Bruynooghe kindly pointed out various obscurities in an
earlier version. The National Science and Engineering Research Council financed
supporting facilities.

REFERENCES

Apt, K. R. and van Emden, M. H., (1984), Contributions to the theory of logic
programming, Journal of the ACM.

Boyer, R. S. and Moore, J.,, (1972), The sharing of structure in theorem-proving
programs, Machine Intelligence 7,B. Meltzer, and D. Michie, (eds.), Edinburgh
University Press.

Bruynooghe, M., (1982), The memory management of Prolog implementations,
Logic Programming, K. L. Clark and S.-A. Tirnlund, (eds.), Academic Press.

Clark, K. L., (1984), Predicate Logic as a Computational Formalism, Springer-
Verlag.

van Emden, M. H., (1979), Programming with verification conditions, /EEE
Transactions on Software Engineering, SE-5, 148-159.

Ferguson, R. J., (1977), An Implementation of Prolog in C. Master’s Thesis,
Department of Computer Science, University of Waterloo.

Knuth, D. E., (1978), The Art of Programming, 1, Addison-Wesley.

Mellish, C. S., (1982), An alternative to structure sharing in the implementation
of a Prolog interpreter, Logic Programming, K. L. Clark and S.-A. Tirnlund,
(eds.), Academic Press.

Roberts, G. M., (1977), An Implementation of Prolog, Master’s Thesis, Depart-
ment of Computer Science, University of Waterloo.

Warren, D. H. D., (1977), Implementing Prolog: Compiling Predicate Logic
Programs, Ph.D. Thesis, Department of Artificial Intelligence, University
of Edinburgh.

